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Recap: Take-aways of parallel programming

- Processor behaviors are non-deterministic
- You cannot predict which processor is going faster
- You cannot predict when OS is going to schedule your thread

- Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

- Cache consistency is hard to support



Power and Energy




Power v.s. Energy

- Power is the direct contributor of "heat”

- Packaging of the chip

- Heat dissipation cost

- Power = Ppynamic + Pstatic

- Energy=P*ET

- The electricity bill and battery life is related to energy!

- Lower power does not necessary means better battery life if the
processor slow down the application too much



Dynamic Power



Dynamic/Active Power

- The power consumption due to the switching of transistor
states

- Dynamic power per transistor

denamic ~aXxC X N
- o average switches per cycle
- C: capacitance

V. voltage
f. frequency, usually linear with V

- N:the number of transistors
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Double Clock Rate or Double the # of Processors?

- Assume 60% of the application can be fully parallelized with 2-
core or speedup linearly with clock rate. Should we double the
clock rate or duplicate a core?

P ponamic ~ X CX V> X fx N

1

(1 = foaratietizavie) +

I
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Dynamic voltage/frequency scaling

- Dynamically lower power for performance
- Change the voltage and frequency at runtime
- Under control of operating system — that's why updating iOS may slow down an old iPhone

» Recall: Py pmic ~ a X C X VX fXN

- Because frequency ~to V...

. denamic ~ 1o V3

- Reduce both V and f linearly

- Cubic decrease in dynamic power

- Linear decrease in performance (actually sub-linear)
- Thus, only about quadratic in energy

- Linear decrease in static power
- Thus, only modest static energy improvement

- Newer chips can do this on a per-core basis
- cat /proc/cpuinfo in linux
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Demo — changing the max frequency and performance

- Change the maximum frequency of the intel processor — you

learned how to do this when we discuss programmer’s impact
on performance

- LIKWID a profiling tool providing power/energy information
- likwid-perfctr -g ENERGY [command_line]
- Let's try blockmm and popcount and see what's happening!
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Dark Silicon and the End of Multicore
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Static/Leakage Power

- The power consumption due to leakage — transistors do not
turn all the way off during no operation

- Becomes the dominant factor in the most advanced process

technologies.
] Leakag.e power
Pleakage ~ NXVX e_Vf 455 . I Dynarhic powves
- N: number of transistors 500
- V. voltage Za00
- Vi threshold voltage where
transistor conducts (begins to switch) :

QOhm 65nm 40hm 28nm 20nm

Figure 1: Leakage power becomes a growing problem as demands for more performance
and functionality drive chipmakers to nanometer-scale process nodes (Source: IBS).
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Dennardian Broken

- Given a scaling factor S

Parameter Relation Classical Scaling
Power Budget 1
Chip Size 1
Vdd (Supply Voltage) 1/S
Vt (Threshold Voltage) 1/S 1/S
tex (oxide thickness) 1/S
W, L (transistor dimensions) 1/S
Cgate (gate capacitance) WL/tox 1/S
Isat (saturation current) WVdd/tox 1/S
F (device frequency) |sat/(CgateVdd) S
D (Device/Area) 1/(WL) S2
p (device power) |satVdd 1/S2
P (chip power) Dp 1

U (utilization) 1/P 1
23
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Power consumption to light on all transistors

Chip
1 1 T

1 1 1

1 1 1

=49W

Dennardian Scaling
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Clock rate improvement is limited nowadays
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Solutions/trends in dark silicon era



Trends in the Dark Silicon Era

- Aggressive dynamic voltage/frequency scaling

- Throughout oriented — slower, but more

- Just let it dark — activate part of circuits, but not all
- From general-purpose to domain-specific — ASIC
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Aggressive dynamic frequency
scaling



Modern processor’s frequency

Intel® Core™ i19-9900K Processor

16M Cache, up to 5.00 GHz

CPU Specifications

Essentials

Product Collection # of Cores 7 8

Code Name

# of Threads 7
Vertical Segment

?
Processor Number ? Processor Base Frequency -

Status Max Turbo Frequency 7
Launcn Date 7
Cache 7 16 MB Intel® Smart Cache
Lithography ?
Bus Speed 7 8 GT/s
Included |tems
, Intel® Turbo Boost Technology 2.0 Frequency¥ 7 5.00 GHz
Use Conditions 7
Recommended Customer Price  ? TDP g5 W
C— —— W
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Dynamic/Active Power

