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Recap: How my “C code" becomes a “program”
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Instructions

Recap: How my “Java code"” becomes a “program”
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Instructions

Recap: How my “Python code” becomes a “program”
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Definition of "Performance’



CPU Performance Equation

1
P r'iror -
€ fO mance Execution Time
; ' ] Cycles
Execution Time = Lstructions % — ‘ X Seconds
Program Instruction Cvcle
ET = IC X CPIX CT /
1

1GHz = 10°Hz = —sec per cycle = 1 ns per cycle :
10° Frequency(i.e.,clock rate)
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Execution Time

- The simplest kind of performance
- Shorter execution time means better performance
- Usually measured in seconds

clock

instruction memory

120007a30: 0©f00bb27 1dah gp,15(t12)
120007a34: 509cbd23 1da gp,—25520(gp)

120007a38: 00005d24 1dah t1,0(gp)

Processor 120007a3c: 0000bd24 1dah t4,0(gp)
120007a40: 2ca422a@ 1d1  t@,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
InStrl/tCtiOVlS 120007a4c: 2ca4e2b3 stl zero,—-23508(t1)
] —>120007a50: 0004LFff47 clr  vO
HOW many Of these . 120007ab4: 28a4ebb3 stl zero,-23512(t4)
Program 120007a58: 20a42last 1ldq  t0,-23520(t0)

120007abc: 0e0020e4 beq t0,120007a98
Howlongisittaketo _~ fer sl i
execution each of these? 120007a68: 0500e0c3 br  120007a80
Cycles > Seconds

Instruction Cycle
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Performance Equation (X)

- Assume that we have an application composed with a total of
5000000000 instructions, in which 20% of them are "Type-A"
instructions with an average CPI of 8 cycles, 20% of them are
"Type-B" instructions with an average CPI of 4 cycles and the rest
iInstructions are “Type-C" instructions with average CPI of 1 cycle. If
the processor runs at 3 GHz, how long is the execution time?

A. 3.6/ sec ET = (5x10”) X (20% X 8 + 20% X 4 + 60% X 1) X 3><110—9sec =5
| B. 5sec | average CPI

C. 6.67 sec ET =1IC X CPIXCT

D. 15 sec

E. 45 sec
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https://www.pollev.com/hungweitseng close in 1:30

Speedup of Y over X

- Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

Clock Instructions Percentage CPI of Percentage  CPI of Percentage  CPI of

Machine X

Machine Y

. 0.8

moOoOwerE

Rate of Type-A Type-A of Type-B Type-B of Type-C Type-C
3GHz 5000000000 20% 8 20% 4 60% 1

5GHz 5000000000 20% 13 20% 4 60% 1

0.2
0.25

1.25
No changes
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https://www.pollev.com/hungweitseng close in 1:30
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Speedup

- The relative performance between two machines, Xand Y. Y is n
times faster than X

Execution Timey

n = ; :
Execution Timey

+ The speedup of Y over X

Execution Timey,

Speedup =

Execution Timey

19



What Affects Each Factor In
Performance Equation




Use “performance counters” to figure out!

- Modern processors provides performance counters

- Instruction counts

- cache accesses/misses

- branch instructions/mis-predictions

- How to get their values?

- You may use “perf stat” in linux

- You may use Instruments —> Time Profiler on a Mac

- Intel’s vtune — only works on Windows w/ intel processors

- You can also create your own functions to obtain counter values

27



Instructions
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Recap: How my “Java code"” becomes a “program”
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Recap: How my “Python code” becomes a “program”
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How about “computational complexity”

- Algorithm complexity provides a good estimate on the
performance if —

- Every instruction takes exactly the same amount of time
- Every operation takes exactly the same amount of instructions

These are unlikely to be true
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Summary of CPU Performance Equation

1
Performance =
f Execution Time
: : Instructi Cycles [y d
Execution Time = 22220 « ¢ 2N
Program Instruction Cycle

ET=I1CXCPIXCT

- |C (Instruction Count)
- ISA, Compiler, algorithm, programming language, programmer
- CPI (Cycles Per Instruction)

- Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

- Cycle Time (Seconds Per Cycle)
- Process Technology, microarchitecture, programmer
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Instruction Set Architecture (ISA)
& Performance




