
Memory Hierarchy (4): Optimizing
Code Performance!

Hung-Wei Tseng

Processor
Recap: Memory Hierarchy

2

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms

• Compulsory miss
• Cold start miss. First-time access to a block

• Capacity miss
• The working set size of an application is bigger than cache size

• Conflict miss
• Required data replaced by block(s) mapping to the same set
• Similar collision in hash

3

3Cs of misses

• Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?
! Increasing associativity can reduce conflict misses
" Increasing associativity can reduce hit time
Increasing block size can increase the miss penalty
$ Increasing block size can reduce compulsory misses
A. 0
B. 1
C. 2
D. 3
E. 4

4

3Cs and A, B, C

Increases hit time because your
data array is larger (longer time
to fully charge your bit-lines)

You need to fetch more data for
each miss

You bring more into the cache
when a miss occurs

• How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom II for the code in the previous slide?
! Missing cache
" Victim cache
Prefetch
$ Stream buffer
A. 0
B. 1
C. 2
D. 3
E. 4

5

Which of the following schemes can help Athlon 64?

— only help improving compulsory misses

— help improving conflict misses
— help improving conflict misses
— improving compulsory misses , but can potentially hurt, if we did not do it right

• Hardware optimizations for cache performance
• Software optimizations for cache performance

6

Outline

Advanced Hardware Techniques in
Improving Memory Performance

7

Blocking cache

8

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

Bank #2Bank #1

Multibanks & non-blocking caches

9

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

10

Pipelined access and multi-banked caches

Bank #1
Bank #2

Bank #3
Bank #4

Request #1
Request #2

Request #3
Request #4

Baseline

Multi-
banked

Memory
Request #1

Memory
Request #2

Memory
Request #3

Memory

• Assume each bank in the $ takes 10 ns to serve a request, and
the $ can take the next request 1 ns after assigning a request to
a bank — if we have 4 banks and we want to serve 4 requests,
what’s the speedup over non-banked, non-pipelined $? — pick
the closest one
A. 1x — no speedup
B. 2x
C. 3x
D. 4x
E. 5x

11

Pipelined access and multi-banked caches
https://www.pollev.com/hungweitseng close in

• Assume each bank in the $ takes 10 ns to serve a request, and
the $ can take the next request 1 ns after assigning a request to
a bank — if we have 4 banks and we want to serve 4 requests,
what’s the speedup over non-banked, non-pipelined $? — pick
the closest one
A. 1x — no speedup
B. 2x
C. 3x
D. 4x
E. 5x

15

Pipelined access and multi-banked caches

ETbaseline = 4 × 10 ns = 40 ns

ETbanked = 10 ns + 3 × 1 ns = 13 ns

Speedup = Execution Timebaseline

Execution Timebanked

= 40
13 = 3.08 ×

16

The bandwidth between units is limited
Processor

Core
Registers

L1 $

L2 $

DRAM

64-bit

64-bit

64-bit

When we handle a miss

17

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

write back
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back
2nd chunk

write back
3rd chunkwrite back

4th chunk
fetch 1st
chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss restartmiss restart

t

t

Early Restart and Critical Word First

18

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

t

t
write back
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back
2nd chunk

write back
3rd chunkwrite back

4th chunk
fetch 1st
chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss restartmiss
restartif the requesting data (offset

within a block is already received)

• Don’t wait for full block to be loaded before restarting CPU
• Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

• Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• Most useful with large blocks
• Spatial locality is a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

19

Early Restart and Critical Word First

Can we avoid the overhead of writes?

20

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

write back
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back
2nd chunk

write back
3rd chunkwrite back

4th chunk
fetch 1st
chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss restartmiss
restartif the requesting data (offset

within a block is already received)

Write Back
Overhead

t

t

Write buffer!

21

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag return block

0xDEADBE

write to
buffer

assume the bus between L1/L2 only allows a quarter of the cache block go through it

fetch 1st
chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss
restartif the requesting data (offset

within a block is already received)

Write
Buffer

t

t

write to L2

• Every write to lower memory will first write to a small SRAM buffer.
• store does not incur data hazards, but the pipeline has to stall if the write misses
• The write buffer will continue writing data to lower-level memory
• The processor/higher-level memory can response as soon as the data is written to write buffer.

• Write merge
• Since application has locality, it’s highly possible the evicted data have neighboring addresses.
Write buffer delays the writes and allows these neighboring data to be grouped together.

