Performance

Hung-Wel Tseng

Recap: von Neumman Architecture

—----
X “‘

509cbd23;

00c20800

! —
By Ioadmg different programs Into memory,

your computer can perform different functions

44444444

’-~
d N

7 00003d24 90c30000

S 2case2b3 00000008

00005024 ©0c2feee
0000bd24 += 00000008
2ca42230 ég 00c2f800
130020e4 00000008
00003d24 00c30000
2ca4e2b3 00000008

O
e
Q
-
-
e
({p)
=

Recap: How my “C code" becomes a “program”

Objects, Libraries
cafebabe 00c2e800 Source COde

00000033 00000008
001d0ano 00c21000 =ik ¥
0600009 00000008 SERT ke
00100011 00c2f800 =2
0800120a 00000008 A
00130014 00c30000 LAt

589cbd23

Instructions

I ¥o0c20800

97001507 00000008
&
. Compiler
Ateobbh27 00c2e3006
289chd23 2800008038
00005d24 00c27000 v (e‘g‘l gcc)

29000bd24 2800000063
2ca4s22a0 @0c21300
130020e4 00000008
09003d24 00c30000
2ca4se2b3 060000003

efeobh27 '00c2e800 Program

509chd23 LLLLLLE!
PeeRs5d24 eec2feae 0te0bb27 00c2e800
0000hd24 00000008 £ Sonchas 509cbd23 00000008
13002004 O 000000GE = 06005d24 g 60C27000
00003d24 90c30000 0000hbd24 00000008
= 2cabe ~ bPBPBBAs 2ca422a0 00c21800
' 130020e4 00000008
00003d24 00c30000

Instructions

" Instructions
Instructions

Storage

Instructions

Recap: How my “Java code"” becomes a “program”

¥ 4
[
¢
Y
|

3teobh27
a@9chd23
00005d24
2000bd24
2ca422a0
130020e4
00003d24
2ca4se2b3

_----
C “‘

L]
00c2e300
00000003
00c21000
00000003
00c21300
00000008
00c30000
000000038

cafebabe
00000033
001d0aoo
06000109
00100011
0800120a
00130014
07001507

Processor

(7))
c
S
)
(&)
-
P
)
(7))
=

—----
-~ “‘

5069chd23
00c2e800
i

L]
00c2e3006 91te0bh27
00000003 Processor C 509chd23

.g 00005d24
% 9000bd24 | + 80000003 Progra D
S 2cas22a@ a @0c2f300 tn efeebb27 @0c2e800 = 130020e4
= 130020e4 20000008 = 58%9chd23 PPBBBBAs) 0peB3d24
) 9pe03d24 0030000 O oeeesd24 @ ~ '~2feee
£ 2caneznz 00000003 T 0000hd24 += D2GROBEY
D 2ca422a6 | & e0c2fsee
= 13002004 aaaaaaaa
0 0000324 90c30000

¢ 9feebh27
S 509chd23
O oo005d24 @ ©0c2f000

Memory £ 2cauezb3 ooeveves

Java Virtu;i T
Machine (e.g., Java)

Other (.class)

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

o — . . ey J

Instructions

07001507

Source Code

Java
Compiler

(e.g.,javac)
Java Bytecode (.class)

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

cafebabe
00000033
001d0a00o
06000109
00100011
0800120a
00130014

Instructions

Recap: How my “Python code” becomes a “program”
Libraries

3teobh27
a@9chd23
00005d24
2000bd24
2ca422a0
130020e4
09003d24
2ca4se2b3

L]
00c2e300
0000600803
00c21000
00000003
Q0c21300
00000008
00c30000
000000038

Processor

Instructions

cafebabe
00000033
001d0ano
06000109
00100011
0800120a
00130014
07001507

o 9feebh27
S 509chd23
O oo005d24

0000hbd24
= 2cas422a0
= 130020e4
) 0p003d24

£ 2casezbs

00c2e800
00000008
00c21000
00000008
00c21800

00000008
00c30000
00000008

L]
00c2e300
00000003
00c27000

= 000000083
Q @0c2f300
00000008
90c30000
00000003

Instructions

| Program

0tfe0bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24

2cabe2b3 00000008

Source Code

@ python
O Perl

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000

Definition of "Performance’

CPU Performance Equation

1
P r'iror -
€ fO mance Execution Time
; '] Cycles
Execution Time = Lstructions % — ‘ X Seconds
Program Instruction Cvcle
ET = IC X CPIX CT /
1