- The power consumption due to the switching of transistor
states

- Dynamic power per transistor

denamic ~aXxC X N
- o average switches per cycle
- C: capacitance

V. voltage
f. frequency, usually linear with V

- N:the number of transistors
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Recap: Demo — changing the max frequency and performance

- Change the maximum frequency of the intel processor — you

learned how to do this when we discuss programmer’s impact
on performance

- LIKWID a profiling tool providing power/energy information
- likwid-perfctr -g ENERGY [command_line]
- Let's try blockmm and popcount and see what's happening!
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Static/Leakage Power

- The power consumption due to leakage — transistors do not
turn all the way off during no operation

- Becomes the dominant factor in the most advanced process
technologies

P..eee ~ FIOW @bout static power’?
- N: number of transistors
- V. voltage a00

- Vy: threshold voltage where
transistor conducts (begins to switch) :

chm

90nm 65nm 40hm 28nm 20nm

Figure 1: Leakage power becomes a growing problem as demands for more performance
and functionality drive chipmakers to nanometer-scale process nodes (Source: I1BS).
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Slower, but more



More cores per chip,

Products Solutions Support

Intel” Xeon® Processor F7-889C

vad
Cratus Launched
Launch Date €@ Q216
Lithography @ Tdnm

Performance

# of Cores @

# of Threads @ 48
Processor Base lrequency € 2.20 GHz
Max Turbo Frequency O 3.40 GHz
Cache € 50 MB
Bus Speed € 2.6 GT/=
il of OFI Links © 3

TOP O 165 W

Int2|® Xeon® Processor F7-886G3

vd

Launched

3.20 GHz

3.50GHz

€0 ME

9.6 GT/s

140 W

slower per core

Intel” Xeon® Frocessor F7-8880

vd

Launched

44

Z2.20GHz

3230 GHz

55 MB

a5 GT/s

(¥
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Essentials

Product Collecticr
Code Nam2
Vertical Segment
Processor Number
Off Roadmap
Status

Launch Date 7

Lithography ?

Performance

# ol Cores 7

# of Threads 2

Processor Base Frequency
Max Turoo Frequency ?
Cache 7

TOP 7

s’

Xeon Phi

35

Intel” Xeon Phi™ 72x5 Processor Famiy
Praducts formerly Knights M LI

Server

7295

No

Launched

0417

"4 nm

36 MB L2 Cache




Areas of different processor generations

. You fit about 5 EV5 cores within the same area of an EV6

- If you build a quad-core EV0, you can use the same area to
- build 20-core EV5
- SEV6+5EV5

Processor EV5s | EV6 | EVo+
Issue-width 4 6 (000) 6 (000)
I-Cache 8KB, DM | 64KB, 2-way | 64KB, 2-way
D-Cache 8KB, DM | 64KB, 2-way | 64KB, 2-way EV4 _—
Branch Pred. 2K-gshare | hybrid 2-level | hybrid 2-level EVE
Number of MSHRs 4 8 16
Number of threads 1 | 4 EVE
Area (in mnm?) 5.06 24.5 29.9
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Energy-delay

O Energy

- Energy * delay = Power *ET * Rreromencteecton i
ET = Power * ET?

0.6 -

0.4

Normalized Value (wrt EV8-)

0.2
0 - 1
< N \
I o0 & > S
) \o O ‘0
o Eo) @Q o
O & $ X
< () N
< N ,bé‘
'\g *o
<~ Q
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Benchmark | Total % of 1nstructions per core Energy ED 12 D* Perf.
switches EV4 | EVS EVé6 EV8- Savings(%) | Savings(%) | Savings(%) | Loss (%)

ammp 0 0 0 0 100 0 0 0 0
applu 27 2.2 33.6 7.1
apsl 2 0 22.9 3.1
art 0 0 72.6 3.3
equake 20 0 70.1 3.9
fma3d 0 0 0 0
wupwise 16 0 66.2 10.0
bzip 13 0 : 5. : 37.2 2.3
crafty 0 0 0 0 100 0 0 0 0
eon 0 0 0 100 0 77.3 76.3 75.3 4.2
gzip 82 0 0 95.9 4.1 74.0 73.0 71.8 3.9
mcf 0 0 0 0 100 0 0 0 0
twolf 0 0 0 0 100 0 0 0 0
vortex 364 0 0 73.8 26.2 56.2 51.9 46.2 9.8
Average I(median) 0.2% 0% 54.8% | 45.0% 38.5% 37.0% 35.4% 3.4%
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4EV6 v.s. 20 EV5 v.s. BEV6+5EV5

