
Dark Silicon & Modern Computer
Architecture

Hung-Wei Tseng

• Processor behaviors are non-deterministic
• You cannot predict which processor is going faster
• You cannot predict when OS is going to schedule your thread

• Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

• Cache consistency is hard to support

2

Recap: Take-aways of parallel programming

Power and Energy

4

• Power is the direct contributor of “heat”
• Packaging of the chip
• Heat dissipation cost
• Power = PDynamic + Pstatic

• Energy = P * ET
• The electricity bill and battery life is related to energy!
• Lower power does not necessary means better battery life if the
processor slow down the application too much

9

Power v.s. Energy

Dynamic Power

10

• The power consumption due to the switching of transistor
states

• Dynamic power per transistor

• α: average switches per cycle
• C: capacitance
• V: voltage
• f: frequency, usually linear with V
• N: the number of transistors

11

Dynamic/Active Power

Pdynamic ∼ α × C × V2 × f × N

• Assume 60% of the application can be fully parallelized with 2-
core or speedup linearly with clock rate. Should we double the
clock rate or duplicate a core?

12

Double Clock Rate or Double the # of Processors?

Speedupparallel(fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n

Speedupparallel(60 % ,2) = 1
(1 − 60%) + 60 %

2
= 1.43

Power2−core = 2 × Pbaseline

Energy2−core = 2 × Pbaseline × ETbaseline × 1
1.43 = 1.39 × Energybaseline

Speedup2×clock = 2
Power2×clock = 23 × Pbaseline = 8 × Pbaseline

Energy2×clock = 23 × Pbaseline × ETbaseline × 1
2 = 4 × Pbaseline × ETbaseline

Pdynamic ∼ α × C × V2 × f × N

• Dynamically lower power for performance
• Change the voltage and frequency at runtime
• Under control of operating system — that’s why updating iOS may slow down an old iPhone

• Recall:
• Because frequency ~ to V…
• Pdynamic ~ to V3

• Reduce both V and f linearly
• Cubic decrease in dynamic power
• Linear decrease in performance (actually sub-linear)

• Thus, only about quadratic in energy
• Linear decrease in static power

• Thus, only modest static energy improvement
• Newer chips can do this on a per-core basis

• cat /proc/cpuinfo in linux

Pdynamic ∼ α × C × V2 × f × N

13

Dynamic voltage/frequency scaling

• Change the maximum frequency of the intel processor — you
learned how to do this when we discuss programmer’s impact
on performance

• LIKWID a profiling tool providing power/energy information
• likwid-perfctr -g ENERGY [command_line]
• Let’s try blockmm and popcount and see what’s happening!

14

Demo — changing the max frequency and performance

Dark Silicon and the End of Multicore
Scaling

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger
University of Washington, University of Wisconsin—Madison, University of Texas at Austin,

Microsoft Research

21

• The power consumption due to leakage — transistors do not
turn all the way off during no operation

• Becomes the dominant factor in the most advanced process
technologies.

• N: number of transistors
• V: voltage
• Vt: threshold voltage where
transistor conducts (begins to switch)

22

Static/Leakage Power

Pleakage ∼ N × V × e−Vt

• Given a scaling factor S

23

Dennardian Broken
Parameter Relation Classical Scaling Leakage Limited

Power Budget 1 1
Chip Size 1 1

Vdd (Supply Voltage) 1/S 1
Vt (Threshold Voltage) 1/S 1/S 1
tex (oxide thickness) 1/S 1/S

W, L (transistor dimensions) 1/S 1/S
Cgate (gate capacitance) WL/tox 1/S 1/S
Isat (saturation current) WVdd/tox 1/S 1
F (device frequency) Isat/(CgateVdd) S S

D (Device/Area) 1/(WL) S2 S2

p (device power) IsatVdd 1/S2 1
P (chip power) Dp 1 S2

U (utilization) 1/P 1 1/S2

Power consumption to light on all transistors

24

Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Chip
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

=49W =50W =100W!

Dennardian Scaling Dennardian Broken

On ~
50W

Off ~
0W

Dark!

