Memory Hierarchy

Hung-Wel Tseng

Performance of modern DRAM

Best case access time (no precharge) Precharge needed
Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI1 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2(y bit DDR?2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 3G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for arandom memory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged,;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.

Memory technology

Alternatives?

Typical access time

$ per GiB in 2012

SRAM semiconductor memary

0.5-2.5ns

$500-$1000

DRAM semiconductor memory 50-70ns $10-$20
Flash semiconductor memory 5,000-50,000ns $0.75-$1.00
Magnetic disk ©,000,000-20,000,000ns $0.05-$0.10

Fast, but expensive $$$

14

Memory Hierarchy

fastest Processor
Processor
<1ns
Core
\ Registers J
a few ns SRAM $

DRAM

Storage

tens of n

tens of ns

Memory Hierarchy

fastest Processor
Processor
<1ns
Core
\ Registers J
a few ns SRAM $

DRAM

Storage

tens of n

us/ms

L1? L2? L37?

Bj CPU-Z - ID: wswpbb — X
CPU ICadwes I Mainboard I Memory | SPD | Graphics | Bench I About |
—Processor CPU ICad1es | Mainboard | Memory | SPD I Graphics | Bench | About |
Name AMD Ryzen 7 2700X AMDQO LT
Code Name | Pinnacle Ridge MaxTDP | 105 W €53 Name | Intel Core i7 9700K '
Package Socket AM4 (1331) y Code Name | Coffee Lake Max TDP | 95.0 W | (intel)'
Technology | 12 nm Core Voltage . 136V 7 Package | Socket 1151 LGA . CORE'i7
13 ltage | 0.737V Sl
Specification AMD Ryzen 7 2700X Eight-Core Processor Technology Lo Core Voltage '
Family F Model 8 Stepping 2 Specification | Intel® Core™ i7-9700K CPU @ 3.60GHz (ES)
Ext. Family 17 Ext. Model 8 Revision | PiR-B2 Family 6 Model E Stepping C
Instructions | MMX(+), SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4A Ext. Family 6 Ext. Model SE Revision PO
x86-64, AMD-V, AES, AVX, AVX2, FMA3, SHA Instructions |MMX, SSE, SSE2, SSE3, SSSE3, SSE4. 1, SSE4.2, EM&4T, VT-x,
S, AVX, AVX2, FMA3, TSX
—Clocks (Core #0) Cache
Core Speed | 4290.73 MHz LiData | 8 x 32 KBytes ~Clocks (Core %0)
Multiplier x 43.0 LiInst. | 8 x 64 KBytes Core Speed | 4798.85MHz LiData | 8x32KBytes | 8-way
Bus Speed 99,78 MHz Level 2 = 8 x 512 KBytes Multiplier | x 48.0 (8-49) L1Inst. | 8 x 32KBytes 8-way
Rated FSB Level3 | 2x 8192 KBytes BusSpeed | 99.98 MHz Level 2 | 8x256KBytes | 4-way
Rated FSB | Level 3 12 MBytes 12-way
Selection |Processor #1 v Cores | 8 Threads | 16 ,
o Selection |Socket #1 || Cores | 8 Threads @ 8
CPU-Z ver186.0x64 __Tods || Vaidate | Close

22

Memory Hierarchy

fastest Processor

Processor
Core

Registers

SRAM $

et R et
..] .
AR tas K
B e X
[.- - .
." sh- e e Lagme
- -l RS
- - wdia
A crar e L
=
CUES 28 ol L T
rel AR S .o _
- IS L ok SR ARRARAS »
alasass - J RS ———
- . LR B (YT
. nrseamae
q Ty
' TR)
. - 3 e
] | | ", .
H s
-
| .
])t
!
-
~— _—
- -
-
»
.
. v
.
e

<1ns

a few ns

tens of n

us/ms

Why adding small SRAMs would
work?