8 I T 2§%E§56 I T T | |
e X
) 3EV6 & SEVS (static [])Eesa e Y
' r '_,X"‘J -
& ) % |

n
|

Weighted Speedup

I“x.’ ' '
3 r -
2 |
vl
c | | | | | | | |
0 2 4 6 g 10 12 14 16 1€ 2C
Number of threads
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ARM's big.LITTLE architecture
big.LITTLE system

Interrupt Controller

Rest of system
- ‘ (GPU, Video, Display, etc.)

big LITTLE

Coherent Interconnect

Memory Controller

45



The Rise of GPUs



ise of GPU
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Each of these performs
the same operation, but
each of these is also a

“"thread"”
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Just let it dark



NVIDIA's Turing Architecture

Fp64 ) INT JFp32 § TCU

Load/Store



Programming in Turing Architecture

Use tensor cores

cublasErrCheck(cublasSetMathMode(cublasHandle, CUBLAS TENSOR OP MATH)):
ggﬁ&g%tgEQf?QFﬁ&érEQQJEMATRIX_M * MATRIX K + 255) / 256, 256 >>> (a_fplé, a_fp32,
ATRIX M *x MATRIX K):

convertFp32ToFpl6é <<< (MATRIX_K * MATRIX_N + 255) / 256, 256 >>> (b_fplé6, b_fp32,
ATRIX _K *x MATRIX _N):

cublasErrCheck(cublasGemmEx(cublasHandle, CUBLAS OP_N, CUBLAS OP_N,
MATRIX M, MATRIX_N, MATRIX K,
&alpha,
a_fplé, CUDA_R_16F, MATRIX_M,
b _fplé, CUDA_R_16F, MATRIX K,
&beta,
c_cublas, CUDA_R_32F, MATRIX_M,
CUDA_R_32F, CUBLAS_GEMM_DFALT_TENSOR_OP)):

call Gemm
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NVIDIA's Turing Architecture

I

|

|

|

|

|

|

|

|

|

|

You can only use either type of these ALUs, but not all of them
| |

Load/Store ' SPU




The Rise of ASICs



Say, we want to implement a[i] += a[i+1]*20

- This is what we need in RISC-V in each iteration

1d X1, o(xe) NG ERIEIN
1d X2, 8(X0) IF b | EX [MEM| W

add X3, X31, #20 F b | Ex [MEm| WER
mul X2, X2, X3 CF b EX [MEM| W
add X1, X1, X2 F b | EX [MEM| W

sd X1, o(Xxe) _IF b EX [MEM W
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This is what you need for these instructions

PCWrite

IF/IDWrite Tiﬁ‘ |
|

J_ 1
( Hazard Detection | ID/EX MemoryRead
Adder
Reg2loc
—
Adder F 0
4 Branch J
MemoryRead
sl=| Control ||  MemioReg }
Z& ; ALUOp B
§ D, MemoryWrite
2 ALUSrc
RegWrite B
Instruction e Ve T
[9:5]' |Read
. Register 1 m
m O »|Read Tix
ux (ol Address Read 0
1 Datal [ | .
Instruction [ | ol Read k Zero -
[31:0] ;
Register 2 ALU o 9| Address gi?;j
) Read | |
5| Write Data 2 0
Instruction Register it m
| Write . S
memory i Data Reglsters 1 ForwardA Write
| RegWrite - — Data Data
orwar
ID/EXE.RegisterRm ID/EXE.RegisterRn memory
Inbtructio Sj \
[31:0 Ign- J —
extend ‘ x
Ingtructio EX/MEM.MemoryRead
[31:21] W ‘ EX/MEM .RegisterRd
‘ | o
PAN Instruction[4:0] A ¥ Forwardin \4 = ﬂ o
IF/ID | ID/EX 9 ] EX/MEM MEM/WB
T MEM/WB.RegisterRd

o]4)



