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Performance of modern DRAM
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Alternatives?

14

Fast, but expensive $$$
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DRAM
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SRAM $

Processor 
Core

Registers

larger
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< 1ns

tens of ns
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TBs



L1? L2? L3?
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DRAM

Storage

SRAM $

Processor 
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms



Why adding small SRAMs would 
work?

29



• Spatial locality — application tends to visit nearby stuffs in the 
memory 
• Code — the current instruction, and then PC + 4 
• Data — the current element in an array, then the next  

• Temporal locality — application revisit the same thing again 
and again 
• Code — loops, frequently invoked functions 
• Data — the same data can be read/write many times

36

Locality

Most of time, your program is just visiting a 
very small amount of data/instructions within 

a given window



Architecting the Cache

37
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0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor 
Core

Registers load 0x0009

AAAAAAAA

Load/store only access a “word” each time

AAAA BBBB

load 0x000A
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0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor 
Core

Registers

To capture “spatial” locality, $ fetch a “block”
“Logically” partition 
memory space into 

“blocks”
SRAM $

AABB CCDD EEFF GGHH

AABB CCDD

lw 0x0020lw 0x0024
Assume each block is 16 bytes



How to tell who is there?
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This is CS 203: 
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r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
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Processor 
Core

Registers 0x000
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0x

00
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00
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00
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00
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00
0D

 
0x

00
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00
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0123456789ABCDEF
tag



1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

data
How to tell who is there?
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This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 

0123456789ABCDEF
tag
0x000
0x001
0xF07
0x100
0x310
0x450
0x006
0x537
0x266
0x307
0x265
0x80A
0x620
0x630
0x705
0x216

Processor 
Core

Registers

lw 0x0008

CS 2

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

lw 0x4048

0x404 not found,  
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offsettag Va
lid

 Bi
t Tell if the block here can be used

Dir
ty 

Bit Tell if the block here is modified



1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

Hash-like structure — direct-mapped cache
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0x00 This is CS 203: 
0x10 Advanced Compute
0xA1 r Architecture!
0x10 This is CS 203: 
0x31 Advanced Compute
0x45 r Architecture!
0x41 This is CS 203: 
0x68 Advanced Compute
0x29 r Architecture!
0xDE This is CS 203: 
0xCB Advanced Compute
0x8A r Architecture!
0x60 This is CS 203: 
0x70 Advanced Compute
0x10 r Architecture!
0x11 This is CS 203: 

datatag
0123456789ABCDEF

Processor 
Core

Registers
load 0x0008

load 0x4048
0x40 not found,  

go to lower-level memory

The biggest issue with hash is —
Collision!

index
block offsettag

V D



1 1 0x29 r Architecture!
1 1 0xDE This is CS 203: 
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203: 
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203: 

Way-associative cache

43

1 1 0x00 This is CS 203: 
1 1 0x10 Advanced Compute
1 0 0xA1 r Architecture!
0 1 0x10 This is CS 203: 
1 1 0x31 Advanced Compute
1 1 0x45 r Architecture!
0 1 0x41 This is CS 203: 
0 1 0x68 Advanced Compute

datatagdatatag

memory address:      0x0   8   2   4

memory address:      0b0000100000100100

block
offset

set
indextag

=? =?0x1   0
hit? hit?

V DV D

Set



• C: Capacity in data arrays 
• A:  Way-Associativity — how many blocks within a set 

• N-way: N blocks in a set, A = N 
• 1 for direct-mapped cache 

• B: Block Size (Cacheline) 
• How many bytes in a block 

• S: Number of Sets: 
• A set contains blocks sharing the same index 
• 1 for fully associate cache

44

C = ABS



• number of bits in block offset — lg(B) 
• number of bits in set index: lg(S) 
• tag bits: address_length - lg(S) - lg(B) 

• address_length is 32 bits for 32-bit machine 
• (address / block_size) % S = set index

45

Corollary of C = ABS

memory address:      0b0000100000100100

block
offset

set
indextag



Put everything all together:
How cache interacts with CPU

56



• Processor sends load request to L1-$ 
• if hit 

• return data  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some 

policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process

57

What happens when we read data
Processor 

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE



• Processor sends load request to L1-$ 
• if hit 

• return data — set DIRTY  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process 

• Present the write “ONLY” in L1 and set DIRTY
58

What happens when we write data
Processor 

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

Write & Set dirty
Write &Set dirty



Simulate the cache!
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• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a 
block size of 16 bytes, and the application repeatedly reading the following 
memory addresses: 

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100, 
0b1100010000

60

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index 
• lg(16) = 4 : 4 bits are used for the byte offset 
• The tag is 48 - (4 + 4) = 40 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
set

• C = A B S
• S=256/(16*1) = 16



tag index

Simulate a direct-mapped cache

61

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100 
0b11 0001 0000 
0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100

miss
hit!

