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Recap: von Neumman Architecture
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By loading different programs into memory, 
your computer can perform different functions



Recap: How my “C code” becomes a “program”
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Recap: How my “Java code” becomes a “program”
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Recap: How my “Python code” becomes a “program”
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Definition of “Performance”
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CPU Performance Equation

14

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execution Time

1
Frequency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle



• The simplest kind of performance 
• Shorter execution time means better performance 
• Usually measured in seconds

Processor
PC

120007a30:  0f00bb27  ldah  gp,15(t12)    
120007a34:  509cbd23  lda   gp,-25520(gp) 
120007a38:  00005d24  ldah  t1,0(gp) 
120007a3c:  0000bd24  ldah  t4,0(gp) 
120007a40:  2ca422a0  ldl   t0,-23508(t1) 
120007a44:  130020e4  beq   t0,120007a94 
120007a48:  00003d24  ldah  t0,0(gp) 
120007a4c:  2ca4e2b3  stl   zero,-23508(t1) 
120007a50:  0004ff47  clr   v0 
120007a54:  28a4e5b3  stl   zero,-23512(t4) 
120007a58:  20a421a4  ldq   t0,-23520(t0) 
120007a5c:  0e0020e4  beq   t0,120007a98 
120007a60:  0204e147  mov   t0,t1 
120007a64:  0304ff47  clr   t2 
120007a68:  0500e0c3  br    120007a80

instruction memory

How long is it take to 
execution each of these?

How many of these?

15

Execution Time

clock

Instructions
Program

Cycles
Instruction × Seconds

Cycle



• Assume that we have an application composed with a total of 
5000000000 instructions, in which 20% of them are “Type-A” 
instructions with an average CPI of 8 cycles, 20% of them are 
“Type-B” instructions with an average CPI of 4 cycles and the rest 
instructions are “Type-C” instructions with average CPI of 1 cycle. If 
the processor runs at 3 GHz, how long is the execution time? 
A. 3.67 sec 
B. 5 sec 
C. 6.67 sec 
D. 15 sec 
E. 45 sec
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Performance Equation (X)

average CPI
ET = IC × CPI × CT

ET = (5 × 109) × (20% × 8 + 20% × 4 + 60% × 1) × 1
3 × 10−9 sec = 5



• Consider the same program on the following two machines, X and Y. By 
how much Y is faster than X?

A. 0.2 
B. 0.25 
C. 0.8 
D. 1.25 
E. No changes
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Speedup of Y over X

Clock 
Rate Instructions Percentage 

of  Type-A 
Insts.

CPI of 
Type-A 
Insts.

Percentage 
of  Type-B 

Insts.

CPI of 
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Insts.

Percentage 
of  Type-C 

Insts.

CPI of 
Type-C 
Insts.Machine X 3 GHz 5000000000 20% 8 20% 4 60% 1

Machine Y 5 GHz 5000000000 20% 13 20% 4 60% 1
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• The relative performance between two machines, X and Y. Y is n 
times faster than X

• The speedup of Y over X

19

Speedup

n = Execution TimeX

Execution TimeY

Speedup = Execution TimeX

Execution TimeY



What Affects Each Factor in 
Performance Equation

21



• Modern processors provides performance counters 
• instruction counts 
• cache accesses/misses 
• branch instructions/mis-predictions 

• How to get their values? 
• You may use “perf stat” in linux 
• You may use Instruments —> Time Profiler on a Mac 
• Intel’s vtune — only works on Windows w/ intel processors 
• You can also create your own functions to obtain counter values

27

Use “performance counters” to figure out!



Recap: How my “C code” becomes a “program”
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Recap: How my “Java code” becomes a “program”
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One Time Cost!Everytime when we run it!