Recap: ISA — the interface b/w processor/software

. Operations

- Arithmetic/Logical, memory access, control-flow (e.g., branch,
function calls)

- Operands
- Types of operands — register, constant, memory addresses

- Sizes of operands — byte, 16-bit, 32-bit, 64-bit
- Memory space

- The size of memory that programs can use

- The addressing of each memory locations

- The modes to represent those addresses
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Popular ISAs

Qualcomm

snapdragon

SWweRv core.
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The abstracted "RISC-V" machine
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X16
X17 1d
X18 SW and .
e d | ands
- orli
X21 *-- _ .
X22 \ A R
X23 \ ' :
X24 : > ALU
X25 !
06 . —— OXFEFFFFFFFFFEFECO _
X27 ! : ; OXFFFFFFFFFFFFFFCS
%08 : 5 be OXFFFFFFFFFFFFFFDO 1<l _
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—— ’ OXFFFFFFFFFFFFFFFS .
................................ 1 2SS N
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Subset of RISC-V instructions

Category Instruction Usage Meaning
Arithmetic add add x1, x2, x3 X1 = X2 + X3
addi addi x1,x2, 20 x1 = x2 + 20
sub sub x1, x2, x3 X1 = x2 - X3
Logical and and x1, x2, x3 X1 = x2 & %3
or or x1, x2, x3 X1 = x2 | x3
andi andi x1, x2, 20 X1 = x2 & 20
sll sll x1, x2, 10 X1 = x2 x 2710
srl srl x1, x2, 10 x1 = x2 / 2”10
Data Transfer 1d 1d X1, 8(x x1 = mem[x2+8]
o — 8(Xilj)he only ’%)[gzqgjns fructions can access memory
Branch beq beq x1, x2, 25 1f(x1 == x2), PC = PC + 100
bne bne x1, x2, 25 1f(x1 !'= x2), PC = PC + 100
Jump jal jal 25 $ra = PC + 4, PC = 100

jr jr $ra PC = $ra
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Popular ISAs

Complex Instruction Set
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How many operations: CISC v.s. RISC

- CISC (Complex Instruction Set Computing)
- Examples: x86, Motorola 68K

- Provide many powerful/complex instructions
- Many: more than 1503 instructions since 2016
- Powerful/complex: an instruction can perform both ALU and memory operations
- Each instruction takes more cycles to execute

-+ RISC (Reduced Instruction Set Computer)

- Examples: ARMvS, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

- Each instruction only performs simple tasks
- Easy to decode
- Each instruction takes less cycles to execute
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CPU
Registers
RAX
RBX
RCX
RDX —
RSP ADD
RBP SUB
RS|
RDI IMUL
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R14 \ 3
R15 "
! RP JRRY
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- cs 1Tl .
<
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ES ———— 4..---- . MOV .
FS «-
GS s 5 ;::>'ALU
1 : : e
' JE
: CALL
; RET ..

The abstracted x86 machine
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-
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RISC-V v.s.x86

RISC-V x86
ISA type Reduced Instruction Set Complex Instruction Set
Computers (RISC) Computers (CISC)
instruction width 32 bits 1~ 17 bytes
code size larger smaller
reqgisters 32 16
base+offset
addressing modes reg+offset base-+index

scaled+index
scaled+index+offset

hardware simple complex

59



Amdahl’'s Law—and It's
Implication in the Multicore Era

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.



Amdahl's Law

1
(- +%

Spe edupenhanced(f’ 5) =

f— The fraction of time in the original program
S — The speedup we can achieve on f

Execution Timey,, ;...

Speedup ,papced =

Execution Tlmeenhanced_

NV
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Amdahl's Law

1
Sp eedup enhanced(f’ S ) —

(1—f)+1

ExeCUtion Timebaseline — 1

ExeCUtion Timeenhanced — (1 ‘f) + f/S <

Execution Timey, ... 1

Speedu = =
P Penhanced Execution Time,,}, . 0 (1—f)+ f
\)
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Recap: Speedup

- Assume that we have an application composed with a total of 500000
Instructions, in which 20% of them are the load/store instructions with an
average CPIl of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

- If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What's the performance improvement after this change?