Clock rate improvement is limited nowadays

25

Solutions/trends in dark silicon era

26

• Aggressive dynamic voltage/frequency scaling
• Throughout oriented — slower, but more
• Just let it dark — activate part of circuits, but not all
• From general-purpose to domain-specific — ASIC

27

Trends in the Dark Silicon Era

Aggressive dynamic frequency
scaling

28

Modern processor’s frequency

29

• The power consumption due to the switching of transistor
states

• Dynamic power per transistor

• α: average switches per cycle
• C: capacitance
• V: voltage
• f: frequency, usually linear with V
• N: the number of transistors

30

Dynamic/Active Power

Pdynamic ∼ α × C × V2 × f × N

• Change the maximum frequency of the intel processor — you
learned how to do this when we discuss programmer’s impact
on performance

• LIKWID a profiling tool providing power/energy information
• likwid-perfctr -g ENERGY [command_line]
• Let’s try blockmm and popcount and see what’s happening!

31

Recap: Demo — changing the max frequency and performance

• The power consumption due to leakage — transistors do not
turn all the way off during no operation

• Becomes the dominant factor in the most advanced process
technologies.

• N: number of transistors
• V: voltage
• Vt: threshold voltage where
transistor conducts (begins to switch)

32

Static/Leakage Power

Pleakage ∼ N × V × e−VtHow about static power?

Slower, but more

33

More cores per chip, slower per core

34

Xeon Phi

35

• You fit about 5 EV5 cores within the same area of an EV6
• If you build a quad-core EV6, you can use the same area to

• build 20-core EV5
• 3EV6+5EV5

36

Areas of different processor generations

• Energy * delay = Power * ET *
ET = Power * ET2

41

Energy-delay

42

4EV6 v.s. 20 EV5 v.s. 3EV6+5EV5

43

ARM’s big.LITTLE architecture

45

The Rise of GPUs

46

48

An Overview of Kepler GK110 and GK210 Architecture
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations inclƵde ϭϱ SMX ƵniƚƐ and Ɛiǆ ϲϰͲbiƚ memoƌǇ conƚƌolleƌƐ͘
Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

x The new SMX processor architecture

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

x Hardware support throughout the design to enable new programming model capabilities

x GK210 expands ƵƉon GKϭϭϬ͛Ɛ on-chip resources, doubling the available register file and shared

memory capacities per SMX.

SMX (Streaming
Multiprocessor)

Thread
scheduler

GPU
global

memory

High-
bandwidth
memory

controllers

The rise of GPU

49

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most
powerful multiprocessor ǁe͛ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

Each of these performs
the same operation, but
each of these is also a

“thread” A total of 16*12 = 192 cores!

Just let it dark

50

NVIDIA’s Turing Architecture

51

Programming in Turing Architecture

52

cublasErrCheck(cublasSetMathMode(cublasHandle, CUBLAS_TENSOR_OP_MATH));

convertFp32ToFp16 <<< (MATRIX_M * MATRIX_K + 255) / 256, 256 >>> (a_fp16, a_fp32,
MATRIX_M * MATRIX_K);
 convertFp32ToFp16 <<< (MATRIX_K * MATRIX_N + 255) / 256, 256 >>> (b_fp16, b_fp32,
MATRIX_K * MATRIX_N);

cublasErrCheck(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N,
 MATRIX_M, MATRIX_N, MATRIX_K,
 &alpha,
 a_fp16, CUDA_R_16F, MATRIX_M,
 b_fp16, CUDA_R_16F, MATRIX_K,
 &beta,
 c_cublas, CUDA_R_32F, MATRIX_M,
 CUDA_R_32F, CUBLAS_GEMM_DFALT_TENSOR_OP));

Use tensor cores

Make them 16-bit

call Gemm

NVIDIA’s Turing Architecture

53

You can only use either type of these ALUs, but not all of them

The Rise of ASICs

54

• This is what we need in RISC-V in each iteration

55

Say, we want to implement a[i] += a[i+1]*20

ld X1, 0(X0)
ld X2, 8(X0)
add X3, X31, #20
mul X2, X2, X3
add X1, X1, X2
sd X1, 0(X0)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX
ID
IF

WB
MEM
EX

WB
MEM WB

IDIF EX MEM WB

This is what you need for these instructions

56

Instruction
memory

PC

ALU

4

Read
Address

Instruction
[31:0]