1GHz = 10°Hz = —sec per cycle = 1 ns per cycle :
10° Frequency(i.e.,clock rate)

14

Execution Time

- The simplest kind of performance
- Shorter execution time means better performance
- Usually measured in seconds

clock

instruction memory

120007a30: 0©f00bb27 1dah gp,15(t12)
120007a34: 509cbd23 1da gp,—25520(gp)

120007a38: 00005d24 1dah t1,0(gp)

Processor 120007a3c: 0000bd24 1dah t4,0(gp)
120007a40: 2ca422a@ 1d1 t@,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
InStrl/tCtiOVlS 120007a4c: 2ca4e2b3 stl zero,—-23508(t1)
] —>120007a50: 0004LFff47 clr vO
HOW many Of these . 120007ab4: 28a4ebb3 stl zero,-23512(t4)
Program 120007a58: 20a42last 1ldq t0,-23520(t0)

120007abc: 0e0020e4 beq t0,120007a98
Howlongisittaketo _~ fer sl i
execution each of these? 120007a68: 0500e0c3 br 120007a80
Cycles > Seconds

Instruction Cycle

15

Performance Equation (X)

- Assume that we have an application composed with a total of
5000000000 instructions, in which 20% of them are "Type-A"
instructions with an average CPI of 8 cycles, 20% of them are
"Type-B" instructions with an average CPI of 4 cycles and the rest
iInstructions are “Type-C" instructions with average CPI of 1 cycle. If
the processor runs at 3 GHz, how long is the execution time?

A. 3.6/ sec ET = (5x10”) X (20% X 8 + 20% X 4 + 60% X 1) X 3><110—9sec =5
| B. 5sec | average CPI

C. 6.67 sec ET =1IC X CPIXCT

D. 15 sec

E. 45 sec

16

https://www.pollev.com/hungweitseng close in 1:30

Speedup of Y over X

- Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

Clock Instructions Percentage CPI of Percentage CPI of Percentage CPI of

Machine X

Machine Y

. 0.8

moOoOwerE

Rate of Type-A Type-A of Type-B Type-B of Type-C Type-C
3GHz 5000000000 20% 8 20% 4 60% 1

5GHz 5000000000 20% 13 20% 4 60% 1

0.2
0.25

1.25
No changes

17 A B C D E

™) RTINS POEMOAN T B L ORI SO RO 1T ROt 10, 1000 TS 4T 4 50w o D M PR S aCMME S

https://www.pollev.com/hungweitseng close in 1:30

Speedup of Y over X

- Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

Clock Percentage

Instructions

CPI of

Percentage

CPI of Percentage CPI of

Machine X

Machine Y

moOoOwerE

Rate of Type-A
3GHz 5000000000 20%

5GHz 5000000000 20%

0.2
0.25

. 0.8

1.25
No changes

Type-A
8

13

18

of Type-B
20%

20%

Type-B of Type-C

4 60%

4 60%

2 TR PRI 20 0 e | NI OO 1T

C

Yt e tha ety

Type-C
1

1

BOWL D M PR CALMME S

Speedup

- The relative performance between two machines, Xand Y. Y is n
times faster than X

Execution Timey

n = ; :
Execution Timey

+ The speedup of Y over X

Execution Timey,

Speedup =

Execution Timey

19

What Affects Each Factor In
Performance Equation

Use “performance counters” to figure out!

- Modern processors provides performance counters

- Instruction counts

- cache accesses/misses

- branch instructions/mis-predictions

- How to get their values?

- You may use “perf stat” in linux

- You may use Instruments —> Time Profiler on a Mac

- Intel’s vtune — only works on Windows w/ intel processors

- You can also create your own functions to obtain counter values

27

Instructions

3teobh27
a@9chd23
00005d24
9000bd24
2ca422a0
130020e4
09003d24
2ca4se2b3

L=
00c2e300
80000003
00c21000
2800000063
@0c21300
00000008
00c30000
00000003

" Instructions

589cbd23

00020800

efeehbb27
50%9chd23
pReRsd24
000Bhd24
2ca422a0
130020e4
00eB3d24

Instructions

cafebabe
00000033
001d0ano
06000109
00100011
0800120a
00130014
07001507

e0c2e800
Po6pboeas
eec2feae
0000000es
BBc21880
foeeeeas
00c30000

___bbopeeas

Storage

41

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

n 9fedbh27
€ 509chd23

O o0005d24

= 2cas422a0@
= 130020e4
) oppee3d24

Recap: How my “C code” becomes a “program”
Objects, Libraries

Source Code

Compiler
(e.g., QCC)

0tfe0bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

One Time Cost!