A. No change ET=1IC X CPIXx CT

B 125 ET)setine = (5% 10%) X (20% X 6 + 80% X 1) X = 1

X 1

C 15 ET,, ..=(5%x10°) X% (20% x 12 +80% x 1) X ;

D. 2 Speedup

Execution Time
E. None of the above

_ 2 _
—2—1.25

—sec = 573

sec = 472
X 109
Execution Timey, ;...

enhanced
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Replay using Amdahl’s Law

- Assume that we have an application composed with a total of 500000
Instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

- If we double the CPU clock rate to 4GHz that helps to accelerate all instructions

by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What's the performance improvement after this change?

How much time in load/store? 500000 x (0.2 x 6) X 0.5 ns = 300000 ns — 60 %
How much time in the rest? 500000 x (0.8 x 1) X 0.5 ns = 200000 ns — 40 %

Speedu ,8) = -
P penhanced(f ) (1 —1) +é

— 1 —
Speedupenhanced(4o Te 2) = (1 — 40%) + 40% = 1.25 X

67



Amdahl’'s Law on Multiple Optimizations

- We can apply Amdahl’s law for multiple optimizations
- These optimizations must be dis-joint!
If optimization #1 and optimization #2 are dis-joint:

1-fopt1-fopt2

1

Speedup ., panced Optl’f Opt2> SOpt1> SOpt2) —

f_Optl f_Opr2
(1 _fOPﬂ _fOsz) | s_Optl | s_Opt2

If optimization #1 and optimization #2 are not dis-joint:

foniyopt1 fonlyopt2 | fBothoptiopt2 1-foniyopt1=fonlyopt2=fBothopt10pt2

Speedup oppanced Jontyopit> Jontyopi2s JBothopt1 0pi2s Sontyopit> Sontyopi2s SBothop opi2) i

f_BothOpt10pt2 4 f_OnlyOpt1 4 f_OnlyOpt2
s_BothOpt10pt2 s_OnlyOptl s_OnlyOpt2

( 1 - f OnlyOptl — f OnlyOpt2 ~— f BothOpt1 Opt2) + +



Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f, ) =

79



Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

|

Speedup,. . (fi,0) = 5

Speedup,,,,(f,, ) = a i 3 The biggest f, would lead
Speedup,, . (fi, 00) = < i]%) to the largest Speedup na,!
Speedup,, . (f;, 00) = 1

(1= f4)

81



Corollary #2 — make the common case fast!

- When f Is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’'t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.

82



ldentify the most time consuming part

- Compile your program with -pg flag
- Run the program

- It will generate a gmon.out
- gprof your_program gmon.out > your_program.prof

- It will give you the profiled result in your_program.prof

83



If we repeatedly optimizing our designh based on Amdahl’s law...

Storage Media
Storage
Media CPU
- With optimization, the common becomes
uncommon.

- An uncommon case will (hopefully) become the
new common case.

- Now you have a new target for optimization.

You have to revisit "Amdahl’s Law" every time
you applied some optimization

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,

Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010. 84
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Don't hurt non-common part too mach

- If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution

: ET,,, % 90 %
time  p7, = —""—— 4 ET,,,x 10% x 10
ETI/IEW - 11 X ETOld
ET ET
Speedup = ETOM = - 1><ObidT = 0.91 X ....slowdown!
new . old

You may not use Amdahl’s Law for this case as Amdahl’'s Law does NOT

(1) consider overhead
(2) bound to slowdown

85
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Time (Seconds)

If we repeatedly optimizing our design based on Amdahl’s law...

30

22.5

15

7.5

Cumulative Execution
Time
Sort was the
most significant

' Other
Sort
W Filel/O

File /O is now
more critical to
performance

- With optimization, the common
becomes uncommon.

- An uncommon case will (hopefully)
become the new common case.