Locality

- Spatial locality — application tends to visit nearby stuffs in the
memory

- Code — the current instruction, and then PC + 4

Most of time, your program is just visiting a
very small amount of data/instructions within
a given window

- Data— the same data can be read/write many times

36

Architecting the Cache

ywwse Load/store only access a “word"” each time
oad Ox000R

0x0000
0x1000

OXFFF

Ox1FFF
AAAA | BBBB | CCCC | DDDD | EEEE FFFF | GGGG | HHHH | AAAA | BBBB | CCCC | DDDD EEEE FFFF | GGGG | HHHH | AAAA | BBBB | CCCC | DDDD EEEE FFFF | GGGG | HHHH | AAAA | BBBB | CCCC | DDDD EEEE FFFF | GGGG | HHHH

0x2000 OX2FFF
0x3000

AAAA | BBBB | CCCC | DDDD | EEEE FFFF | GGGG | HHHH CCcCcC | DDDD EEEE FFFF | GGGG | HHHH | AAAA | BBBB | CCCC | DDDD EEEE FFFF | GGGG | HHHH | AAAA | BBBB | CCCC | DDDD EEEE FFFF | GGGG | HHHH

OX3FFF
0x4000 OXA4FFF

0x5000 Ox5FFF

0x6000 OX6FFF
0x7000

OX7FFF
0x8000 OX8FFF

38

Core

Registers

lw Ox00286

"nnppsy To capture “spatial” locality, $ fetch a "block”

“Logically” partition

memory space into
‘ “"blocks”

CCcCC

DDDD

EEEE

FFFF

GGGG

HHH

FFFF

GGGG

HHHH

0x2000 |—

Cccc

DDDD

EEEE

FFFF

GGGG

HHHA T AR oo

FFFF

GGGG

HHHH

0x3000

0x4000

0x5000

0x6000

0x7000

0x8000

39

OXFFF
OX1FFF
OX2FFF
OX3FFF
OXAFFF
OX5FFF
OXGFFF
OX7FFF
OX8FFF

OO0 OOOOOOOO
XXXXX XXX XXX
OO0 OOOPDOOOOO®

ta
Core 9 0123456789ABCDEF

e How to tell who Is there? sssssssss

Registers Ox000 This 1s CS 203:

40

e Tell if the block here can be used

rOCESSE How to tell wiz S<4— Tellif the block here is modified
re block offsi s; tg data
N—— tag
* 1|11 Advance ute
w O 1|0 r Archi e!
01 This 1is 3:
111 Advance ute
1|1 r Archi el
lw © 01 This 1s 3:
0|1 Advance ute
Ox404 not found, 111 r Archi el
go to lower-level memoryija This is 3:
0|1 Advance ute
The complexity of search the matching tag—{e|1 r Archi e!
(O(7n)— will be slow if our cache size grows! 11 this is 3
‘1111 Advance ute
Can we seprch things faster? 10 r Archi e!
01 This 1is 3:

—hash table! 0(1)

e Hash-like structure — direct-mapped cache

b blocktoaffs t VD tag 912345%‘ CDEF
9 N
1(1 0x10 Advanced ute
oad Ox 110 OxAl r Archit el
0|1 0x10 This 1is 3:
1 Ox45 ¥ Archit el
load Ox ol1] ex41 [Thic is 3:
0x40 not found, 0|1 Ox68 Advanced ute
0x29 ¥ Archit el
go to lower-level mem i XDE e -
0|1 OxCB Advanced ute
The biggest issue with hash is — 01 Ox8A r Archit e!
Collision! 1(1 Ox60 This is 3:
1(1 0x709 Advanced ute
1|0 0x10 r Archit el
0|1 ox11 This 1is 3:

42

Way-associative cache

memory address: Ox0 3 2 4
set block

index offset

tag

memory address: 7]0
VD tag data VD tag ta
1|1 0x29 r Ar ecture! 11 Ox00 This S 203:
OxDE This CS 203: 11 0x10 Adva Compute

ecturel || Ax10_ | IThic

AY R L

This

= |

[ala] exee [[tnic 0x31
1|1 0x70 Adva Compute 1 Ox45 r Arc cture!l
01 0x10 r Ar ecture!) Ox4l This Y 03 (i
0|1 Ox11 This CS 203. (%) Ox68 Adva