Recap: How my “Python code” becomes a “program”
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• Algorithm complexity provides a good estimate on the 
performance if — 
• Every instruction takes exactly the same amount of time 
• Every operation takes exactly the same amount of instructions

49

How about “computational complexity”

These are unlikely to be true



• IC (Instruction Count) 
• ISA, Compiler, algorithm, programming language, programmer 

• CPI (Cycles Per Instruction) 
• Machine Implementation, microarchitecture, compiler, application, algorithm, 
programming language, programmer 

• Cycle Time (Seconds Per Cycle) 
• Process Technology, microarchitecture, programmer
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Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT



Instruction Set Architecture (ISA) 
& Performance
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• Operations 
• Arithmetic/Logical, memory access, control-flow (e.g., branch, 
function calls) 

• Operands 
• Types of operands — register, constant, memory addresses 
• Sizes of operands — byte, 16-bit, 32-bit, 64-bit 

• Memory space 
• The size of memory that programs can use 
• The addressing of each memory locations 
• The modes to represent those addresses
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Recap: ISA — the interface b/w processor/software



Popular ISAs
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The abstracted “RISC-V” machine
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CPU
Program Counter

0x000000000000000
4

Registers
X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31

Memory

64-bit
64-bit

264 Bytes

ALU

add 
sub 
mul 
div 
 
 
 
 
 
 
and 
andi 
ori 
xori 
 
 
 
 
beq 
blt 
hal

0x0000000000000000
0x0000000000000008
0x0000000000000010
0x0000000000000018
0x0000000000000020
0x0000000000000028
0x0000000000000030
0x0000000000000038

0xFFFFFFFFFFFFFFC0
0xFFFFFFFFFFFFFFC8
0xFFFFFFFFFFFFFFD0
0xFFFFFFFFFFFFFFD8
0xFFFFFFFFFFFFFFE0
0xFFFFFFFFFFFFFFE8
0xFFFFFFFFFFFFFFF0
0xFFFFFFFFFFFFFFF8

lw 
ld 
sw 
sd 

FP Registers
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31

64-bit



Subset of RISC-V instructions

55

Category Instruction Usage Meaning
Arithmetic add add  x1, x2, x3 x1 = x2 + x3

addi addi x1,x2, 20 x1 = x2 + 20
sub sub  x1, x2, x3 x1 = x2 - x3

Logical and and  x1, x2, x3 x1 = x2 & x3
or or   x1, x2, x3 x1 = x2 | x3
andi andi x1, x2, 20 x1 = x2 & 20
sll sll  x1, x2, 10 x1 = x2 * 2^10
srl srl  x1, x2, 10 x1 = x2 / 2^10

Data Transfer ld ld   x1, 8(x2) x1 = mem[x2+8]
sd sd   x1, 8(x2) mem[x2+8] = x1

Branch beq beq  x1, x2, 25 if(x1 == x2), PC = PC + 100
bne bne  x1, x2, 25 if(x1 != x2), PC = PC + 100

Jump jal jal  25 $ra = PC + 4, PC = 100

jr jr   $ra PC = $ra

The only type of instructions can access memory



Popular ISAs
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Complex Instruction Set 
Computers (CISC) Reduced Instruction Set Computers (RISC)



• CISC (Complex Instruction Set Computing) 
• Examples: x86, Motorola 68K 
• Provide many powerful/complex instructions 

• Many: more than 1503 instructions since 2016 
• Powerful/complex: an instruction can perform both ALU and memory operations 
• Each instruction takes more cycles to execute 

• RISC (Reduced Instruction Set Computer)  
• Examples: ARMv8, RISC-V, MIPS (the first RISC instruction, invented by the 
authors of our textbook) 

• Each instruction only performs simple tasks 
• Easy to decode 
• Each instruction takes less cycles to execute

57

How many operations: CISC v.s. RISC



The abstracted x86 machine
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CPU
Registers

RAX
RBX
RCX
RDX
RSP
RBP
RSI
RDI
R8
R9
R10
R11
R12
R13
R14
R15
RIP

FLAGS
CS
SS
DS
ES
FS
GS

Memory

64-bit

64-bit

264 Bytes

ALU

ADD 
SUB 
IMUL 
 
 
 