Specialize the circuit

MEM/WB.RegisterRd

PCWrite
IF/IDWrite ] ‘
—
[ Hazard Detection | ID/EX-MemoryRead
Reg2lLoc Adder
]
Adder T 0
Branch
MemoryRead
sl= Control E‘ MeniToReg ‘
b B X ALUOp |
= o, MemoryWrite
2 ALUSrc
RegWrite
Instruction e P |
[9:5] Read
Register 1 m
m | O »|Read T
ux al Address Read | | 0
1 Data >
Instruction | | JRead o Zero "
[31:0] )
Register 2 ALU o-9—»| Address gead 1
Read ot
y Vrite Data2 || 0
Instruction Register 2
memor | rTe - > |
y Data Reglsters 1 \@rwar% Write
| RegWrite - — Data Data
orwar
|D/E E.RegisterRm |D/EXER9 isterRn memory
Inbtructio Sign- ‘
We don’t need SO end |
o o o Indtructio EX/MEM.MemoryRead
instruction fetch given igfzn EX/MEM RegisterRd
it's a fixed function - ewustonaro L T ——— = A T A
IF/ID | ID/E L 9 ) EX/MEM MEM/WB
L
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We don't need these
many registers, complex
control, decode

We don't need
instruction fetch given
it's a fixed function

Specialize the circuit

]

Instruction

[ Hazard Detection | ] ID/ExXMemonyRead
Adder
Reg2loc
]
00—
Branch
MemoryRead
m
= Control ; MemToReg
— X ALUOD |
a2 MemoryWrite
ALUSrc
RegWrite
Instruction ~ e
[9:5] Read
Register 1 1m
ux
Read | | 0
Data 1 Zero >
» Read
Register 2 ALU o 9| Address gi?s ‘
) Read | |
Write Data 2 0
" | Register om
: 3uX
_|Write ‘
RegWrite - — Data Data
orwar
|D/E E.RegisterRm |D/EXER9 isterRn memory
Inptructio Sian-
[31:0 Ign —
extend 1
Ingtructio EX/MEM.MemoryRead
[31:21] W EX/MEM .RegisterRd
Instruction[4:0] <X~ ¥ Forwardin | e A T AN
ID/EX k. 9 ] EX/MEM MEM/WB
T MEM/WB.RegisterRd
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We don’t need ALUs,
branches, hazard
detections...

We don't need these
many registers, complex
control, decode

We don't need
instruction fetch given
it's a fixed function

Specialize the circuit

[ Hazard Detection | ] | P/EXMemoryRead

00—

Branch
MemoryRead

.

Adder

Control

MemTloReg
ALUOp

MemoryWrite

ALUSIc

RegWrite

| Read

Read

o—————mRegister2  Data 2

Write

Write
Data

Register 1

Register

Read

Data1
Read

Reqisters

RegWrite

Zero

ALU

Address

Write
Data Data

A 4

Read

Data

memory

I

Instruction[4:0] a

ID/EX

VAN
EX/MEM

VAN
MEM/WB

MEM/WB.RegisterRd
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Specialize the circuit

Branch
MemoryRead
Contro| MemToReg
ALUOp
/ MemoryWrite T
ALUSrc \ ‘
RegWrite |
We don't need big ALUs, B
branches, hazard
i Read u >
detections... |Register1 et S BN
Read Read Read ‘
e nRegister2  Data 2 ALU —¢—>| Address Data ‘
We don’t need these Rogiter H %
many registers, complex e Registers g |
control, decode " RegWirite Write
Data Data
| memory
We don't need ° > ] B
instruction fetch given |
it'S a fixed funCtion * Instruction[4:0] A as AN
| ID/EX EX/MEM MEM/WB
MEM/WB.RegisterRd

oV




1d
1d
ad
mL
ad

SC

O O

X1,
X2,
X3,
X2,
X1,
X1,

Rearranging the datapath

0(X0)
8(X0)
X31, #20
X2, X3
X1, X2
0(X0)

Data
memory

o——e— Address

'>Adder

Data
memory

Register
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The pipeline for a[i] += a[i+1]*20

Each stage can still
be as fast as the
pipelined
processor

But each stage is
now working on
what the original 6
instructions would
do

a[3] +=a[4]*20

a[1] +=a[2]*20

— ¢ —b

Data
memory

Address

Rea
Data |-

d

F Register

8-

>Adder

Read

pAddress

Data

Data
memory
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Adder

a[0] += a[1]*20

Address
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Data
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In-Datacenter Performance Analysis of a
Tensor Processing Unit

N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M.
Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H.
Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D.Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na- garajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D.
Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal- ter, W. Wang, E. Wilcox, and D. H. Yoon
Google Inc.
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What TPU looks like
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TPU Floorplan