Ox1 0

43

C =ABS

- C: Capacity in data arrays

- A: Way-Associativity — how many blocks within a set
- N-way: N blocksinaset,A=N

-] for direct-mapped cache

- B: Block Size (Cacheline)
- How many bytes in a block

- S: Number of Sets:
- A set contains blocks sharing the same index
- 1 for fully associate cache

44

Corollary of C = ABS

set block
tag index offset

memory address: @b@@@@l@@@@@l@‘@l@@

- number of bits in block offset — Ig(B)

- number of bits in set index: Ig(S)

- tag bits: address_length - 1g(S) - lg(B)

- address_length is 32 bits for 32-bit machine
- (address / block_size) % S = set index

45

Put everything all together:
How cache interacts with CPU

What happens when we read data

- Processor sends load request to L1-$
Processor - if hit

Core e return data
 if miss
- Select a victim block

- If the target "“set” is not full — select an empty/invalidated block
as the victim block

- If the target "set is full — select a victim block using some

. olic
write back returnblock " . .
- LRU is preferred — to exploit temporal locality!
' OxXDEADBE

= If the victim block is “dirty” & “valid”
- Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
return block ang place in the victim block

ADBE. If write-back or fetching causes any miss, repeat the same
process

Registers

57

What happens when we write data

- Processor sends load request to L1-$

Processor « if hit
Core « return data — set DIRTY
. e if miss
Registers o
- Select a victim block
sd Write & Set dirty - If the target “set” is not full — select an empty/invalidated block

as the victim block
- If the target “set is full — select a victim block using some policy
- LRU is preferred — to exploit temporal locality!
return blocoklf the victim block is “dirty” & "valid"
OXDEADBE - Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

return block it write-back or fetching causes any miss, repeat the same

ADBE process
« Present the write “ONLY" in L1 and set DIRTY

et dirty

58

Simulate the cache!

Simulate a direct-mapped cache

- Consider a direct mapped (1-way) cache with 256 bytes total capacity, a

block size of 16 bytes, and the application repeatedly reading the following
memory addresses:

- 0b1000000000, 0b1000001000, 0b1000010000, Ob1000010100,
Ob1100010000

C=ABS
S=256/(16*1) =16

Ig(16) = 4 : 4 bits are used for the index
lg(16) = 4 : 4 bits are used for the byte offset
Thetagis 48 - (4 + 4) = 40 bits
For example: 0b1000 0000 0000 0000 0000 00O 1000 0000
a0 g &
L g\\

60

00O N O O A WDN -0

N L NS SR G §
oD OO0

Simulate a direct-mapped cache

Tag

Data

0b10

0b10

Y
Th

chitecture!
is CS 203:

O OO OO0 OO OO0 0|0 0| |FIK
ORTCRICEICEICEICEICEICERICEICEICERICEICEICRICEICEle

tag

0b10
0b16
0b10
0b10
0bl1l
0b10
0b10
0b10
0b10

61

0000
0000
0001
0001
0001
0000
0000
0001
0001

0000
1000
0000
0100
0000
0000
1000
0000
0100

miss
hit!
miss
hit!
miss
hit!
hit!
miss
hit!

Simulate a 2-way cache

- Consider a 2-way cache with 256 bytes total capacity, a block

size of 16 bytes, and the application repeatedly reading the
following memory addresses:

- 0b1000000000, 0b1000001000, 01000010000,
Ob1000010100, Ob1100010000

o C=ABS

o S5=256/(16*2) =8

e 8 =2"3:3bits are used for the index

o 16 =2"4: 4 bits are used for the byte offset

e Thetagis32-(3+4)=25bits

e Forexample: 0b1000 0000 00OOO 0OV 0O 0VOO 001 0000

ag & &

o
S é

62

N O oo b OWODN -0

Simulate a 2-way cache

Tag

Data

Tag

Data

0b10

0blo

Th

Y chitecture!

is CS 203:

0b11

Advance

OO0 e oI
(CRICRICRICEICRICEICRCRlw)

(CRICETCRICEICEICN SRR
CRICRICEICEICEICEICRCRIe)

63

tag

0b10
0b10
0b10
0b10
0bl1l
0b10
0b10
0b10
0b10

0000
0000
0001
0001
0001
0000
0000
0001
0001

0000
1000
0000
0100
0000
0000
1000
0000
0100

miss
hit!

miss
hit!

miss
hit!
hit!
hit
hit!