- Now you have a new target for
optimization — You have to revisit
"Amdahl’s Law" every time you
applied some optimization

Something else (e.g.,
data movement)
matters more now
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Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
( 1 — ]gaamllelizable) | p
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Corollary #3

1

Speeduppamllel(ﬁyamllelizable’ OO) — . J_parallelizable

(1 _ﬁparallelizable) ! 00
1

( 1 - ];amllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- Single-core performance still matters
- It will eventually dominate the performance

- If we cannot improve single-core performance further, finding more
“parallelizable” parts is more important
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Demo — merge sort v.s. bitonic sort on GPUs

Merge Sort Bitonic Sort
O(nlog,n) O(nlogzzn)

volid BitonicSort() {
int 1i,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1;: j>0: j=j>>1) {
for (1=0; i<N; 1i++) {
int ij=1i%7j;
if ((17)>1) {

if ((i&k)==0 && alil] > alij])
exchange(i,ij);

1f ((1&k)!'=0 && al[i] < alijl)
exchange(i,ij);

¥
¥
¥
¥

93



logn

Merge sort

1 14112 11110 9117 2008 5|13 1514 2|6 7/

=/ \\\\

1T 14 11 12 9 10 17 20 13 15
T 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7
you can merge with O(n) tim
with O(n) spa
T 9 10 1M 12 14 17 20 2 4 b 6 7 8 1315

\/

1 2 45 6 7 8 9 10 1 1213 14 15 1/ 20

O(nlog n)
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Parallel merge sort

114121110917208513154267
mM12 910 17720 5 8 ’|3 15
1T 1 12 14 9 10 17 20 5 8 13 15 2 4 6 7/

e 8

9 10 11 12 14 17 20

1

9

2 4 5 6 7 8 1315

\E/

2 4 5 6 7 8 910 1 1213 14 15 1/ 20
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Bitonic sort

/////”'\\\\\‘_/////”"\\\\\*/////”'\\\\\*/////"\\\\\*

14 12 11 10 17 20 13 15

M 9102017/ 5 8 1513 2 4 7 ©

%\54%’ %&4%’ é&é%’ \%54/% void BitonicSort() {

112142017 9 10 5 8 1513 7 6 2 4 int 1,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1; j>0; j=j>>1) {
for (i1=0; i<N; i++) {

1 111214201710 9 5 8 1315 7 6 4 2 int i5=ir:
EW W if ((13)>1) A
1f ((1&k)==0 && alil > alijl)
. egchange(i,ij)g N
1 1110 9 20171214 7 8 1315 5 6 4 2 1f ((1&k)!=0 && ali] < ali3])

exchange(1i,13);



Bitonic sort (cont.)

9 10 1M 1214 1/ 2016513 8 7 6 5 4 2 void BitonicSort() {
é “\g:<?:’t,‘, int 1,73,k;
547276 9 8 7712 13 10 11 15 14 17 20 O N S o)
for (i=0; 1i<N; i++) {
if ((19)>1) {
5 426 98 7 121310 1 15 14 17 20 it ((18K)==0 8& alil > alij])
exchange(i,ij);
% %4% %ﬁ% %Z/E if ((i8k) 120 && alil < alijl)
exchange(i,1j);
}
10 11 12 13 15 14 17 20 }

.................. %\E\%\E\E’\E’\E\%’ o

2 4 5 6 7 38 910 M 1213 14 15 1/ 20

beneflts — in-place merge (no additional space is hecessary), very stable comparison
patterns

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!
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Corollary #4

1

SP6eduppamzzez(ﬁmmzzezizabze» 00) = f_parallelizable

(1 _]gpamllelizable) T 00
1

( 1 - ];Qamllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- |f we can build a processor with unlimited parallelism

- The complexity doesn't matter as long as the algorithm can utilize all
parallelism

- That's why bitonic sort or MapReduce works!

- The future trend of software/application design is seeking for
more parallelism rather than lower the computational complexity
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“Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995

V.Sze, Y.-H.Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.
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TFLOPS (Tera FLoating-point Operations Per Second)

Console Teraflops
® Sony

@® Nintendo

TFLOPS clock rate XOROEX | @ Sego
® Microsot

Switch 1 921 MHz

XBOX One X 6 1.75 GHz e
PS4 Pro 4 1.6 GHz
GeForce GTX 2080 14.2 1.95 GHz

Teraflops

rs4
&
o e Xbox One £
=] ‘!\intendo Switch
b
-~ ‘h")iiU
Xbox 360 PS3
PS2 GaXbhoxhe ° Wil @
D 01 AN 1 Py
19S7 1993 1999 2000 2001 2002 2203 2C04 2005 2006 2007 2008 2009 2010 2011 2012 2013 2074 2015 2216 2017 2018
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Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

# of floating point instructions X 10712

TFLOPS =

Exection Time

IC X % of floating point instructions X 1072
ICX CPIx CT

% of floating point instructions X 10712

CPIX CT IC is gone!

Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

Does not make sense if the application is not floating point
Intensive
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TFLOPS (Tera FLoating-point Operations Per Second)

- Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point intensive

TFLOPS clock rate

Switch 1 921 MHz
XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz
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nvidia.com

L[

< il

“ 1 NVIDIA.

Artificial Intelligence Computing Leadership from NVIDIA

CLOUD & DATA CENTER rropucTs v SOLUTIONS ~ FOR DEVELOPERS ~ TECHNOLOGIES ~

Tesla V100 AITRAINING  AIINFERENCE  HPC  DATACENTERGPUs  SPECIFICATIONS

e From recognizing speech ta training virtual personal assistants and teaching
esla
autonomous cars to drive, data scientists are taking on increasingly complex
challenges with Al. Solving these kinds of problems requires training deep learning

models that are exponentially growing in complexity, in a practical amount of time.

5.1 Hours

8X Tesla P100
15.5 Hours

0 4 8 12 16
Time to Solution in Hours-Lower Is Better With 640 , Tesla V100 is the world’s first GPU to break the 100 teraFLOPS

[TFLOPS) barrier of deep learning performance. The next generation of
NVLIink™ connects multiple V100 GPUs at up to 300 GB/s to create the world’s most
powerful computing servers. Al models that would consume weeks of computing

resources on previous systems can now be trained in a few days. With this dramatic
reduction in training time, a whole new world of problems will now be solvable with Al.
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The Most Advanced Data Center GPU Ever Built. SPECIFICATIONS

NVIDIA® Tesla® V100 is the world’s most advanced data center H“—‘
GPU ever built to accelerate Al, HPC, and graphics. Powered by | —
NVIDIA Volta, the latest GPU architecture, Tesla V100 offers the TeSFlfc:'e"m Te?;;;"“
erformance of up to 100 CPUs in a single GPU—enabling data
P . . P ' g g GPU Architecture NVIDIA Volta
scientists, researchers, and engineers to tackle challenges that NVIDIA Tensor <zo
were once thought impossible. Cores
ISIVIDIA CUDA 5,120
0res
47X H gher Throughpu: than CPU Deep Learning Trzining injL« Doub.e-Precision
Cerver on Deep Learring Inference Than a 'Wor<day 25 TFLO PS Performance Lk £ IFEOES
. Single-Precision
\ L - 14 TFLOPS 15.7 TFLOPS
Tesla V100 m axvianc z 1 Hours Only @ 1 6 blt Performance
- . Tensor
Teeta P100 | LD floating point .. mance 112TFLOPS | 125 TFLOPS
IXCPU | 8X P10C ey GPU Memory 32GB /166GB HBM2
M
0 X 2 0K 40K SOX 0 i 8 12 1 Bael'?(;?/\"i}:lt"l 900GB/sec
Me~formance Normalized 1o TP lime ta So utinn in Fours ' -
Lovszr is Better ECC Yes
2630k @ 2.46Hz | GPU: add 1X NVIDIA e et O e s Interconnecl
System Interface PCle Gen3 NVIDIA NVLink
Form Facter PCle Full
. SXM2
1 GPJ Node Replaces Up To ba CPU Noces Height/Length
Noda Ran aremenrt: HPC Mivaed Woarklnad Max Pawer oy




They try to tell it's the better Al hardware

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory ‘ 16 MB 24 MB . 11 MB
Power 300W /5W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S

105


https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inference per second

Inferences Inferences 5 Operations
Second Operation Second
Inferences operations cycles . :
= — X | X X #_of _PEs X Utilization_of_PEs]
Operation cycle second

Hardware Input Data

Operations per inference

Operations per cycle

Cycles per second
Number of PEs
Utilization of PEs

Effectual operations out of (total) operations

Effectual operations plus unexploited ineffectual
perations per cycle




What's wrong with inferences per second?

- There is no standard on how they inference — but these affect!
- What model?
- What dataset?