Local Unified Buffer for

Matrix Multiply Unit

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MIB) 24%
29% of chip
D Host Accumulators g
. Interf. 2% (4Kx256x32b =4 MiB) 6% | o
M _ A M
port LActlvatlon Pipeline 6% port
5 Hf Interface 3% | = i Misc. 110 1% %
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TPU Block diagram
— — | DDR3 DRAM Chips |

O 30 GiBls

14 GiB/s

30 GiB/s
Weight FIFO
S g BN
- G 30 GiBl/s
: B
s Unified 167 Matrix Multiply
3 10 GiB/s Buffer Systolic ~ Unit
14 GiB/s 14 GiB/s g (Local Data (64K per cycle)
i Activation Setu | ‘ |
DRt & : ctvation | Stup
I

Accumulators

Activation

@
L 167 GiB/s
N

==
Off.Chip I/O
8 Data B:ﬂcr J
[T] computation — _
. Control

" ™
Normalize / Pool
a 4
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Experimental setup

Die Benchmarked Servers
Model E Measured | TOPS/s On-Chip |.. : Measured
mm* |nm |MHz|TDP Jdle | Busy| 8b | EP GB/s Memory Dies DRAM Size TDP Jdle | Busy
Eggz\;gli3 662 |22 |2300{145W|41W|145W|[ 2.6 |1.3| 51 | 51MiB | 2 256 GiB 504W |[159WHU55W
NVIDIA KR0 . 256 GiB (host)
2 dies/card) 561 128 | 560 [150W]|25W| 98W | -- |2.8|160 | 8 MiB | 8 + 12 GiB x & 1838W [357TWPIIW
TPU  |NA*[28 |700 |75W [28W|40W | 92 | - | 34 | 28 MiB | 4 2168051?8(1;0:0 861W [290WB84W
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Performance/Rooflines

100 = TPURoofline
= K80 Roofline
« HSW Roofline
* LSTMO

© LSTM1

* MLP1
* MLPO
* CNNO

* CNNI1

A LSTMO
& LSTMI
A MLP1

A MLPO

A CNNO

A CNN1

® LSTMO
@ LSTM
4

10

TeraOps/sec (log scale)

1 10 100 1000

mo
Operational Intensity: Ops/weight byte (log scale) -
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Tail latencies

Type | Batch |99th% Response|lnf/s (IPS)| % Max IPS

CPU| 16 7.2 ms 5,482 42%
CPU | 64 21.3 ms 13,194 100%
GPU|[ 16 6.7 ms 13,461 37%
GPU | 64 8.3 ms 36,465 100%

TPU [ 200 7.0 ms 225,000 80%

TPU [ 250 10.0 ms 280,000 100%

Table 4. 99-th% response time and per die throughput (IPS) for MLPO as batch size varies for MLPO. The longest allowable latency is 7
ms. For the GPU and TPU, the maximum MLPO throughput is limited by the host server overhead. Larger batch sizes increase throughput,
but as the text explains, their longer response times exceed the limit, so CPUs and GPUs must use less-efficient, smaller batch sizes (16 vs.

200).

74



Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

Tail latencies

= linl00 == 1inl200 =— L nl0CCO

P o0 leim —cowow
7 [ e /

—
~

/ N.13

500 =.0on 1,800 200
Numbers of Servers

- Tall Latency == 1 in X servers being slow
- Why is this bad? — Each user request

now needs several servers — Changes of
experience tail is much higher

- If 99% of the server's response time is

10ms, but 1% of them take 1 second to
response

- If the user only needs one, the mean is OK

- If the user needs 100 partitions from 100
servers, 63% of the requests takes more
than 1 seconds.
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Tail latency

Type | Batch |99th% Response|lnf/s (IPS)| % Max IPS

CPU| 16 7.2 ms 5,482 42%
CPU | 64 21.3 ms 13,194 100%
GPU|[ 16 6.7 ms 13,461 37%
GPU | 64 8.3 ms 36,465 100%

TPU [ 200 7.0 ms 225,000 80%

TPU [ 250 10.0 ms 280,000 100%

Table 4. 99-th% response time and per die throughput (IPS) for MLPO as batch size varies for MLPO. The longest allowable latency is 7
ms. For the GPU and TPU, the maximum MLPO throughput is limited by the host server overhead. Larger batch sizes increase throughput,
but as the text explains, their longer response times exceed the limit, so CPUs and GPUs must use less-efficient, smaller batch sizes (16 vs.