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15

miss

miss
hit!

hit!

hit!
miss

hit!

0b10
0b100b110b10

1
1

r Architecture!
This is CS 203: Advanced ComputeThis is CS 203: 



• Consider a 2-way cache with 256 bytes total capacity, a block 
size of 16 bytes, and the application repeatedly reading the 
following memory addresses: 
• 0b1000000000, 0b1000001000, 0b1000010000, 

0b1000010100, 0b1100010000

62

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index 
• 16 = 2^4 : 4 bits are used for the byte offset 
• The tag is 32 - (3 + 4) = 25 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
set

• C = A B S• S=256/(16*2) = 8



tag index

Simulate a 2-way cache

63

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100 
0b11 0001 0000 
0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100

miss
hit!

0 
1 
2 
3 
4 
5 
6 
7

miss

miss
hit!

hit!

hit!
hit

hit!

0b10
0b10

1
1

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b111
r Architecture!

This is CS 203: Advanced Compute



Cause of cache misses

78



• Compulsory miss 
• Cold start miss. First-time access to a block 

• Capacity miss 
• The working set size of an application is bigger than cache size 

• Conflict miss 
• Required data replaced by block(s) mapping to the same set 
• Similar collision in hash

79

3Cs of misses



• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a 
block size of 16 bytes, and the application repeatedly reading the following 
memory addresses: 

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100, 
0b1100010000

80

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index 
• lg(16) = 4 : 4 bits are used for the byte offset 
• The tag is 48 - (4 + 4) = 40 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
set

• C = A B S
• S=256/(16*1) = 16



tag index

Simulate a direct-mapped cache

81

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100 
0b11 0001 0000 
0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100

compulsory miss
hit!

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15

compulsory miss

compulsory miss
hit!

hit!

hit!
conflict miss

hit!

0b10
0b100b110b10

1
1

r Architecture!
This is CS 203: Advanced ComputeThis is CS 203: 



• Consider a 2-way cache with 256 bytes total capacity, a block 
size of 16 bytes, and the application repeatedly reading the 
following memory addresses: 
• 0b1000000000, 0b1000001000, 0b1000010000, 

0b1000010100, 0b1100010000

82

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index 
• 16 = 2^4 : 4 bits are used for the byte offset 
• The tag is 32 - (3 + 4) = 25 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
set

• C = A B S• S=256/(16*2) = 8



tag index

Simulate a 2-way cache
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V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100 
0b11 0001 0000 
0b10 0000 0000 
0b10 0000 1000 
0b10 0001 0000 
0b10 0001 0100

compulsory miss
hit!

0 
1 
2 
3 
4 
5 
6 
7

compulsory miss

compulsory miss
hit!

hit!

hit!
hit!

hit!

0b10
0b10

1
1

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b111
r Architecture!

This is CS 203: Advanced Compute



Basic Hardware Optimization in 
Improving 3Cs

96



• D-L1 Cache configuration of AMD Phenom II 
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, 

write-back, and assuming 64-bit address. 
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
    c[i] = a[i] + b[i]; 
    //load a, b, and then store to c 
} 

What’s the data cache miss rate for this code? 
A. 6.25% 
B. 56.25% 
C. 66.67% 
D. 68.75% 
E. 100%

102

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits



Improving Direct-Mapped Cache 
Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers
Norman P. Jouppi

103



Prefetching

105



Characteristic of memory accesses

106

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
}

time

time

timeL2 access
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access
for D[8] - D[15]

D[9]D[10]



Prefetching

107

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
     // prefetch D[i+8] if i % 8 == 0 
}

time

time

timeL2 access 
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss

L2 access 
for D[8] - D[15]

prefetch

miss

L2 access 
for D[16] - D[23]