- That's why Facebook is trying to promote an Al benchmark —
M Lperf ® Pitfall: For NN hardware, Inferences Per Second (IPS)

I8 an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary
for NN hardware, as it’s simply the inverse of the complexity of
the typical inference in the application (e.g., the number, size, and
type of NN layers). For example, the TPU runs the 4-layer MLP1
at 360,000 1PS but the 89-layer CNNI1 at only 4,700 IPS, so TPU
IPS vary by 75X! Thus, using IPS as the single-speed summary is
even more misleading for NN accelerators than MIPS or FLOPS
are for regular processors [23], so IPS should be even more
disparaged. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide
varicty of NN architectures. Fathom is a promising new attempt at
such a benchmark suite [3].
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Choose the right metric — Latency
v.s. Throughput/Bandwidth



Latency v.s. Bandwidth/Throughput

- Latency — the amount of time to finish an operation

- Access time

- Response time

- Throughput — the amount of work can be done within a given
period of time

- Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)

- |OPs (I/O operations per second)

- FLOPs (Floating-point operations per second)

- |IPS (Inferences per second)

112



With MLPerf, are we good with inferences/second?

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decisilatency sensitive 100ms, which of the following architecture would work?

ntel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

Inferences per second 5,965.62Bandwidth 32716.00 44,977.80

MXU 128*128*2 4*4*320*8
Number of Maximum Parallel 294 128%9 = 956 2*320*8 = 10240
Inferencing Instances https://mlperf.org/inference-results/
A. CPUand TPU Batches/Sec 5965.62 26,63 32716 _ 198 44977.8 _4
B. TPU and GPU 224 256 10240

C. Only GPU econds/Batch ; = 37.55ms L = 7.81ms L = 227.79ms
D. Only TPU 26.63 128 128

E. All would work well
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MORE SPECS

Model Code (Capaci*

Aggregated Bandwidth: 500 MB/sec

QIMENSION (WxHxD)
100X 285X 6.8 (mm)

RAID
Controller

TRIM SUPPCRT

Vee

cron s Accesg time: 10 ms
IEEDE“;(;;(lEtn;r:K;:i?Jr:i!/—e;bs } JJ‘Ba ndWIdth: 1 25 M B/S a

performancez’ SEQUENTIAL READ

Up v 58C M3/

RANDOM WRITE (4KB, QD32)
Up ™0 82,000 I0FS

Environment AVERAGE FOWER CONSUVFTION
(SYSTEM LEVEL)?
1,000 GBE: Average 2.2'WMaximum 4.0 W
2.000 GB: Average 3.0 W Maximum42w
4,0C0 GB: Average 3.1 WMaximum 5S4 w
(Burst moce)
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Latency/Delay v.s. Throughput

Toyota Prius 100 Gb Network
¢100 miles (161 km) from UCSD ¢100 miles (161 km) from UCSD
¢75 MPH on highway! eLightspeed! — 3*10°mjsec

eMax load: 374 kg = 2,770 hard drives eMaxload:4 lanes operating at 25GHz

(2TB per drive) \ “off

</
bandwidth 290GB/sec 100 Gb/s or
12.5GB/sec
2 Peta-byte over 16//7/2 seconds
total lat bh
otal latency 3.5 hours _ 1.94 Days
latency in 100GB/100Gb = 8 secs!

sl RGER{TEE  You see nothing inthe first 3.5 hours  You can start watching the first
moivie 118 movie in 8 secs!



’ 8cx

Qualcommn
snapdragon

Extreme Multitasking Performance

e Dual 4K external monitors
» 1080p device display
« / applications

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.



What's missing in this video clip?

. The ISA of the "competitor”

- Clock rate, CPU architecture, cache size, how many cores
- How big the RAM?

- How fast the disk?
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12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

- Quote only 32-bit performance results, not 64-bit results.

- Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

- Quietly employ assembly code and other low-level language constructs.

- Scale up the problem size with the number of processors, but omit any mention of this fact.
- Quote performance results projected to a full system.

- Compare your results against scalar, unoptimized code on Crays.

- When direct run time comparisons are required, compare with an old code on an obsolete system.

- If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

- Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
- Mutilate the algorithm used in the parallel implementation to match the architecture.

- Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

- If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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