200).
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What NVIDIA says

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency

Training TOPS

Inference TOPS

On-chip Memory

Power

Bandwidth

/13X

6 FP32
6 FP32
16 MB
300W
320 GB/S

1X 2X

NA - 12 FP32
90 INT8 48 INT8
24 MB ‘ 11 MB
75W - 250w

-~ - _— - r - - - . -

While Caogle ard NVIDIA chose dif‘erert developmer: paths there wers sevz-al themes common 1o

+ beth ourapproaches. Specif ca . ly

« Alrecuires acczlerated compuling. Azczlerators provice the significant data processing necessary to
keep up with the growing demards of deep _earning in an era wher Moorz's law s s.0wing.

» Tenscrprocessing s &t the core of delivering perfc-mance fcr deep learning tra 7ing and inference.

» Tenscr processing s @ majer new werkleac nterprises rmust consider whzn building modern data
cerers

« Accelerating tensor processing can drenat ca.ly recuce the ccs: of bailding medern data cenzers

L — R


https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/
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Fallacy

Fallacies and Pitfalls

In these early days of both DSAs and DNNs, fallacies abound.

It costs $100 million to design a custom chip.

[igure 7.51 shows a graph from an article that debunks the widely quoted $100-
million myth that it was “only” $50 million, with most of the cost being salaries
(Olofsson, 2011). Note that the author’s estimate is for sophisticated processors
that include features that DSAs by definition omit, so even if there were no
improvement to the development process, you would expect the cost of a DSA
design to be less.

Why are we more optimistic six years later, when, 1f anything, mask costs are
even higher for the smaller process technologies?

First, software is the largest category, at almost a third of the cost. The avail-
ability of applications written in domain-specific languages allows the compilers to
do most of the work of porting the applications to your DSA, as we saw for the TPU
and Pixel Visual Core. The open RISC-V instruction set will also help reduce the
cost of getting system software as well as cut the large IP costs.

Mask and fabrication costs can be saved by having multiple projects share a single
reticle. As long as you have a small chip, amazingly enough, for $30,000 anyone can
get 100 untested parts in 28-nm TSMC technology (Patterson and Nikolic, 2015).
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Fallacies & Pitfalls

- Fallacy: NN inference applications in data centers value throughput as much as
response time.

- Fallacy: The K80 GPU architecture is a good match to NN inference — GPU is
throughput oriented

- Pitfall: For NN hardware, Inferences Per Second (IPS) is an inaccurate summary
performance metric — it's simply the inverse of the complexity of the typical inference
In the application (e.g., the number, size, and type of NN layers)

- Fallacy: The K80 GPU results would be much better if Boost mode were enabled —

Boost mode increased the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by 1.3X. The net gain in
performance/Watt is 1.1X, and thus Boost mode would have a minor impact on LSTM1

- Fallacy: CPU and GPU results would be comparable to the TPU if we used them more
efficiently or compared to newer versions.
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Fallacies & Pitfalls

- Pitfall: Architects have neglected important NN tasks.

- CNNs constitute only about 5% of the representative NN workload for Google. More
attention should be paid to MLPs and LSTMs. Repeating history, it's similar to when
many architects concentrated on floating- point performance when most mainstream
workloads turned out to be dominated by integer operations.

- Pitfall: Performance counters added as an afterthought for NN hardware.

- Fallacy: After two years of software tuning, the only path left to increase TPU
performance is hardware upgrades.

- Pitfall: Being ignorant of architecture history when designing a domain-specific
architecture

- Systolic arrays

- Decoupled-access/execute

- CISC instructions
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A Cloud-Scale Acceleration Architecture

Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Anhgepat, Jeremy Fowers, Michael
Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd
Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,
Doug Burger
Microsoft
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FPGA

- Field Programmable Gate Array
- An array of “"Lookup tables (LUTs)"
- Reconfigurable wires or say interconnects of LUTs
- Regqisters

- An LUT
- Accepts a few inputs

- Has SRAM memory cells that store all possible outputs
- Generates outputs according to the given inputs

- As aresult, you may use FPGAs to emulate any kind of gates or
logic combinations, and create an ASIC-like processor
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Configurable cloud