D[11] D[12] D[13] D[14] D[15] D[16]

prefetch



• Identify the access pattern and proactively fetch data/
instruction before the application asks for the data/instruction 
• Trigger the cache miss earlier to eliminate the miss when the 

application needs the data/instruction 
• Hardware prefetch 

• The processor can keep track the distance between misses. If there 
is a pattern, fetch miss_data_address+distance for a miss 

• Software prefetch 
• Load data into X0 
• Using prefetch instructions

108

Prefetching



• x86 provide prefetch instructions 
• As a programmer, you may insert _mm_prefetch in x86 

programs to perform software prefetch for your code 
• gcc also has a flag “-fprefetch-loop-arrays” to automatically 

insert software prefetch instructions

109

Demo



• A small cache that captures 
the missing blocks 
• Can be built as fully associative 

since it’s small 
• Consult when there is a miss 
• Retrieve the block if found in the 

missing cache 
• Reduce conflict misses
•

115

Miss cache
Processor 

Core
Registers

L1 $

L2 $
DRAM

Miss $

ld/sd 0xDEADBEEFoffsetindextag

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

return block 
0xDEADBE

miss!
ld/sd 0xDEADBEEFoffsetindextag

miss! fetch block
 0xDEADBEindextag

return block 
0xDEADBE



• A small cache that captures the 
evicted blocks 

• Can be built as fully associative since 
it’s small 

• Consult when there is a miss 
• Swap the entry if hit in victim cache 
• Athlon/Phenom has an 8-entry victim 

cache 
• Reduce conflict misses  
• Jouppi [1990]: 4-entry victim cache 

removed 20% to 95% of conflicts for 
a 4 KB direct mapped data cache

•

116

Victim cache
Processor 

Core
Registers

L1 $

L2 $
DRAM

Victim $

ld/sd 0xAAAABEEFoffsetindextag

fetch block
 0xAAAABEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBEevict

 0xDEADBEindextag

write back
 0x####BEindextag

return block 
0xAAAABE

miss!
ld/sd 0xDEADBEEFoffsetindextag

miss! fetch block
 0xDEADBEindextag



• Both of them improves conflict misses 
• Victim cache can use cache block more efficiently — swaps when miss 

• Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache 
• Victim cache only maintains a cache block when the block is kicked out 

• Victim cache captures conflict miss better 
• Miss caching captures every missing block

117

Victim cache v.s. miss caching



Advanced Hardware Techniques in 
Improving Memory Performance

119



Blocking cache

120

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE



Bank #2Bank #1

Multibanks & non-blocking caches

121

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE
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Pipelined access and multi-banked caches

Bank #1
Bank #2

Bank #3
Bank #4

Request #1
Request #2

Request #3
Request #4

Baseline

Multi-
banked

Memory 
Request #1

Memory 
Request #2

Memory 
Request #3

Memory 
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The bandwidth between units is limited
Processor 

Core
Registers

L1 $

L2 $

DRAM

64-bit

64-bit

64-bit



When we handle a miss

129

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss restart

t

t



Early Restart and Critical Word First 
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L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

t

t
write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss
restartif the requesting data (offset 

within a block is already received)



• Don’t wait for full block to be loaded before restarting CPU 
• Early restart—As soon as the requested word of the block arrives, 

send it to the CPU and let the CPU continue execution 
• Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also called 
wrapped fetch and requested word  first 

• Most useful with large blocks 
• Spatial locality is a problem; often we want the next sequential 

word soon, so not always a benefit (early restart).
131

Early Restart and Critical Word First 



Can we avoid the overhead of writes?

132

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss
restartif the requesting data (offset 

within a block is already received)

Write Back 
Overhead

t

t



Write buffer!
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L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag return block 

0xDEADBE

write to 
buffer

assume the bus between L1/L2 only allows a quarter of the cache block go through it

fetch 1st 
chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss
restartif the requesting data (offset 

within a block is already received)

Write 
Buffer

t

t

write to L2



• Every write to lower memory will first write to a small SRAM buffer. 
• store does not incur data hazards, but the pipeline has to stall if the 

write misses 
• The write buffer will continue writing data to lower-level memory 
• The processor/higher-level memory can response as soon as the data 

is written to write buffer. 
• Write merge 

• Since application has locality, it’s highly possible the evicted data have 
neighboring addresses. Write buffer delays the writes and allows these 
neighboring data to be grouped together.