Recap: How my “Java code"” becomes a “program”

cafebabe
00000033
001d0aoo
06000109
00100011
0800120a
60136014

00c2e306
00000003
" 00c21000

3te0bh27
289chd23
00005d24

Instructions

Instructions

Other (.class)

00c2e800
00000008
o 00c2feee
+ 00000008
Eg 00c2f800
00000008
00c30000

00000008

Source Code

cafebabe
00000033
001d0a00o
06000109
00100011
0800120a
00130014
07001507

Compiler
' {e.g., javac)

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

Recap: How my “Python code” becomes a “program”

Libraries Source Code

cafebabe 00c2e800

00000033 00000008

00140200 00c2000 O n
06000709 8 gooooees
00100011 8 00c2f800

98001203 00000008

00130014 00c30000 @ Pe r

07001507 00000008

00020200
e

Instructions

ateobh27 00c2e3006
a@9chd23 000000038
00005d24 00c27000
29000bd24 000000063
2ca422a0 @0c21300
130020e4 00000008
00003d24 00c30000
2ca4e2b3 0600000038

Processor

Instructions

How about “computational complexity”

- Algorithm complexity provides a good estimate on the
performance if —

- Every instruction takes exactly the same amount of time
- Every operation takes exactly the same amount of instructions

These are unlikely to be true

49

Summary of CPU Performance Equation

1
Performance =
f Execution Time
: : Instructi Cycles [y d
Execution Time = 22220 « ¢ 2N
Program Instruction Cycle

ET=I1CXCPIXCT

- |C (Instruction Count)
- ISA, Compiler, algorithm, programming language, programmer
- CPI (Cycles Per Instruction)

- Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

- Cycle Time (Seconds Per Cycle)
- Process Technology, microarchitecture, programmer

50

Instruction Set Architecture (ISA)
& Performance

Recap: ISA — the interface b/w processor/software

. Operations

- Arithmetic/Logical, memory access, control-flow (e.g., branch,
function calls)

- Operands
- Types of operands — register, constant, memory addresses

- Sizes of operands — byte, 16-bit, 32-bit, 64-bit
- Memory space

- The size of memory that programs can use

- The addressing of each memory locations

- The modes to represent those addresses

52

Popular ISAs

Qualcomm

snapdragon

SWweRv core.

53

The abstracted "RISC-V" machine

FP Registers

: FO

- F1

P F2

: F3
! F4

: F5
' F6

L F7

: F8

- FO

' F10

- F11

: F12

:F13

L F14

' F15

- F16

- F17

1 F18

- F19

' F20

- F21

- F22

1F23

-F24
:F25

:F26

- F27

1 F28

-F29

'F30

I F31

CPU Memory
................................... T 040000000555
Registers Program-Gounter 0x0000000000000008
0x000000000000000 0x0000000000000010
X0 . 0x0000000000000018
X1 0x0000000000000020
X2 0x0000000000000028
X3 — 0x000000000000003
X4 dd 0x0000000000000038
X5 a .
X6 sub
X7 mul
X8 +
X9 div
X10 :
X11
X12
X13
X14
X15 1W
X16
X17 1d
X18 SW and .
e d | ands
- orli
X21 *-- _ .
X22 \ A R
X23 \ ' :
X24 : > ALU
X25 !
06 . —— OXFEFFFFFFFFFEFECO _
X27 ! : ; OXFFFFFFFFFFFFFFCS
%08 : 5 be OXFFFFFFFFFFFFFFDO 1<l _
X29 : 01t OXFFFFFFFFFFFFFFDS |
%30 : OXFFFFFFFFFFFFFFEO '
%31 : hal OXFFFFFFFFFFFFFFES :
' ;) OXFFFFFFFFFFFFFFFO ;
—— ’ OXFFFFFFFFFFFFFFFS .
................................ 1 2SS N
54 T TTTTTTIITITTTmmmmmmsees SEEEEETTr e B ‘