Cause of cache misses

3Cs of misses

» Compulsory miss

- Cold start miss. First-time access to a block

- Capacity miss

- The working set size of an application is bigger than cache size
. Conflict miss

- Required data replaced by block(s) mapping to the same set
- Similar collision in hash

79

Simulate a direct-mapped cache

- Consider a direct mapped (1-way) cache with 256 bytes total capacity, a

block size of 16 bytes, and the application repeatedly reading the following
memory addresses:

- 0b1000000000, 0b1000001000, 0b1000010000, Ob1000010100,
Ob1100010000

C=ABS
S=256/(16*1) =16

Ig(16) = 4 : 4 bits are used for the index
lg(16) = 4 : 4 bits are used for the byte offset
Thetagis 48 - (4 + 4) = 40 bits
For example: 0b1000 0000 0000 0000 0000 00O 1000 0000
a0 g &
L g\\

80

00O N O O A WDN -0

L N N N L W §
oD OO0

Simulate a direct-mapped cache

Tag

Data

0b10

0b10

Y
Th

chitecture!
is CS 203:

(CHEICEETCRECRECRECEECEECEECRECEECREEECRE R N -
ORTCRICEICEICEICEICEICERICEICEICERICEICEICRICEICEle

tag

0b10
0b16
0b10
0b10
0bl1l
0b10
0b10
0b10
0b10

81

0000
0000
0001
0001
0001
0000
0000
0001
0001

0000
1000
0000
0100
0000
0000
1000
0000
0100

compulsory miss
hit!
compulsory miss
hit!
compulsory miss
hit!
hit!

hit!

Simulate a 2-way cache

- Consider a 2-way cache with 256 bytes total capacity, a block

size of 16 bytes, and the application repeatedly reading the
following memory addresses:

- 0b1000000000, 0b1000001000, 01000010000,
Ob1000010100, Ob1100010000

o C=ABS

o S5=256/(16*2) =8

e 8 =2"3:3bits are used for the index

o 16 =2"4: 4 bits are used for the byte offset

e Thetagis32-(3+4)=25bits

e Forexample: 0b1000 0000 00OOO 0OV 0O 0VOO 001 0000

ag & &

o
S é

82

N O oo b OWODN -0

Simulate a 2-way cache

Tag

Data

Tag

Data

0b10

0blo

Th

Y chitecture!

is CS 203:

0b11

Advance

ocloooo|lor (I
ool ®|T

(CRICETCRICEICEICN SRR
CRICRICEICEICEICEICRCRIe)

83

tag
. 0b10

0b10
0b10
0b10
0b1l1l
0b10
0b10
0b10
0b10

0000
0000
0001
0001
0001
0000
0000
0001
0001

DO compulsory miss

1000 hit!

000 B compulsory miss
0100 hit!
0000 compulsory miss
0000 hit!
1000 hit!
0000 hit!
0100

hit!

Basic Hardware Optimization in
Improving 3Cs

AMD Phenomli

- D-L1 Cache configuration of AMD Phenom i

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.

int al[16384], b[16384]1, cl[16384];
/* Cc = Ox10000, a = 0x20000, b = 0x30000 x/
for(i = 0; 1 < 512; i++) {

cl[i] = ali]l + bli];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 6.25%
o C =ABS
B. 56.25% e s
C. 66.67% S 519
D. 68.75% offset = Ig(64) = 6 bits

S index = 1g(512) = 9 bits
E. 100% tag =64 -1g(512) - 1g(64) = 49 bits

102

Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers

Norman P. Jouppi

Prefetching

Characteristic of memory accesses

for(i = 9;1 < 1000000; i++) {
D[i] = rand();
s
DI[O] D[1] D[2] D[3] D[4] D[5] D[6] D[/] D[8] D[OPD[10]

cru — AR T

time

g — L IRIRIRIRIRIRIN L

miss mIss

time

12$ 4 ! R
L2 access L2 access time
for D[O] - D[7] for D[8] - D[15]

