
Performance
Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

Recap: How my “C code” becomes a “program”

3

Source Code

Compiler
(e.g., gcc)

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Linker

Objects, Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Recap: How my “Java code” becomes a “program”

4

Compiler
(e.g., javac)

Java Bytecode (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Source Code

Java Virtual
Machine (e.g., java)

Other (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Recap: How my “Python code” becomes a “program”

5

Interpreter
(e.g., python)

Source Code

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Definition of “Performance”

7

CPU Performance Equation

14

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execution Time

1
Frequency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle

• The simplest kind of performance
• Shorter execution time means better performance
• Usually measured in seconds

Processor
PC

120007a30: 0f00bb27 ldah gp,15(t12)
120007a34: 509cbd23 lda gp,-25520(gp)
120007a38: 00005d24 ldah t1,0(gp)
120007a3c: 0000bd24 ldah t4,0(gp)
120007a40: 2ca422a0 ldl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,-23508(t1)
120007a50: 0004ff47 clr v0
120007a54: 28a4e5b3 stl zero,-23512(t4)
120007a58: 20a421a4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
120007a60: 0204e147 mov t0,t1
120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

instruction memory

How long is it take to
execution each of these?

How many of these?

15

Execution Time

clock

Instructions
Program

Cycles
Instruction × Seconds

Cycle

• Assume that we have an application composed with a total of
5000000000 instructions, in which 20% of them are “Type-A”
instructions with an average CPI of 8 cycles, 20% of them are
“Type-B” instructions with an average CPI of 4 cycles and the rest
instructions are “Type-C” instructions with average CPI of 1 cycle. If
the processor runs at 3 GHz, how long is the execution time?
A. 3.67 sec
B. 5 sec
C. 6.67 sec
D. 15 sec
E. 45 sec

16

Performance Equation (X)

average CPI
ET = IC × CPI × CT

ET = (5 × 109) × (20% × 8 + 20% × 4 + 60% × 1) × 1
3 × 10−9 sec = 5

• Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

A. 0.2
B. 0.25
C. 0.8
D. 1.25
E. No changes

17

Speedup of Y over X

Clock
Rate Instructions Percentage

of Type-A
Insts.

CPI of
Type-A
Insts.

Percentage
of Type-B

Insts.

CPI of
Type-B
Insts.

Percentage
of Type-C

Insts.

CPI of
Type-C
Insts.Machine X 3 GHz 5000000000 20% 8 20% 4 60% 1

Machine Y 5 GHz 5000000000 20% 13 20% 4 60% 1

https://www.pollev.com/hungweitseng close in

• Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

A. 0.2
B. 0.25
C. 0.8
D. 1.25
E. No changes

18

Speedup of Y over X

Clock
Rate Instructions Percentage

of Type-A
Insts.

CPI of
Type-A
Insts.

Percentage
of Type-B

Insts.

CPI of
Type-B
Insts.

Percentage
of Type-C

Insts.

CPI of
Type-C
Insts.Machine X 3 GHz 5000000000 20% 8 20% 4 60% 1

Machine Y 5 GHz 5000000000 20% 13 20% 4 60% 1

https://www.pollev.com/hungweitseng close in

• The relative performance between two machines, X and Y. Y is n
times faster than X

• The speedup of Y over X

19

Speedup

n = Execution TimeX

Execution TimeY

Speedup = Execution TimeX

Execution TimeY

What Affects Each Factor in
Performance Equation

21

• Modern processors provides performance counters
• instruction counts
• cache accesses/misses
• branch instructions/mis-predictions

• How to get their values?
• You may use “perf stat” in linux
• You may use Instruments —> Time Profiler on a Mac
• Intel’s vtune — only works on Windows w/ intel processors
• You can also create your own functions to obtain counter values

27

Use “performance counters” to figure out!

Recap: How my “C code” becomes a “program”

41

Source Code

Compiler
(e.g., gcc)

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Linker

Objects, Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

One Time Cost!

Recap: How my “Java code” becomes a “program”

42

Compiler
(e.g., javac)

Jave Bytecode (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Source Code

Java Virtual
Machine (e.g., java)

Other (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

One Time Cost!Everytime when we run it!

Recap: How my “Python code” becomes a “program”

43

Interpreter
(e.g., python)

Source Code

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Everytime when we run
it!