264 Bytes

Subset of RISC-V instructions

Category Instruction Usage Meaning
Arithmetic add add x1, x2, x3 X1 = X2 + X3
addi addi x1,x2, 20 x1 = x2 + 20
sub sub x1, x2, x3 X1 = x2 - X3
Logical and and x1, x2, x3 X1 = x2 & %3
or or x1, x2, x3 X1 = x2 | x3
andi andi x1, x2, 20 X1 = x2 & 20
sll sll x1, x2, 10 X1 = x2 x 2710
srl srl x1, x2, 10 x1 = x2 / 2”10
Data Transfer 1d 1d X1, 8(x x1 = mem[x2+8]
o — 8(Xilj)he only ’%)[gzqgjns fructions can access memory
Branch beq beq x1, x2, 25 1f(x1 == x2), PC = PC + 100
bne bne x1, x2, 25 1f(x1 !'= x2), PC = PC + 100
Jump jal jal 25 $ra = PC + 4, PC = 100

jr jr $ra PC = $ra

55

Popular ISAs

Complex Instruction Set
Comptters(CiISC)

38CX

 (RISC)

Qualcommn
snapdragon

SWeRvV core.

2
f
|
|
|
|
|

How many operations: CISC v.s. RISC

- CISC (Complex Instruction Set Computing)
- Examples: x86, Motorola 68K

- Provide many powerful/complex instructions
- Many: more than 1503 instructions since 2016
- Powerful/complex: an instruction can perform both ALU and memory operations
- Each instruction takes more cycles to execute

-+ RISC (Reduced Instruction Set Computer)

- Examples: ARMvS, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

- Each instruction only performs simple tasks
- Easy to decode
- Each instruction takes less cycles to execute

57

CPU
Registers
RAX
RBX
RCX
RDX —
RSP ADD
RBP SUB
RS|
RDI IMUL
RS
RO
R10
RT1
R12
R13
R14 \ 3
R15 "
! RP JRRY
: FLAGS el AND
- cs 1Tl .
<
DS 0
ES ———— 4..---- . MOV .
FS «-
GS s 5 ;::>'ALU
1 : : e
' JE
: CALL
; RET ..

The abstracted x86 machine

\

0x000000000000000

Memory
e

0x0000000000000008

0x0000000000000010

0x0000000000000018

0x0000000000000020

0x0000000000000028

0x000000000000003

0x0000000000000038

OXFFFFFFFFFFFFFFCO
OXFFFFFFFFFFFFFFCS
OXFFFFFFFFFFFFFFDO
OXFFFFFFFFFFFFFFDS
OXFFFFFFFFFFFFFFEQ
OXFFFFFFFFFFFFFFES

OXFFFFFFFFFFFFFFFO, {

OXFFFFFFFFFFFFFFRS

-
-

A 4

264 Bytes

RISC-V v.s.x86

RISC-V x86
ISA type Reduced Instruction Set Complex Instruction Set
Computers (RISC) Computers (CISC)
instruction width 32 bits 1~ 17 bytes
code size larger smaller
reqgisters 32 16
base+offset
addressing modes reg+offset base-+index

scaled+index
scaled+index+offset

hardware simple complex

59

Amdahl’'s Law—and It's
Implication in the Multicore Era

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl's Law

1
(- +%

Spe edupenhanced(f’ 5) =

f— The fraction of time in the original program
S — The speedup we can achieve on f

Execution Timey,, ;...

Speedup ,papced =

Execution Tlmeenhanced_

NV

64

Amdahl's Law

1
Sp eedup enhanced(f’ S) —

(1—f)+1

ExeCUtion Timebaseline — 1

ExeCUtion Timeenhanced — (1 ‘f) + f/S <

Execution Timey, ... 1

Speedu = =
P Penhanced Execution Time,,}, . 0 (1—f)+ f
\)

65

Recap: Speedup

- Assume that we have an application composed with a total of 500000
Instructions, in which 20% of them are the load/store instructions with an
average CPIl of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

- If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What's the performance improvement after this change?

A. No change ET=1IC X CPIXx CT

B 125 ET)setine = (5% 10%) X (20% X 6 + 80% X 1) X = 1

X 1

C 15 ET,, ..=(5%x10°) X% (20% x 12 +80% x 1) X ;

D. 2 Speedup

Execution Time
E. None of the above

_ 2 _
—2—1.25

—sec = 573

sec = 472
X 109
Execution Timey, ;...

enhanced

66

Replay using Amdahl’s Law

- Assume that we have an application composed with a total of 500000
Instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

- If we double the CPU clock rate to 4GHz that helps to accelerate all instructions

by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What's the performance improvement after this change?