106

Prefetching

for(i = 0;1 < 1000000; i++) {
D[i] = rand();
// prefetch D[1+8] if 1 % 8 ==
s
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[Q]D[10]""l D(12] D[13] D[14] DI15] D(16]
| || I I I ||
CPU — I N L L I
prefetch aref .tM prefetch
) Vo JJ& Vo |
L1 $ VL‘ T T tir:e
Mmiss IS MmIsS
12$! 4 | ,
L2 access L2 access L2 access time

for D[O] - D[/]

for D[8] - D[15]

107

for D[16] - D[23]

Prefetching

- |dentify the access pattern and proactively fetch data/
Instruction before the application asks for the data/instruction

- Trigger the cache miss earlier to eliminate the miss when the
application needs the data/instruction

- Hardware prefetch

- The processor can keep track the distance between misses. If there
IS a pattern, fetch miss_data_address+distance for a miss

. Software prefetch
- Load data into XO
- Using prefetch instructions

108

Demo

. X806 provide prefetch instructions

. As a programmer, you may insert _mm_prefetchinx86
programs to perform software prefetch for your code

- gcc also has a flag “-fprefetch-loop-arrays” to automatically
Insert software prefetch instructions

109

Miss cache

- A small cache that captures
Processor the missing blocks

Core | N
| - Can be built as fully associative
Registers . e
e since it's small

1d/sd @x2EADBEEF 1d/sd , ,
miss! miss! slock return block Consult when there is a miss
eteh block SHADBE 9XDEADBE Retrieve the block if found in the
- AD : missing cache
' Miss $

return block | {fetch blo return bibdyeduce conflict misses

OxDE |_“23, DEADBE

m 115

Victim cache

- A small cache that captures the
Processor evicted blocks

Core - Can be built as fully associative since
Registers It's small

- Consult when there is a miss

slock return blockSwap the entry if hit in victim cache

SEADBE OxDEADBE Athlon/Phenom has an 8-entry victim
cache

- Reduce conflict misses

- Jouppi [1990]: 4-entry victim cache
removed 20% to 95% of conflicts for
@ 4 KB direct mapped data cache

1d/sd @xAZ
miss! miss!

fetch block

return bloc
O x A

Victim cache v.s. miss caching

- Both of them improves conflict misses

- Victim cache can use cache block more efficiently — swaps when miss
- Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache
- Victim cache only maintains a cache block when the block is kicked out

- Victim cache captures conflict miss better
- Miss caching captures every missing block

100 .
Keye= = LI Icache
Q0

Percentage of cooflict misses removed
b=

Percentage of cocflict misses removed

3 4 5 9 10 11 (2 < -
] 13 14 15
Nurriber of entries in miss cact 01 2 BN 4 501_6 7 ‘8 V%CIIOCL! 12 13 14 15

Figure 3-3: Conflict misses removed by miss caching Figure 3-5: Conflict misses removed by victim caching
117

Advanced Hardware Techniques In
Improving Memory Performance

Blocking cache

return block

return block
fetch block OxDEAEBE

fetch block
OxDEADBE OxDEAEBE

OxDEADBE

| |
D

120

Multibanks & non-blocking caches

fetch block
OxDEADBE

RAM

Bank

. ’

$

* fetch block
OXDEAEBE

eturn block
OxDEAEBE

' ' '

@XDEADBE

RAM

RAM RAM

Bank #2

#1

121

Pipelined access and multi-banked caches

Request #1 Request #2 Request #3

Baseline

Request #1 Bank #1
Multi- eques Bank #2
banked Request #3 Bank #3
Request #4 Bank #4

122

The bandwidth between units is limited

Processor
Core

When we handle a miss

miss restart
miss astart .
write back ifssu;:
st chunk etc fetcH 4th
write back retufn block writk quest chfink
Y 5 OxDEADBE 2nd thunk fetcH 3rd
chynk
fdtch blogk fetch 2nd
chunk
fetgh 1st
unk
{

assume the bus between L1/L2 only allows a quarter of the cache block go through it