• Algorithm complexity provides a good estimate on the
performance if —
• Every instruction takes exactly the same amount of time
• Every operation takes exactly the same amount of instructions

49

How about “computational complexity”

These are unlikely to be true

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

• Cycle Time (Seconds Per Cycle)
• Process Technology, microarchitecture, programmer

50

Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Instruction Set Architecture (ISA)
& Performance

51

• Operations
• Arithmetic/Logical, memory access, control-flow (e.g., branch,
function calls)

• Operands
• Types of operands — register, constant, memory addresses
• Sizes of operands — byte, 16-bit, 32-bit, 64-bit

• Memory space
• The size of memory that programs can use
• The addressing of each memory locations
• The modes to represent those addresses

52

Recap: ISA — the interface b/w processor/software

Popular ISAs

53

The abstracted “RISC-V” machine

54

CPU
Program Counter

0x000000000000000
4

Registers
X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31

Memory

64-bit
64-bit

264 Bytes

ALU

add
sub
mul
div

and
andi
ori
xori

beq
blt
hal

0x0000000000000000
0x0000000000000008
0x0000000000000010
0x0000000000000018
0x0000000000000020
0x0000000000000028
0x0000000000000030
0x0000000000000038

0xFFFFFFFFFFFFFFC0
0xFFFFFFFFFFFFFFC8
0xFFFFFFFFFFFFFFD0
0xFFFFFFFFFFFFFFD8
0xFFFFFFFFFFFFFFE0
0xFFFFFFFFFFFFFFE8
0xFFFFFFFFFFFFFFF0
0xFFFFFFFFFFFFFFF8

lw
ld
sw
sd

FP Registers
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31

64-bit

Subset of RISC-V instructions

55

Category Instruction Usage Meaning
Arithmetic add add x1, x2, x3 x1 = x2 + x3

addi addi x1,x2, 20 x1 = x2 + 20
sub sub x1, x2, x3 x1 = x2 - x3

Logical and and x1, x2, x3 x1 = x2 & x3
or or x1, x2, x3 x1 = x2 | x3
andi andi x1, x2, 20 x1 = x2 & 20
sll sll x1, x2, 10 x1 = x2 * 2^10
srl srl x1, x2, 10 x1 = x2 / 2^10

Data Transfer ld ld x1, 8(x2) x1 = mem[x2+8]
sd sd x1, 8(x2) mem[x2+8] = x1

Branch beq beq x1, x2, 25 if(x1 == x2), PC = PC + 100
bne bne x1, x2, 25 if(x1 != x2), PC = PC + 100

Jump jal jal 25 $ra = PC + 4, PC = 100

jr jr $ra PC = $ra

The only type of instructions can access memory

Popular ISAs

56

Complex Instruction Set
Computers (CISC) Reduced Instruction Set Computers (RISC)

• CISC (Complex Instruction Set Computing)
• Examples: x86, Motorola 68K
• Provide many powerful/complex instructions

• Many: more than 1503 instructions since 2016
• Powerful/complex: an instruction can perform both ALU and memory operations
• Each instruction takes more cycles to execute

• RISC (Reduced Instruction Set Computer)
• Examples: ARMv8, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

• Each instruction only performs simple tasks
• Easy to decode
• Each instruction takes less cycles to execute

57

How many operations: CISC v.s. RISC

The abstracted x86 machine

58

CPU
Registers

RAX
RBX
RCX
RDX
RSP
RBP
RSI
RDI
R8
R9
R10
R11
R12
R13
R14
R15
RIP

FLAGS
CS
SS
DS
ES
FS
GS

Memory

64-bit

64-bit

264 Bytes

ALU

ADD
SUB
IMUL

AND
OR
XOR

JMP
JE
CALL
RET

0x0000000000000000
0x0000000000000008
0x0000000000000010
0x0000000000000018
0x0000000000000020
0x0000000000000028
0x0000000000000030
0x0000000000000038

0xFFFFFFFFFFFFFFC0
0xFFFFFFFFFFFFFFC8
0xFFFFFFFFFFFFFFD0
0xFFFFFFFFFFFFFFD8
0xFFFFFFFFFFFFFFE0
0xFFFFFFFFFFFFFFE8
0xFFFFFFFFFFFFFFF0
0xFFFFFFFFFFFFFFF8

MOV

RISC-V v.s. x86

59

RISC-V x86
ISA type Reduced Instruction Set

Computers (RISC)
Complex Instruction Set

Computers (CISC)
instruction width 32 bits 1 ~ 17 bytes

code size larger smaller
registers 32 16

addressing modes reg+offset
base+offset
base+index
scaled+index

scaled+index+offset
hardware simple complex

Amdahl’s Law — and It’s
Implication in the Multicore Era

63

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl’s Law

64

Speedupenhanced(f, s) = 1
(1 − f) + f

s

f — The fraction of time in the original program
s — The speedup we can achieve on f

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced

Amdahl’s Law

65

Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced(f, s) = 1
(1 − f) + f

s

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?
A. No change
B. 1.25
C. 1.5
D. 2
E. None of the above

66

Recap: Speedup

ET = IC × CPI × CT
ETbaseline = (5 × 105) × (20% × 6 + 80% × 1) × 1

2 × 10−9 sec = 5−3

ETenhanced = (5 × 105) × (20% × 12 + 80% × 1) × 1
4 × 10−9 sec = 4−3

Speedup = Execution Timebaseline

Execution Timeenhanced

= 5
4 = 1.25

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

67

Replay using Amdahl’s Law

How much time in load/store?
How much time in the rest?