How much time in load/store? 500000 x (0.2 x 6) X 0.5 ns = 300000 ns — 60 %
How much time in the rest? 500000 x (0.8 x 1) X 0.5 ns = 200000 ns — 40 %

Speedu ,8) = -
P penhanced(f) (1 —1) +é

— 1 —
Speedupenhanced(4o Te 2) = (1 — 40%) + 40% = 1.25 X

67

Amdahl’'s Law on Multiple Optimizations

- We can apply Amdahl’s law for multiple optimizations
- These optimizations must be dis-joint!
If optimization #1 and optimization #2 are dis-joint:

1-fopt1-fopt2

1

Speedup ., panced Optl’f Opt2> SOpt1> SOpt2) —

f_Optl f_Opr2
(1 _fOPﬂ _fOsz) | s_Optl | s_Opt2

If optimization #1 and optimization #2 are not dis-joint:

foniyopt1 fonlyopt2 | fBothoptiopt2 1-foniyopt1=fonlyopt2=fBothopt10pt2

Speedup oppanced Jontyopit> Jontyopi2s JBothopt1 0pi2s Sontyopit> Sontyopi2s SBothop opi2) i

f_BothOpt10pt2 4 f_OnlyOpt1 4 f_OnlyOpt2
s_BothOpt10pt2 s_OnlyOptl s_OnlyOpt2

(1 - f OnlyOptl — f OnlyOpt2 ~— f BothOpt1 Opt2) + +

Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f,) =

79

Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

|

Speedup,. . (fi,0) = 5

Speedup,,,,(f,,) = a i 3 The biggest f, would lead
Speedup,, . (fi, 00) = < i]%) to the largest Speedup na,!
Speedup,, . (f;, 00) = 1

(1= f4)

81

Corollary #2 — make the common case fast!

- When f Is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’'t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.

82

ldentify the most time consuming part

- Compile your program with -pg flag
- Run the program

- It will generate a gmon.out
- gprof your_program gmon.out > your_program.prof

- It will give you the profiled result in your_program.prof

83

If we repeatedly optimizing our designh based on Amdahl’s law...

Storage Media
Storage
Media CPU
- With optimization, the common becomes
uncommon.

- An uncommon case will (hopefully) become the
new common case.

- Now you have a new target for optimization.

You have to revisit "Amdahl’s Law" every time
you applied some optimization

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,

Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010. 84

2000 -

1000 -

100 -

10 -

0

Disk Flash Fast NVM

O File = Operating m iSCSI m Hardw
System System

Don't hurt non-common part too mach

- If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution

: ET,,, % 90 %
time p7, = —""—— 4 ET,,,x 10% x 10
ETI/IEW - 11 X ETOld
ET ET
Speedup = ETOM = - 1><ObidT = 0.91 Xslowdown!
new . old

You may not use Amdahl’s Law for this case as Amdahl’'s Law does NOT

(1) consider overhead
(2) bound to slowdown

85

24
22
20
18

Speedup
o B

—
O

O N b~ O

Speedup

Time (Seconds)

30

22.5

15

7.5

Time
(] ° [~(n
most significant &
Il Other B
| Sort >
B Filel/O E
S
File /O is now <
itical to &
performance *é
£
©
()
NN
©
c
o
Z

Something else (e.g., data

Demo — SOFt movement) mattersmore

Cumulative Execution

0.9
0.8
0.7
0.6

()

0.4
0.3
0.2
0.1

Execution Timeé I Other
Breakdown || Sort

M Filel/O

Céy

g2

=i
-

S I N U
SO I

2
2

Co
Co

Time (Seconds)

If we repeatedly optimizing our design based on Amdahl’s law...

30

22.5

15

7.5

Cumulative Execution
Time
Sort was the
most significant

' Other
Sort
W Filel/O

File /O is now
more critical to
performance

- With optimization, the common
becomes uncommon.

- An uncommon case will (hopefully)
become the new common case.