Registers

Control

Ins
tru

cti
on

[31
:21

]

Read
Register 1

Read
Register 2

Write
Data

Read
Data 1

Read
Data 2

m
ux

0

1

Instruction
[9:5]

Instruction
[20:16]

Instruction[4:0]

Sign-
extend

Instruction
[31:0]

Adder

m
ux

0

1

Adder
Shift
Left 2

Data
memory

Address

Write
Data

Read
Data m

ux

1

0

Zero

m
ux

0

1

Write
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction
[31:21]

MemoryWrite
ALUSrc

RegWrite

IF/ID EX/MEM MEM/WB

RegWrite

Instruction
[4:0]

ID/EX
MEM/WB.RegisterRd

2
3

MEM/WB.RegisterRd

m
ux

2
1
0

Forwarding
EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m
u
x

0

Hazard Detection

PCWrite

ID/EX.MemoryRead

IF/IDWrite

Specialize the circuit

57

ALU

Registers

Control

Ins
tru

cti
on

[31
:21

]

Read
Register 1

Read
Register 2

Write
Data

Read
Data 1

Read
Data 2

m
ux

0

1

Instruction
[9:5]

Instruction
[20:16]

Instruction[4:0]

Sign-
extend

Instruction
[31:0]

m
ux

0

1

Adder
Shift
Left 2

Data
memory

Address

Write
Data

Read
Data m

ux

1

0

Zero

Write
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction
[31:21]

MemoryWrite
ALUSrc

RegWrite

EX/MEM MEM/WB

RegWrite

Instruction
[4:0]

ID/EX
MEM/WB.RegisterRd

2
3

MEM/WB.RegisterRd

m
ux

2
1
0

Forwarding
EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m
u
x

0

Hazard Detection

PCWrite

Instruction
memory

PC
4

Read
Address

Instruction
[31:0]

Adder

m
ux

0

1

IF/ID

ID/EX.MemoryRead

IF/IDWrite

We don’t need
instruction fetch given
it’s a fixed function

Specialize the circuit

58

ALU

Registers

Control

Ins
tru

cti
on

[31
:21

]

Read
Register 1

Read
Register 2

Write
Data

Read
Data 1

Read
Data 2

m
ux

0

1

Instruction
[9:5]

Instruction
[20:16]

Instruction[4:0]

Sign-
extend

Instruction
[31:0]

m
ux

0

1

Adder
Shift
Left 2

Data
memory

Address

Write
Data

Read
Data m

ux

1

0

Zero

Write
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction
[31:21]

MemoryWrite
ALUSrc

RegWrite

EX/MEM MEM/WB

RegWrite

Instruction
[4:0]

ID/EX
MEM/WB.RegisterRd

2
3

MEM/WB.RegisterRd

m
ux

2
1
0

Forwarding
EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m
u
x

0

Hazard Detection ID/EX.MemoryRead

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers, complex
control, decode

Specialize the circuit

59

ALU

Registers

Control

Read
Register 1
Read
Register 2

Write
Data

Read
Data 1
Read
Data 2

Instruction[4:0]

m
ux

0

1

Adder
Shift
Left 2

Data
memory

Address

Write
Data

Read
Data m

ux

1

0

Zero

Write
Register

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp
MemoryWrite

ALUSrc
RegWrite

EX/MEM MEM/WB

RegWrite

ID/EX
MEM/WB.RegisterRd

2
3

m
u
x

0

Hazard Detection ID/EX.MemoryRead

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers, complex
control, decode

We don’t need ALUs,
branches, hazard
detections…

Specialize the circuit

60

ALU

Registers

Control

Read
Register 1
Read
Register 2

Write
Data

Read
Data 1
Read
Data 2

Instruction[4:0]

m
ux

0

1
Data

memory

Address

Write
Data

Read
Data m

ux

1

0

Zero

Write
Register

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp
MemoryWrite

ALUSrc
RegWrite

EX/MEM MEM/WB

RegWrite

ID/EX
MEM/WB.RegisterRd

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers, complex
control, decode