500000 × (0.2 × 6) × 0.5 ns = 300000 ns → 60 %
500000 × (0.8 × 1) × 0.5 ns = 200000 ns → 40 %

Speedupenhanced(f, s) = 1
(1 − f) + f

s

Speedupenhanced(40 % ,2) = 1
(1 − 40%) + 40 %

2
= 1.25 ×

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:

• If optimization #1 and optimization #2 are not dis-joint:

Amdahl’s Law on Multiple Optimizations

Speedupenhanced(fOpt1, fOpt2, sOpt1, sOpt2) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedupenhanced(fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, sOnlyOpt1, sOnlyOpt2, sBothOpt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2

= 1
(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + + f_BothOpt1Opt2

s_BothOpt1Opt2 + f_OnlyOpt1
s_OnlyOpt1 + f_OnlyOpt2

s_OnlyOpt2

• The maximum speedup is bounded by

79

Amdahl’s Law Corollary #1

Speedupmax(f, ∞) = 1
(1 − f) + f

∞

Speedupmax(f, ∞) = 1
(1 − f)

• If we can pick just one thing to work on/optimize

81

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

The biggest fx would lead
to the largest Speedupmax!

• When f is small, optimizations will have little effect.
• Common == most time consuming not necessarily the most
frequent

• The uncommon case doesn’t make much difference
• The common case can change based on inputs, compiler
options, optimizations you’ve applied, etc.

82

Corollary #2 — make the common case fast!

• Compile your program with -pg flag
• Run the program

• It will generate a gmon.out
• gprof your_program gmon.out > your_program.prof

• It will give you the profiled result in your_program.prof

83

Identify the most time consuming part

• With optimization, the common becomes
uncommon.

• An uncommon case will (hopefully) become the
new common case.

• Now you have a new target for optimization.
• — You have to revisit “Amdahl’s Law” every time
you applied some optimization

84

If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media CPU

Storage
Media CPU

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,
Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

• If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

• Assume the original execution time is T. The new execution
time

85

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedup = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT
(1) consider overhead
(2) bound to slowdown

Demo — sort

86

Cumulative Execution
Time

Tim
e (

Se
co

nd
s)

0

7.5

15

22.5

30

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

Speedup

Sp
ee

du
p

0
2
4
6
8

10
12
14
16
18
20
22
24

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

Execution Time
Breakdown

No
rm

aliz
ed

 Ti
me

 to
 Ea

ch
 Co

nfi
gu

rat
ion

’s
To

tal
 Ex

ec
uti

on
 Ti

me

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

Sort was the
most significant

File I/O is now
more critical to
performance

Something else (e.g., data
movement) matters more

Cumulative Execution
Time

Tim
e (

Se
co

nd
s)

0

7.5

15

22.5

30

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

• With optimization, the common
becomes uncommon.

• An uncommon case will (hopefully)
become the new common case.

• Now you have a new target for
optimization — You have to revisit
“Amdahl’s Law” every time you
applied some optimization

87

If we repeatedly optimizing our design based on Amdahl’s law...

Sort was the
most significant

File I/O is now
more critical to
performance

Something else (e.g.,
data movement)
matters more now

• Symmetric multicore processor with n cores (if we assume the
processor performance scales perfectly)

88

Amdahl’s Law on Multicore Architectures

Speedupparallel(fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n

• Single-core performance still matters
• It will eventually dominate the performance
• If we cannot improve single-core performance further, finding more
“parallelizable” parts is more important

92

Corollary #3
Speedupparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

Merge Sort
Demo — merge sort v.s. bitonic sort on GPUs

93

O(nlog2n)
Bitonic Sort

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

O(nlog2
2n)

Merge sort

94

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

9 10 17 20 5 8 13 15 2 4 6 71 14 11 12

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

O(n log n)

log n
you can merge with O(n) time

with O(n) space

Parallel merge sort

95

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 11 12 9 10 17 20 5 8 13 15 2 4 6 7

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

Bitonic sort

96

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 12 11 9 10 20 17 5 8 15 13 2 4 7 6

1 11 12 14 20 17 9 10 5 8 15 13 7 6 2 4

1 11 12 14 20 17 10 9 5 8 13 15 7 6 4 2

1 11 10 9 20 17 12 14 7 8 13 15 5 6 4 2

1 9 10 11 12 14 20 17 13 15 7 8 5 6 4 2

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

Bitonic sort (cont.)

