
Performance (4) &
Memory Hierarchy (1)

Hung-Wei Tseng

von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

Recap: Performance gap between Processor/Memory

3

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm, programming language,

programmer
• Cycle Time (Seconds Per Cycle)

• Process Technology, microarchitecture, programmer
4

Recap: Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT
Speedup = Execution TimeX

Execution TimeY

• Corollary #1: Maximum speedup
• Corollary #2: Make the common case fast

• Common case changes all the time
• Corollary #3: Single-core performance

still matters
• Corollary #4: Exploiting more parallelism

from a program is the key to performance
gain in modern architectures

5

Amdahl’s Law
Speedupenhanced(f, s) = 1

(1 − f) + f
s

Speedupmax(f, ∞) = 1
(1 − f)

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point intensive
6

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT

A good performance metric must cover IC, CPI, CT!

• How to make “fair comparisons” or … how to fool others with
performance metrics

• The Basic Idea behind Memory Hierarchy
• How cache works

7

Outline

8

9

125 TFLOPS
Only @ 16-bit
floating point

They try to tell it’s the better AI hardware

10

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inference per second

11

Inferences
Second = Inferences

Operation × Operations
Second

= Inferences
Operation × [operations

cycle × cycles
second × #_of_PEs × Utilization_of_PEs]
Hardware Model Input Data

Operations per inference v

Operations per cycle v

Cycles per second v

Number of PEs v

Utilization of PEs v v

Effectual operations out of (total) operations v v
Effectual operations plus unexploited ineffectual

operations per cycle v

Instances per batch

• There is no standard on how they inference — but these affect!
• What model?
• What dataset?

• That’s why Facebook is trying to promote an AI benchmark —
MLPerf

12

What’s wrong with inferences per second?

ImageNet Performance

13

Intel® Xeon® Platinum 9200
processors (CPU)

Google Cloud TPU v3
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

Cores 112 processors * 2-way SMT 2 MXU 320*8 MXU
Number of Maximum Parallel

Inferencing Instances 224 2x256 320*8 = 2560

https://mlcommons.org/en/inference-datacenter-05/

44977.8
2560 = 17.5694531

1
17.5694531 = 56.91ms

5965.62
224 = 26.63 32716

2 = 63.8984375

1
26.63 = 37.55ms

1
0.0156498349 = 15.64ms

https://mlcommons.org/en/inference-datacenter-05/

IPS with strict 7ms limitation

14https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Choose the right metric — Latency
v.s. Throughput/Bandwidth

21

• Latency — the amount of time to finish an operation
• Access time
• Response time

• Throughput — the amount of work can be done within a given
period of time
• Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)
• IOPs (I/O operations per second)
• FLOPs (Floating-point operations per second)
• IPS (Inferences per second)

22

Latency v.s. Bandwidth/Throughput

23

 Toyota Prius 100 Gb Network

bandwidth 290GB/sec 100 Gb/s or
12.5GB/sec

total latency 3.5 hours 2 Peta-byte over 167772 seconds
= 1.94 Days

latency in
getting the first

moivie
You see nothing in the first 3.5 hours

100GB/100Gb = 8 secs!
You can start watching the first

movie in 8 secs!

Latency/Delay v.s. Throughput

31

•100 miles (161 km) from UCSD
•75 MPH on highway!
•Max load: 374 kg = 2,770 hard drives

(2TB per drive)

•100 miles (161 km) from UCSD
•Lightspeed! — 3*108m/sec
•Max load:4 lanes operating at 25GHz

32

• The ISA of the “competitor”
• Clock rate, CPU architecture, cache size, how many cores
• How big the RAM?
• How fast the disk?

33

What’s missing in this video clip?

• Quote only 32-bit performance results, not 64-bit results.
• Present performance figures for an inner kernel, and then represent these figures as the

performance of the entire application.
• Quietly employ assembly code and other low-level language constructs.
• Scale up the problem size with the number of processors, but omit any mention of this fact.
• Quote performance results projected to a full system.
• Compare your results against scalar, unoptimized code on Crays.
• When direct run time comparisons are required, compare with an old code on an obsolete system.
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on

the best sequential implementation.
• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
• Mutilate the algorithm used in the parallel implementation to match the architecture.
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy

environment.
• If all else fails, show pretty pictures and animated videos, and don't talk about performance.

34

12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

Performance of modern DRAM

35

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, consider we have DDR4 and the
program is well-behaved that precharge is never necessary — the
access latency is simply 26 ns. What’s the average CPI (pick the
most close one)?

A. 9
B. 17
C. 27
D. 35
E. 69

36

The impact of “slow” memory
https://www.pollev.com/hungweitseng close in

• Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What’s the average CPI (pick the most close one)?

A. 9
B. 17
C. 27
D. 35
E. 69

40

The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles

Alternatives?

41

Fast, but expensive $$$

42

ProcessorProcessor
Memory Hierarchy

43

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

44

How can memory hierarchy help in performance?
https://www.pollev.com/hungweitseng close in

ProcessorProcessor
Memory Hierarchy

48

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

us/ms

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

49

How can memory hierarchy help in performance?

1 + (1 − 90%) × [100% × (52) + 30% × 52] = 7.76 cycles

L1? L2? L3?

50

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

51

How can deeper memory hierarchy help in performance?
https://www.pollev.com/hungweitseng close in

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

55

How can deeper memory hierarchy help in performance?

1 + (1 − 90%) × [10 + (1 − 60%) × 52 + 30% × (10 + (1 − 60%) × 52)] = 5 cycles

Processor
Memory Hierarchy

56

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms

Why adding small SRAMs would
work?

57

59

Locality
https://www.pollev.com/hungweitseng close in

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

63

Locality

spatial locality:
A[0], A[1], A[2], A[3],
sum[0], sum[1], ... , sum[9]
temporal locality:
reuse of sum[0], sum[1], ... , sum[9]

• Spatial locality — application tends to visit nearby stuffs in the
memory
• Code — the current instruction, and then PC + 4
• Data — the current element in an array, then the next

• Temporal locality — application revisit the same thing again
and again
• Code — loops, frequently invoked functions
• Data — the same data can be read/write many times

64

Locality

Most of time, your program is just visiting a
very small amount of data/instructions within

a given window

• Assignment #1 due this Wednesday
• Assignments SHOULD BE done/submitted individually — if

discussed with others, make sure their names on your submission
• We will drop your least performing assignment as well

• Office Hours
• Walk-in, no appointment is necessary
• Hung-Wei/Prof. Usagi: MTu 2p-3p (WCH 406 or on Zoom)
• Abenezer Wudenhe: WTh 3p-4p (Zoom only)

211

Announcement

ͺͻͥ

Computer
Science &
Engineering

203