We don’t need big ALUs,
branches, hazard
detections…

Rearranging the datapath

61

Multiplier

Register

Write
Data Data

memory

Address

Data
memory

Address

Read
Data

Data
memory

Address Read
Data RegisterAdder

8
20

Adder

ld X1, 0(X0)
ld X2, 8(X0)
add X3, X31, #20
mul X2, X2, X3
add X1, X1, X2
sd X1, 0(X0)

The pipeline for a[i] += a[i+1]*20

62

Multiplier

Register

Write
Data Data

memory

Address

Data
memory

Address

Read
Data

Data
memory

Address Read
Data RegisterAdder

8
20

Adder

a[0] += a[1]*20a[1] += a[2]*20a[2] += a[3]*20a[3] += a[4]*20Each stage can still
be as fast as the

pipelined
processor

But each stage is
now working on

what the original 6
instructions would

do

In-Datacenter Performance Analysis of a
Tensor Processing Unit

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M.
Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H.
Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na- garajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D.

Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal- ter, W. Wang, E. Wilcox, and D. H. Yoon
Google Inc.

63

What TPU looks like

68

TPU Floorplan

69

TPU Block diagram

70

Experimental setup

72

Performance/Rooflines

73

Tail latencies

74

• Tail Latency == 1 in X servers being slow
• Why is this bad? – Each user request
now needs several servers – Changes of
experience tail is much higher

• If 99% of the server’s response time is
10ms, but 1% of them take 1 second to
response
• If the user only needs one, the mean is OK
• If the user needs 100 partitions from 100
servers, 63% of the requests takes more
than 1 seconds.

75

Tail latencies

Tail latency

76

What NVIDIA says

77

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

78

• Fallacy: NN inference applications in data centers value throughput as much as
response time.

• Fallacy: The K80 GPU architecture is a good match to NN inference — GPU is
throughput oriented

• Pitfall: For NN hardware, Inferences Per Second (IPS) is an inaccurate summary
performance metric — it’s simply the inverse of the complexity of the typical inference
in the application (e.g., the number, size, and type of NN layers)

• Fallacy: The K80 GPU results would be much better if Boost mode were enabled —
Boost mode increased the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by 1.3X. The net gain in
performance/Watt is 1.1X, and thus Boost mode would have a minor impact on LSTM1

• Fallacy: CPU and GPU results would be comparable to the TPU if we used them more
efficiently or compared to newer versions.

79

Fallacies & Pitfalls

• Pitfall: Architects have neglected important NN tasks.
• CNNs constitute only about 5% of the representative NN workload for Google. More
attention should be paid to MLPs and LSTMs. Repeating history, it’s similar to when
many architects concentrated on floating- point performance when most mainstream
workloads turned out to be dominated by integer operations.

• Pitfall: Performance counters added as an afterthought for NN hardware.
• Fallacy: After two years of software tuning, the only path left to increase TPU
performance is hardware upgrades.

• Pitfall: Being ignorant of architecture history when designing a domain-specific
architecture
• Systolic arrays
• Decoupled-access/execute
• CISC instructions

80

Fallacies & Pitfalls

A Cloud-Scale Acceleration Architecture
Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael
Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd

Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,
Doug Burger
Microsoft

81

• Field Programmable Gate Array
• An array of “Lookup tables (LUTs)”
• Reconfigurable wires or say interconnects of LUTs
• Registers

• An LUT
• Accepts a few inputs
• Has SRAM memory cells that store all possible outputs
• Generates outputs according to the given inputs

• As a result, you may use FPGAs to emulate any kind of gates or
logic combinations, and create an ASIC-like processor

86

FPGA
FPGA

Configurable cloud

87

TOR TOR

L1

Hardware acceleration plane

Traditional software (CPU) server plane

SQL
Deep neural
networks

Web search
ranking GFT Offload

Web search
ranking

FPGA acceleration board

2-socket CPU server

Network switch (top of rack, cluster)

NIC – FPGA link

FPGA – switch link

L2

TOR

Interconnected FPGAs form a
separate plane of computation

Can be managed and used
independently from the CPU

TOR

L1

TOR

• Foundation for all accelerators
• Includes PCIe, Networking and DDR IP
• Common, well tested platform for development

• Lightweight Transport Layer
• Reliable FPGA-to-FPGA Networking
• Ack/Nack protocol, retransmit buffers
• Optimized for lossless network
• Minimized resource usage

88

Gen2 shell

x8 PCIe

DMA
Engine

Config
Flash

DDR3
Ctrl.