97

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 2 4 5 6 7 8 9 10 11 12 13 15 14 17 20

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!

benefits — in-place merge (no additional space is necessary), very stable comparison
patterns

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

• If we can build a processor with unlimited parallelism
• The complexity doesn’t matter as long as the algorithm can utilize all
parallelism

• That’s why bitonic sort or MapReduce works!
• The future trend of software/application design is seeking for
more parallelism rather than lower the computational complexity

98

Corollary #4
Speedupparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

“Fair” Comparisons

99

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995
V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.

TFLOPS (Tera FLoating-point Operations Per Second)

100

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point
intensive

101

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point intensive

102

TFLOPS (Tera FLoating-point Operations Per Second)

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz

103

104

125 TFLOPS
Only @ 16-bit
floating point

They try to tell it’s the better AI hardware

105

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inference per second

106

Inferences
Second = Inferences

Operation × Operations
Second

= Inferences
Operation × [operations

cycle × cycles
second × #_of_PEs × Utilization_of_PEs]
Hardware Model Input Data

Operations per inference v

Operations per cycle v

Cycles per second v

Number of PEs v

Utilization of PEs v v

Effectual operations out of (total) operations v v
Effectual operations plus unexploited ineffectual

operations per cycle v

• There is no standard on how they inference — but these affect!
• What model?
• What dataset?

• That’s why Facebook is trying to promote an AI benchmark —
MLPerf

107

What’s wrong with inferences per second?

Choose the right metric — Latency
v.s. Throughput/Bandwidth

111

• Latency — the amount of time to finish an operation
• Access time
• Response time

• Throughput — the amount of work can be done within a given
period of time
• Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)
• IOPs (I/O operations per second)
• FLOPs (Floating-point operations per second)
• IPS (Inferences per second)

112

Latency v.s. Bandwidth/Throughput

• The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a
decision to be made within 100ms, which of the following architecture would work?

A. CPU and TPU
B. TPU and GPU
C. Only GPU
D. Only TPU
E. All would work well

113

With MLPerf, are we good with inferences/second?

Intel® Xeon® Platinum 9200
processors (CPU)

Google Cloud TPU v3
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

MXU 128*128*2 4*4*320*8
Number of Maximum Parallel

Inferencing Instances 224 128*2 = 256 4*320*8 = 10240
https://mlperf.org/inference-results/

5965.62
224 = 26.63Batches/Sec 32716

256 = 128 44977.8
10240 = 4.39

Seconds/Batch 1
26.63 = 37.55ms

1
128 = 7.81ms

1
128 = 227.79ms

Latency sensitive

Bandwidth

https://mlperf.org/inference-results/

RAID — Improving throughput

114

RAID
ControllerAccess time: 10 ms

Bandwidth: 125 MB/sec

Aggregated Bandwidth: 500 MB/sec

 Toyota Prius 100 Gb Network

bandwidth 290GB/sec 100 Gb/s or
12.5GB/sec

total latency 3.5 hours 2 Peta-byte over 167772 seconds
= 1.94 Days

latency in
getting the first

moivie
You see nothing in the first 3.5 hours

100GB/100Gb = 8 secs!
You can start watching the first

movie in 8 secs!

Latency/Delay v.s. Throughput

118

•100 miles (161 km) from UCSD
•75 MPH on highway!
•Max load: 374 kg = 2,770 hard drives
(2TB per drive)

•100 miles (161 km) from UCSD
•Lightspeed! — 3*108m/sec
•Max load:4 lanes operating at 25GHz

119

• The ISA of the “competitor”
• Clock rate, CPU architecture, cache size, how many cores
• How big the RAM?
• How fast the disk?

120

What’s missing in this video clip?

• Quote only 32-bit performance results, not 64-bit results.
• Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

• Quietly employ assembly code and other low-level language constructs.
• Scale up the problem size with the number of processors, but omit any mention of this fact.
• Quote performance results projected to a full system.
• Compare your results against scalar, unoptimized code on Crays.
• When direct run time comparisons are required, compare with an old code on an obsolete system.
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
• Mutilate the algorithm used in the parallel implementation to match the architecture.
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

• If all else fails, show pretty pictures and animated videos, and don't talk about performance.
121

12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