129

Early Restart and Critical Word First

if the requesting data (offset
within a block is already received

miss
ISSue

) restar

t
write back
st chunk fetch fetcH 4th
write back retufn block writk quest chiink
l OxXOEADBE 2nd thunk fetcH 3rd
chyink
chunk
fetfh 1st
unk
4

assume the bus between L1/L2 only allows a quarter of the cache block go through it

130

Early Restart and Critical Word First

- Don't wait for full block to be loaded before restarting CPU

- Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

- Most useful with large blocks

- Spatial locality is a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

131

Can we avoid the overhead of writes?

if the requesting data (offset

within a block is already received) "€star

. L S
miss astart -

Write

retufn bloci®
OXDEADBE

fatch blo¢k

fetch 4th

chpink
fetcH 3rd

Write Back chifink
fetch 2nd
chunk

fetfh 1st
unk

Overhead

assume the bus between L1/L2 only allows a quarter of the cache block go through it

132

Write buffer!

if the requesting data (offset
within a block is already received)

restar

miss

writé
retuln block P
Ox)EADBE

Write fatch blo¢k
Buffer

fetch 4th

chpink
fetcH 3rd

chyink

write ba

assume the bus between L1/L2 only allows a quarter of the cache block go through it

{

133

Can we avoid the “double penalty”?

- Every write to lower memory will first write to a small SRAM buffer.

- store does not incur data hazards, but the pipeline has to stall if the
write misses

- The write buffer will continue writing data to lower-level memory

- The processor/higher-level memory can response as soon as the data
Is written to write buffer.

- Write merge

- Since application has locality, it's highly possible the evicted data have
neighboring addresses. Write buffer delays the writes and allows these
neighboring data to be grouped together.

134

Summary of Optimizations

- Hardware
- Prefetch — compulsory miss
- Write buffer — miss penalty
- Bank/pipeline — miss penalty
- Critical word first and early restart — miss panelty

140

Programming and memory
performance

Data layout

Memory addressing/alignment

- Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

- Instructions generally work faster when the given memory
address is alignhed

- Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

- Some architecture/processor does not support aligned access at all
- Therefore, compilers only allocate objects on "“aligned” address

147

Column-store or row-store

- If you're designing an in-memory database system, will you be using

Rowld Empld Lasthame Firstname

1 10 Smith Joe

2 12 Jones Mary
3 11 Johnson Cathy
4 22 Jones Bob

- column-store — stores data tables column by column

10:001,12:002,11:003,22:004;

Smith:001, Jones:002, Johnson:003, Jones:004select Lastname '

Joe:001,Mary:002,Cathy:003,Bob:004;
40000:001,50000:002,44000:003,55000:004;

- row-store — stores data tables row by row

P01:10,Smith, Joe, 40000;
002:12,Jones,Mary, 50000;
003:11, Johnson, Cathy, 44000;
004:22,Jones,Bob,55000;

Salary

40000
50000
44000
55000

if the most frequently used query looks like —

155

Firstname from table

Loop interchange/fission/fusion

Demo — programmer & performance

for(i = ©; 1 < ARRAY_SIZE; i++)
{
for(j = 0; 3 < ARRAY_SIZE; j++)
{
c[i1[j] = alil[j1+b[i]1[j];

for(3 = ©; J < ARRAY_SIZE; j++)
{
for(i = ©; 1 < ARRAY_SIZE; i++)
{
c[i1[j] = al1]1[j]l+b[1]1[3];

¥ ¥
¥ ¥
O(n 2) Complexity O(nz)
Same Instruction Count? Same
Same Clock Rate Same

Better CPI Worse

157

Loop Fusion

/* Before x/
for (1 =0; 1 < N;
for (3 = 0; 3

N

) = j+1)
al[i1[j] =

N

J

31 x c[11[3j]1;
for (1 = 0; 1 <

for (3 = 9; 3
dli1[7]

= j+1)
1] + c[11[3i];

/* After x/
for (1 = 0; 1 < N; 1 = 1i+1)
for (j = 0; j < N; j = j+1)
{
alil[j] = 1/b[i]1[3] * c[i1[3];
dl11lj] = al1l[j] + c[11[3];
}

2 misses per access to a & ¢ vs. one miss per access

164

Blocking

Case study: Matrix Multiplication

T S i ARy aeie 1) Algorithm class tells you it's O(n3)
for(k = ©; k < ARRAY_SIZE:; k++) { .
c[i1[3] += alillkI*blkI[3]; If n=1024, it takes about 1 sec

}

- How long is it take when n=20487?