- Now you have a new target for
optimization — You have to revisit
"Amdahl’s Law" every time you
applied some optimization

Something else (e.g.,
data movement)
matters more now

87

Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
(1 —]gaamllelizable) | p

88

Corollary #3

1

Speeduppamllel(ﬁyamllelizable’ OO) — . J_parallelizable

(1 _ﬁparallelizable) ! 00
1

(1 -];amllelizable)

Speedup,,,.aiiel fparatietizaples) =

- Single-core performance still matters
- It will eventually dominate the performance

- If we cannot improve single-core performance further, finding more
“parallelizable” parts is more important

92

Demo — merge sort v.s. bitonic sort on GPUs

Merge Sort Bitonic Sort
O(nlog,n) O(nlogzzn)

volid BitonicSort() {
int 1i,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1;: j>0: j=j>>1) {
for (1=0; i<N; 1i++) {
int ij=1i%7j;
if ((17)>1) {

if ((i&k)==0 && alil] > alij])
exchange(i,ij);

1f ((1&k)!'=0 && al[i] < alijl)
exchange(i,ij);

¥
¥
¥
¥

93

logn

Merge sort

1 14112 11110 9117 2008 5|13 1514 2|6 7/

=/ \\\\

1T 14 11 12 9 10 17 20 13 15
T 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7
you can merge with O(n) tim
with O(n) spa
T 9 10 1M 12 14 17 20 2 4 b 6 7 8 1315

\/

1 2 45 6 7 8 9 10 1 1213 14 15 1/ 20

O(nlog n)

94

Parallel merge sort

114121110917208513154267
mM12 910 17720 5 8 ’|3 15
1T 1 12 14 9 10 17 20 5 8 13 15 2 4 6 7/

e 8

9 10 11 12 14 17 20

1

9

2 4 5 6 7 8 1315

\E/

2 4 5 6 7 8 910 1 1213 14 15 1/ 20

5

Bitonic sort

/////”'\\\\\‘_/////”"*/////”'*/////"*

14 12 11 10 17 20 13 15

M 9102017/ 5 8 1513 2 4 7 ©

%\54%’ %&4%’ é&é%’ \%54/% void BitonicSort() {

112142017 9 10 5 8 1513 7 6 2 4 int 1,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1; j>0; j=j>>1) {
for (i1=0; i<N; i++) {

1 111214201710 9 5 8 1315 7 6 4 2 int i5=ir:
EW W if ((13)>1) A
1f ((1&k)==0 && alil > alijl)
. egchange(i,ij)g N
1 1110 9 20171214 7 8 1315 5 6 4 2 1f ((1&k)!=0 && ali] < ali3])

exchange(1i,13);

Bitonic sort (cont.)

9 10 1M 1214 1/ 2016513 8 7 6 5 4 2 void BitonicSort() {
é “\g:<?:’t,‘, int 1,73,k;
547276 9 8 7712 13 10 11 15 14 17 20 O N S o)
for (i=0; 1i<N; i++) {
if ((19)>1) {
5 426 98 7 121310 1 15 14 17 20 it ((18K)==0 8& alil > alij])
exchange(i,ij);
% %4% %ﬁ% %Z/E if ((i8k) 120 && alil < alijl)
exchange(i,1j);
}
10 11 12 13 15 14 17 20 }

.................. %\E\%\E\E’\E’\E\%’ o

2 4 5 6 7 38 910 M 1213 14 15 1/ 20

beneflts — in-place merge (no additional space is hecessary), very stable comparison
patterns

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!

97

Corollary #4

1

SP6eduppamzzez(ﬁmmzzezizabze» 00) = f_parallelizable

(1 _]gpamllelizable) T 00
1

(1 -];Qamllelizable)

Speedup,,,.aiiel fparatietizaples) =

- |f we can build a processor with unlimited parallelism

- The complexity doesn't matter as long as the algorithm can utilize all
parallelism

- That's why bitonic sort or MapReduce works!

- The future trend of software/application design is seeking for
more parallelism rather than lower the computational complexity

98

“Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995

V.Sze, Y.-H.Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.

99

TFLOPS (Tera FLoating-point Operations Per Second)

Console Teraflops
® Sony

@® Nintendo

TFLOPS clock rate XOROEX | @ Sego
® Microsot

Switch 1 921 MHz

XBOX One X 6 1.75 GHz e
PS4 Pro 4 1.6 GHz
GeForce GTX 2080 14.2 1.95 GHz

Teraflops

rs4
&
o e Xbox One £
=] ‘!\intendo Switch
b
-~ ‘h")iiU
Xbox 360 PS3
PS2 GaXbhoxhe ° Wil @
D 01 AN 1 Py
19S7 1993 1999 2000 2001 2002 2203 2C04 2005 2006 2007 2008 2009 2010 2011 2012 2013 2074 2015 2216 2017 2018

100

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

of floating point instructions X 10712

TFLOPS =

Exection Time

IC X % of floating point instructions X 1072
ICX CPIx CT

% of floating point instructions X 10712

CPIX CT IC is gone!

Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

Does not make sense if the application is not floating point
Intensive

101

TFLOPS (Tera FLoating-point Operations Per Second)

- Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point intensive

TFLOPS clock rate

Switch 1 921 MHz
XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz

102

nvidia.com

L[

< il

“ 1 NVIDIA.

Artificial Intelligence Computing Leadership from NVIDIA

CLOUD & DATA CENTER rropucTs v SOLUTIONS ~ FOR DEVELOPERS ~ TECHNOLOGIES ~

Tesla V100 AITRAINING AIINFERENCE HPC DATACENTERGPUs SPECIFICATIONS

e From recognizing speech ta training virtual personal assistants and teaching
esla
autonomous cars to drive, data scientists are taking on increasingly complex
challenges with Al. Solving these kinds of problems requires training deep learning

models that are exponentially growing in complexity, in a practical amount of time.

5.1 Hours

8X Tesla P100
15.5 Hours

0 4 8 12 16
Time to Solution in Hours-Lower Is Better With 640 , Tesla V100 is the world’s first GPU to break the 100 teraFLOPS

[TFLOPS) barrier of deep learning performance. The next generation of
NVLIink™ connects multiple V100 GPUs at up to 300 GB/s to create the world’s most
powerful computing servers. Al models that would consume weeks of computing

resources on previous systems can now be trained in a few days. With this dramatic
reduction in training time, a whole new world of problems will now be solvable with Al.

103

The Most Advanced Data Center GPU Ever Built. SPECIFICATIONS

NVIDIA® Tesla® V100 is the world’s most advanced data center H“—‘
GPU ever built to accelerate Al, HPC, and graphics. Powered by | —
NVIDIA Volta, the latest GPU architecture, Tesla V100 offers the TeSFlfc:'e"m Te?;;;"“
erformance of up to 100 CPUs in a single GPU—enabling data
P . . P ' g g GPU Architecture NVIDIA Volta
scientists, researchers, and engineers to tackle challenges that NVIDIA Tensor <zo
were once thought impossible. Cores
ISIVIDIA CUDA 5,120
0res
47X H gher Throughpu: than CPU Deep Learning Trzining injL« Doub.e-Precision
Cerver on Deep Learring Inference Than a 'Wor<day 25 TFLO PS Performance Lk £ IFEOES
. Single-Precision
\ L - 14 TFLOPS 15.7 TFLOPS
Tesla V100 m axvianc z 1 Hours Only @ 1 6 blt Performance
- . Tensor
Teeta P100 | LD floating point .. mance 112TFLOPS | 125 TFLOPS
IXCPU | 8X P10C ey GPU Memory 32GB /166GB HBM2
M
0 X 2 0K 40K SOX 0 i 8 12 1 Bael'?(;?/\"i}:lt"l 900GB/sec
Me~formance Normalized 1o TP lime ta So utinn in Fours ' -
Lovszr is Better ECC Yes
2630k @ 2.46Hz | GPU: add 1X NVIDIA e et O e s Interconnecl
System Interface PCle Gen3 NVIDIA NVLink
Form Facter PCle Full
. SXM2
1 GPJ Node Replaces Up To ba CPU Noces Height/Length
Noda Ran aremenrt: HPC Mivaed Woarklnad Max Pawer oy

They try to tell it's the better Al hardware

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory ‘ 16 MB 24 MB . 11 MB
Power 300W /5W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S

105

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inference per second

Inferences Inferences 5 Operations
Second Operation Second
Inferences operations cycles . :
= — X | X X #_of _PEs X Utilization_of_PEs]
Operation cycle second

Hardware Input Data

Operations per inference

Operations per cycle

Cycles per second
Number of PEs
Utilization of PEs

Effectual operations out of (total) operations

Effectual operations plus unexploited ineffectual
perations per cycle

What's wrong with inferences per second?

- There is no standard on how they inference — but these affect!
- What model?
- What dataset?