@ Network switch (top of rack, cluster)
— FPGA - switch link

477 FPGA acceleration board

— NIC-FPGA link

/7 2-socket CPU server

Interconnected FPGAs form a
separate plane of computation

[TOR} [TOR} Can be managed and used

independently from the CPU 2-s0cket server blade

Hardware acceleration plane

TOR TOR
veep neural
nah{ln Q th{
TV Ko Q/%(I_
X’ QrT éf‘{éﬁﬁ{

<

ranlkdi
AL TN

3

Traditional software (CPU) server plane
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Gen2 shell

- Foundation for all accelerators
- Includes PCle, Networking and DDR |P
- Common, well tested platform for development

4GB

- Lightweight Transport Layer
. Reliable FPGA-to-FPGA Networking &%‘é;}} T [
. Ack/Nack protocol, retransmit buffers UngNS;ff:;ifoQLayer
. Optimized for lossless network 4 ? o
- Minimized resource usage

gﬁﬁ R;:'leell
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Use cases

. Local: Great service acceleration
. Infrastructure: Fastest cloud network
- Remote: Reconfigurable app fabric (DNNSs)
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5 day bed-level latency

Lower & more consistent 99.9th tail latency

In production for years

7.0 T

6.0 T 99.9% software latency

20 + 99.9% FPGA Iatency
. | average FPGA query load

—
. L Mo—\ ~ —— r— .‘,_‘

- - .rﬂ
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Normalized Load & Latency
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average software load
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Even at 2x query load,
accelerated ranking has
lower latency than software
at any load
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Accelerated networking

- Software defined networking
- Generic Flow Table (GFT) rule based packet rewriting
- 10x latency reduction vs software, CPU load now <1 core
.- 25Gb/s throughput at 25us latency — the fastest cloud network

- Capable of 40 Gb line rate encrypt and decrypt

» On Haswell, AES GCM-128 costs 1.26 cycles/byte[1] (5+ 2.4Ghz cores to
sustain 40Gb/s)

- CBC and other algorithms are more expensive

- AES CBC-128-SHA1 is 1Mus in FPGA vs 4puus on CPU (1500B packet)
- Higher latency, but significant CPU savings
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Shared DNN

- Economics: consolidation

. Most accelerators have more \ ‘
throughput than a single host requires Fp@A

- Share excess capacity, use fewer 200l 20

Instances

- Frees up FPGAs for other use services

- DNN accelerator

- Sustains 2.5x busy clients in 00 b
micrObenChmark, befOre queUing Oversubscription:
. # Remote Clients / # FPGAs
delay drives latency up

20%

Hardware Latency
Normalized to Local
FPGA
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Why FPGA?

This model ollers significant [exibility. From the local
perspective, the I'PGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be

managed as a large-scale pool of resources, with acceleration

hyperscale infrastructure. The acceleration system we describe
is sufficiently flexible to cover three scenarios: local compute
acceleration (through PCle). network acceleration, and global
wpplicapgon acceleration, through configuration as pools of
ible FPGAs. Local acceleration handles high-

These programmable architectures allow for hardware homo-
geneity while allowing fungibility via softw ifferent
services. They must be highly flexible at the

This paper described Configurable Clouds, a datacenter- In addition to architectural requirements that provide suffi-
scale acceleration architecture. based on FPGAs, that is both cient [lexibility o justily scale production deployment. Lthere
scalable and flexible. By putting in FPGA cards both in /O are also physical restrictions in current infrastructures that
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Summary: What makes a configurable cloud?

. Local, infrastructure and remote acceleration
- Gen1 showed significant gains even for complex services (~2x for Bing)
- Needs to have clear benefit for majority of servers: infrastructure
- Economics must work
- What works at small scale doesn't always work at hyperscale and vice versa
- Little tolerance for superfluous costs
- Minimized complexity and risk in deployment and maintenance
- Must be flexible

- Support simple, local accelerators and complex, shared accelerators at the
same time

- Rapid deployment of new protocols, algorithms and services across the cloud
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Final words



Conclusion

- Computer architecture is now more important than you could ever imagine
- Being a "programmer” is easy. You need to know architecture a lot to be a
"performance programmer”
- Branch prediction
- Cache
- Multicore era — to get your multithreaded program correct and perform well,
you need to take care of coherence and consistency
- We're now In the "dark silicon era”
- Single-core isn't getting any faster
- Multi-core doesn't scale anymore
- We will see more and more ASICs
- You need to write more "system-level” programs to use these new ASICs.
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