134

Can we avoid the “double penalty”?



• Hardware 
• Prefetch — compulsory miss 
• Write buffer — miss penalty 
• Bank/pipeline — miss penalty 
• Critical word first and early restart — miss panelty

140

Summary of Optimizations



Programming and memory 
performance

141



Data layout

142



• Almost every popular ISA architecture uses “byte-addressing” 
to access memory locations 

• Instructions generally work faster when the given memory 
address is aligned 
• Aligned — if an instruction accesses an object of size n at address 
X, the access is aligned if X mod n = 0. 

• Some architecture/processor does not support aligned access at all 
• Therefore, compilers only allocate objects on “aligned” address

147

Memory addressing/alignment



• If you’re designing an in-memory database system, will you be using

• column-store — stores data tables column by column 
10:001,12:002,11:003,22:004; 
Smith:001,Jones:002,Johnson:003,Jones:004; 
Joe:001,Mary:002,Cathy:003,Bob:004; 
40000:001,50000:002,44000:003,55000:004; 

• row-store — stores data tables row by row
 
001:10,Smith,Joe,40000; 
002:12,Jones,Mary,50000; 
003:11,Johnson,Cathy,44000; 
004:22,Jones,Bob,55000;

155

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000
2 12 Jones Mary 50000
3 11 Johnson Cathy 44000
4 22 Jones Bob 55000

if the most frequently used query looks like —  
select Lastname, Firstname from table



Loop interchange/fission/fusion

156



Demo — programmer & performance

157

    for(i = 0; i < ARRAY_SIZE; i++) 
    { 
      for(j = 0; j < ARRAY_SIZE; j++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

    for(j = 0; j < ARRAY_SIZE; j++) 
    { 
      for(i = 0; i < ARRAY_SIZE; i++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse



Loop Fusion
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/* Before */ 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

        a[i][j] = 1/b[i][j] * c[i][j]; 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

        d[i][j] = a[i][j] + c[i][j];

/* After */ 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

    { 
      a[i][j] = 1/b[i][j] * c[i][j]; 

         d[i][j] = a[i][j] + c[i][j]; 
    }

2 misses per access to a & c vs. one miss per access



Blocking
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for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}

Case study: Matrix Multiplication
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Algorithm class tells you it’s O(n3)
If n=1024, it takes about 1 sec

How long is it take when n=2048?



• If each dimension of your matrix is 2048 
• Each row takes 2048*8 bytes = 16KB 
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked 
• You can only hold at most 2 rows/columns of each matrix! 
• You need the same row when j increase!

for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}
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Matrix Multiplication

c a b

Very likely a miss if 
array is large



• Discover the cache miss rate 
• valgrind --tool=cachegrind cmd 

• cachegrind is a tool profiling the cache performance 
• Performance counter 

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/
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Block algorithm for matrix multiplication

http://www.intel.com/software/pcm/


Block algorithm for matrix multiplication
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for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}

  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                c[ii][jj] += a[ii][kk]*b[kk][jj]; 
      } 
    } 
  }

c a b

You only need to hold these 
sub-matrices in your cache



Matrix Transpose
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  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                c[ii][jj] += a[ii][kk]*b[kk][jj]; 
      } 
    } 
  }

  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                // Compute on b_t 
                c[ii][jj] += a[ii][kk]*b_t[jj][kk]; 
      } 
    } 
  }

  // Transpose matrix b into b_t 
  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
        b_t[i][j] += b[j][i]; 
    } 
  }



• Software 
• Data layout — capacity miss, conflict miss, compulsory miss 
• Blocking — capacity miss, conflict miss 
• Loop fission — conflict miss — when $ has limited way associativity 
• Loop fusion — capacity miss — when $ has enough way associativity 
• Loop interchange —  conflict/capacity miss 

• Hardware 
• Prefetch — compulsory miss 
• Write buffer — miss penalty 
• Bank/pipeline — miss penalty 
• Critical word first and early restart — miss panelty
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Summary of Optimizations