JTAG
Temp. Shell

I2C

4

4 GB
DDR3

72
8

SEU

40G
MAC

Server NIC Top-of-Rack Switch

8

Clock

256

4

x8 PCIe

40G
MAC

512

Bypass Ctrl

256 256 256 256

Network Switch

Role

Router
Lightweight Transport Layer

Role

4

• Local: Great service acceleration
• Infrastructure: Fastest cloud network
• Remote: Reconfigurable app fabric (DNNs)

89

Use cases

• Lower & more consistent 99.9th tail latency
• In production for years

90

5 day bed-level latency

99.9% software latency

99.9% FPGA latency
average FPGA query load average software load

Day 1 Day 2 Day 3 Day 4 Day 5

1.0
2.0
3.0
4.0
5.0
6.0
7.0

No
rm

aliz
ed

 Lo
ad

 &
La

ten
cy

Qu
ery

 La
ten

cy
 99

.9t
h

(no
rm

aliz
ed

 to
 lo

we
st

lat
en

cy
)

0.0
0.6
1.2
1.8
2.3
2.9
3.5

Query Load
(normalized to lowest throughput)

0 1.5 3 4.5 6

Software
Local FPGA

Even at 2× query load,
accelerated ranking has
lower latency than software
at any load

• Software defined networking
• Generic Flow Table (GFT) rule based packet rewriting
• 10x latency reduction vs software, CPU load now <1 core
• 25Gb/s throughput at 25μs latency – the fastest cloud network

• Capable of 40 Gb line rate encrypt and decrypt
• On Haswell, AES GCM-128 costs 1.26 cycles/byte[1] (5+ 2.4Ghz cores to
sustain 40Gb/s)

• CBC and other algorithms are more expensive
• AES CBC-128-SHA1 is 11μs in FPGA vs 4μs on CPU (1500B packet)
• Higher latency, but significant CPU savings

91

Accelerated networking

GFT
TableFPGA

40G
CryptoFlow Action

Decap,	DNAT,	Rewrite,	Meter1.2.3.1->1.3.4.1,	62362->80

GFT 40G

40G
NIC

VMs

• Economics: consolidation
• Most accelerators have more
throughput than a single host requires

• Share excess capacity, use fewer
instances

• Frees up FPGAs for other use services
• DNN accelerator

• Sustains 2.5x busy clients in
microbenchmark, before queuing
delay drives latency up

92

Shared DNN

FPGA
20%

FPGA
20%

FPGA
20% 20%

20%
20%

SW SW SW SW SW SW

FPGA FPGA

Ha
rdw

are
 La

ten
cy

No

rm
aliz

ed
 to

 Lo
ca

l
FP

GA

0.0

1.3

2.5

3.8

5.0

Oversubscription:
Remote Clients / # FPGAs

1.0 1.4 1.8 2.1 2.5

99%
95%
Avg

Why FPGA?

94

Flexible

• Local, infrastructure and remote acceleration
• Gen1 showed significant gains even for complex services (~2x for Bing)
• Needs to have clear benefit for majority of servers: infrastructure

• Economics must work
• What works at small scale doesn’t always work at hyperscale and vice versa
• Little tolerance for superfluous costs
• Minimized complexity and risk in deployment and maintenance

• Must be flexible
• Support simple, local accelerators and complex, shared accelerators at the
same time

• Rapid deployment of new protocols, algorithms and services across the cloud
95

Summary: What makes a configurable cloud?

Final words

96

• Computer architecture is now more important than you could ever imagine
• Being a “programmer” is easy. You need to know architecture a lot to be a
“performance programmer”
• Branch prediction
• Cache

• Multicore era — to get your multithreaded program correct and perform well,
you need to take care of coherence and consistency

• We’re now in the “dark silicon era”
• Single-core isn’t getting any faster
• Multi-core doesn’t scale anymore
• We will see more and more ASICs
• You need to write more “system-level” programs to use these new ASICs.

97

Conclusion