166

Matrix Multiplication

for(i = ©0; 1 < ARRAY_SIZE; i++) A arrayis'arge
for(j = 0; j < ARRAY_SIZE; j++) { .
for(k = 0; k < ARRAY_SIZE; k++) {
c[11[j] += alillkIxb[k1[j1;
}
}
}

C d

- If each dimension of your matrix is 2048

- Each row takes 2048*8 bytes = 16KB
- The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
- You can only hold at most 2 rows/columns of each matrix!

- You need the same row when j increase!
167

Block algorithm for matrix multiplication

. Discover the cache miss rate

- valgrind --tool=cachegrind cmd
- cachegrind is a tool profiling the cache performance

- Performance counter
- Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

168

http://www.intel.com/software/pcm/

for(i

Block algorithm for matrix multiplication

= 0; 1 < ARRAY_SIZE; i++) {

for(j = ©; j < ARRAY_SIZE; j++) {
for(k = @; k < ARRAY_SIZE; k++) {

}
}
}

c[11[j] += alillkIxb[k1[]j1;

for(i = @; i < ARRAY_SIZE: i+=(ARRAY_SIZE/n)) {
for(j = @; j < ARRAY_SIZE: j+=(ARRAY_SIZE/n)) {
for(k = @: k < ARRAY_SIZE: k+=(ARRAY_SIZE/n)) {
for(ii = 1; 11 < 1+(ARRAY_SIZE/n); 1i1++)
for(jj = j: jj < j+(ARRAY_SIZE/n): jj++)

for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)

c[i11[Jj] += aliillkkIxb[kk1[j]j1;

You only need to hold these
sub-matrices in your cache

Matrix Transpose

// Transpose matrix b into b_t
for(i = ©; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
for(j = ©; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
b_t[i]1[j] += b[j1[i];

}
for(i = ©: i < ARRAY_SIZE: i+=(ARRAY_SIZE/n)) { 1
for(j = ©: j < ARRAY_SIZE: j+=(ARRAY_SIZE/n)) {
for(k = 6; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) 1 for(i = @: i < ARRAY_SIZE: i+=(ARRAY_SIZE/n)) {
for(ii = i; 11 < 1+(ARRAY_SIZE/n); 1i1++) ,) .
5oL 11 < 1wt L for(j = ©: j < ARRAY_SIZE: j+=(ARRAY_SIZE/n)) {
for(33 = 3;i 33 < J+(ARRAY_SIZE/n); JJ++) for(k = ©: k < ARRAY SIZE: k+=(ARRAY SIZE/n)) {
for(kk = k: kk < k+(ARRAY_SIZE/n): kk++) OT{K = 9y K < ARRAY_olZE; K+= _>1£LE/N
c[iil[55]1 += aliillkk1*b[kk1[331: for(ii = 1; 11 < 1+(ARRAY_SIZE/n); 11++)
, ' for(3j = j; 33 < J+(ARRAY_SIZE/n); jj++)
) for(kk = k; kk < k+(ARRAY_SIZE/n): kk++)
, // Compute on b_t
c[i1]1[jj] += aliillkkIxb_t[jjll[kk];
¥
}

175

Summary of Optimizations

- Software

- Data layout — capacity miss, conflict miss, compulsory miss

- Blocking — capacity miss, conflict miss

- Loop fission — conflict miss — when $ has limited way associativity

- Loop fusion — capacity miss — when $ has enough way associativity
- Loop interchange — conflict/capacity miss

- Hardware

- Prefetch — compulsory miss

- Write buffer — miss penalty

- Bank/pipeline — miss penalty

- Critical word first and early restart — miss panelty

181