- That's why Facebook is trying to promote an Al benchmark —
M Lperf ® Pitfall: For NN hardware, Inferences Per Second (IPS)

I8 an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary
for NN hardware, as it’s simply the inverse of the complexity of
the typical inference in the application (e.g., the number, size, and
type of NN layers). For example, the TPU runs the 4-layer MLP1
at 360,000 1PS but the 89-layer CNNI1 at only 4,700 IPS, so TPU
IPS vary by 75X! Thus, using IPS as the single-speed summary is
even more misleading for NN accelerators than MIPS or FLOPS
are for regular processors [23], so IPS should be even more
disparaged. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide
varicty of NN architectures. Fathom is a promising new attempt at
such a benchmark suite [3].

107

Choose the right metric — Latency
v.s. Throughput/Bandwidth

Latency v.s. Bandwidth/Throughput

- Latency — the amount of time to finish an operation

- Access time

- Response time

- Throughput — the amount of work can be done within a given
period of time

- Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)

- |OPs (I/O operations per second)

- FLOPs (Floating-point operations per second)

- |IPS (Inferences per second)

112

With MLPerf, are we good with inferences/second?

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decisilatency sensitive 100ms, which of the following architecture would work?

ntel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

Inferences per second 5,965.62Bandwidth 32716.00 44,977.80

MXU 128*128*2 4*4*320*8
Number of Maximum Parallel 294 128%9 = 956 2*320*8 = 10240
Inferencing Instances https://mlperf.org/inference-results/
A. CPUand TPU Batches/Sec 5965.62 26,63 32716 _ 198 44977.8 _4
B. TPU and GPU 224 256 10240

C. Only GPU econds/Batch ; = 37.55ms L = 7.81ms L = 227.79ms
D. Only TPU 26.63 128 128

E. All would work well

113

https://mlperf.org/inference-results/

MORE SPECS

Model Code (Capaci*

Aggregated Bandwidth: 500 MB/sec

QIMENSION (WxHxD)
100X 285X 6.8 (mm)

RAID
Controller

TRIM SUPPCRT

Vee

cron s Accesg time: 10 ms
IEEDE“;(;;(lEtn;r:K;:i?Jr:i!/—e;bs } JJ‘Ba ndWIdth: 1 25 M B/S a

performancez’ SEQUENTIAL READ

Up v 58C M3/

RANDOM WRITE (4KB, QD32)
Up ™0 82,000 I0FS

Environment AVERAGE FOWER CONSUVFTION
(SYSTEM LEVEL)?
1,000 GBE: Average 2.2'WMaximum 4.0 W
2.000 GB: Average 3.0 W Maximum42w
4,0C0 GB: Average 3.1 WMaximum 5S4 w
(Burst moce)

14

Latency/Delay v.s. Throughput

Toyota Prius 100 Gb Network
¢100 miles (161 km) from UCSD ¢100 miles (161 km) from UCSD
¢75 MPH on highway! eLightspeed! — 3*10°mjsec

eMax load: 374 kg = 2,770 hard drives eMaxload:4 lanes operating at 25GHz

(2TB per drive) \ “off

</
bandwidth 290GB/sec 100 Gb/s or
12.5GB/sec
2 Peta-byte over 16//7/2 seconds
total lat bh
otal latency 3.5 hours _ 1.94 Days
latency in 100GB/100Gb = 8 secs!

sl RGER{TEE You see nothing inthe first 3.5 hours You can start watching the first
moivie 118 movie in 8 secs!

’ 8cx

Qualcommn
snapdragon

Extreme Multitasking Performance

e Dual 4K external monitors
» 1080p device display
« / applications

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

What's missing in this video clip?

. The ISA of the "competitor”

- Clock rate, CPU architecture, cache size, how many cores
- How big the RAM?

- How fast the disk?

120

12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

- Quote only 32-bit performance results, not 64-bit results.

- Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

- Quietly employ assembly code and other low-level language constructs.

- Scale up the problem size with the number of processors, but omit any mention of this fact.
- Quote performance results projected to a full system.

- Compare your results against scalar, unoptimized code on Crays.

- When direct run time comparisons are required, compare with an old code on an obsolete system.

- If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

- Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
- Mutilate the algorithm used in the parallel implementation to match the architecture.

- Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

- If all else fails, show pretty pictures and animated videos, and don't talk about performance.

121