22

Can we avoid the “double penalty”?
L1 $

L2 $
fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

Write Buffer

write back
 0x????BEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
0x????BE

whenthere is no request
between L1/L2

indextag

• Regarding the following cache optimizations, how many of them
would help improve miss rate?
! Non-blocking/pipelined/multibanked cache
" Critical word first and early restart
Prefetching
$ Write buffer
A. 0
B. 1
C. 2
D. 3
E. 4

23

Summary of Optimizations
https://www.pollev.com/hungweitseng close in

• Regarding the following cache optimizations, how many of them
would help improve miss rate?
! Non-blocking/pipelined/multibanked cache
" Critical word first and early restart
Prefetching
$ Write buffer
A. 0
B. 1
C. 2
D. 3
E. 4

27

Summary of Optimizations

Miss penalty/Bandwidth
Miss penalty

Miss rate (compulsory)
Miss penalty

• Hardware
• Prefetch — compulsory miss
• Write buffer — miss penalty
• Bank/pipeline — miss penalty
• Critical word first and early restart — miss panelty

28

Summary of Optimizations

Programming and memory
performance

29

Data layout

30

• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))?
A. 20
B. 28
C. 32
D. 36
E. 40

31

The result of sizeof(struct student)
struct student {
 int id;
 double *homework;
 int participation;
 double midterm;
 double average;
};

https://www.pollev.com/hungweitseng close in

• Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

• Instructions generally work faster when the given memory
address is aligned
• Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

• Some architecture/processor does not support aligned access at all
• Therefore, compilers only allocate objects on “aligned” address

35

Memory addressing/alignment

• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))?
A. 20
B. 28
C. 32
D. 36
E. 40

36

The result of sizeof(struct student)
struct student {
 int id;
 double *homework;
 int participation;
 double midterm;
 double average;
}; 64-bit

id

average

homework
participation

midterm

• Carefully layout your data structure can improve capacity
misses!

37

Tips of software optimizations

Array of structures or structure of arrays

38

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

ID *homework average ID *homework average
ID ID ID

homework homework homework
average average average

• Considering your workload would like to calculate the average
score of one of the homework for all students, which data
structure would deliver better performance?
A. Array of objects
B. Object of arrays

39

What data structure is performing better

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

https://www.pollev.com/hungweitseng close in

43

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?
A. Array of objects
B. Object of arrays

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

What if we want to calculate average scores for each student?

• If you’re designing an in-memory database system, will you be using

• column-store — stores data tables column by column
10:001,12:002,11:003,22:004;
Smith:001,Jones:002,Johnson:003,Jones:004;
Joe:001,Mary:002,Cathy:003,Bob:004;
40000:001,50000:002,44000:003,55000:004;

• row-store — stores data tables row by row

001:10,Smith,Joe,40000;
002:12,Jones,Mary,50000;
003:11,Johnson,Cathy,44000;
004:22,Jones,Bob,55000;

44

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000
2 12 Jones Mary 50000
3 11 Johnson Cathy 44000
4 22 Jones Bob 55000

if the most frequently used query looks like —
select Lastname, Firstname from table

• Carefully layout your data structure can improve capacity
misses!

• Make your data structures align with the access pattern can
better exploit cache locality — improve conflict misses

45

Tips of software optimizations

Loop interchange/fission/fusion

46

Demo — programmer & performance

47

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++) {
 c[i] = a[i] + b[i];
 //load a, b, and then store to c
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

48

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 5%
B. 6.25%
C. 66.67%
D. 68.75%
E. 93.75%

49

What if the code look like this?
https://www.pollev.com/hungweitseng close in

AMD Phenom II

53

int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 64-bit address.

address in hex address in binary tag index hit? miss?
load a[0] 0x20000 0b10 0000 0000 0000 0000 0x4 0 miss
store c[0] 0x10000 0b01 0000 0000 0000 0000 0x2 0 miss
load a[1] 0x20004 0b10 0000 0000 0000 0100 0x4 0 hit
store c[1] 0x10004 0b01 0000 0000 0000 0100 0x2 0 hit

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = the rest bits
tag index offset

load a[16] 0x20040 0b10 0000 0000 0100 0000 0x4 1 miss
store c[16] 0x10040 0b01 0000 0000 0100 0000 0x2 1 miss

load b[0] 0x30000 0b11 0000 0000 0000 0000 0x6 0 miss
load c[0] 0x10000 0b01 0000 0000 0000 0000 0x2 0 miss
store c[0] 0x10000 0b01 0000 0000 0000 0000 0x2 0 hit

512 × 2 accesses
512
16 × 2misses

512 × 3 accesses
512
16 × 2misses512 × 5 accessestotal 512

16 × 4 missestotal

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 5%
B. 6.25%
C. 66.67%
D. 68.75%
E. 93.75%

54

What if the code look like this?

Loop fission
512
16 × 4

512 × 5 = 0.05

Loop Fusion

55

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {
 a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];
 }

2 misses per access to a & c vs. one miss per access

• Carefully layout your data structure can improve capacity
misses!

• Make your data structures align with the access pattern can
better exploit cache locality — improve conflict misses

• Implementing algorithms in a more cache friendly way!

56

Tips of software optimizations

• Reading Quiz #5 next Monday before the lecture
• Assignment #2 due next Wednesday midnight — will be up
later today

• Office Hours
• Walk-in, no appointment is necessary
• Hung-Wei/Prof. Usagi: MTu 2p-3p (WCH 406 or on Zoom)
• Abenezer Wudenhe: WTh 3p-4p (Zoom only)

83

Announcement