 
 
 
 
AND 
OR 
XOR 
 
 
 
 
 
JMP 
JE 
CALL 
RET

0x0000000000000000
0x0000000000000008
0x0000000000000010
0x0000000000000018
0x0000000000000020
0x0000000000000028
0x0000000000000030
0x0000000000000038

0xFFFFFFFFFFFFFFC0
0xFFFFFFFFFFFFFFC8
0xFFFFFFFFFFFFFFD0
0xFFFFFFFFFFFFFFD8
0xFFFFFFFFFFFFFFE0
0xFFFFFFFFFFFFFFE8
0xFFFFFFFFFFFFFFF0
0xFFFFFFFFFFFFFFF8

MOV



RISC-V v.s. x86
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RISC-V x86
ISA type Reduced Instruction Set 

Computers (RISC)
Complex Instruction Set 

Computers (CISC)
instruction width 32 bits 1 ~ 17 bytes

code size larger smaller
registers 32 16

addressing modes reg+offset
base+offset 
base+index 
scaled+index 

scaled+index+offset
hardware simple complex



Amdahl’s Law — and It’s 
Implication in the Multicore Era

63

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.



Amdahl’s Law
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Speedupenhanced( f, s) = 1
(1 − f ) + f

s

f — The fraction of time in the original program 
s — The speedup we can achieve on f

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced



Amdahl’s Law
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Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f ) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced( f, s) = 1
(1 − f ) + f

s



• Assume that we have an application composed with a total of 500000 
instructions, in which 20% of them are the load/store instructions with an 
average CPI of 6 cycles, and the rest instructions are integer instructions 
with average CPI of 1 cycle when using a 2GHz processor. 
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions 
by 2x except that load/store instruction cannot be improved — their CPI will 
become 12 cycles. What’s the performance improvement after this change? 
A. No change 
B. 1.25 
C. 1.5 
D. 2 
E. None of the above

66

Recap: Speedup

ET = IC × CPI × CT
ETbaseline = (5 × 105) × (20% × 6 + 80% × 1) × 1

2 × 10−9 sec = 5−3

ETenhanced = (5 × 105) × (20% × 12 + 80% × 1) × 1
4 × 10−9 sec = 4−3

Speedup = Execution Timebaseline

Execution Timeenhanced

= 5
4 = 1.25



• Assume that we have an application composed with a total of 500000 
instructions, in which 20% of them are the load/store instructions with an 
average CPI of 6 cycles, and the rest instructions are integer instructions 
with average CPI of 1 cycle when using a 2GHz processor. 
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions 
by 2x except that load/store instruction cannot be improved — their CPI will 
become 12 cycles. What’s the performance improvement after this change?

67

Replay using Amdahl’s Law

How much time in load/store?
How much time in the rest?

500000 × (0.2 × 6) × 0.5 ns = 300000 ns → 60 %
500000 × (0.8 × 1) × 0.5 ns = 200000 ns → 40 %

Speedupenhanced( f, s) = 1
(1 − f ) + f

s

Speedupenhanced(40 % ,2) = 1
(1 − 40%) + 40 %

2
= 1.25 ×



• We can apply Amdahl’s law for multiple optimizations 
• These optimizations must be dis-joint! 

• If optimization #1 and optimization #2 are dis-joint: 

• If optimization #1 and optimization #2 are not dis-joint:

Amdahl’s Law on Multiple Optimizations

Speedupenhanced( fOpt1, fOpt2, sOpt1, sOpt2) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedupenhanced( fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, sOnlyOpt1, sOnlyOpt2, sBothOpt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2

= 1
(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + + f_BothOpt1Opt2

s_BothOpt1Opt2 + f_OnlyOpt1
s_OnlyOpt1 + f_OnlyOpt2

s_OnlyOpt2



• The maximum speedup is bounded by
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Amdahl’s Law Corollary #1

Speedupmax( f, ∞) = 1
(1 − f ) + f

∞

Speedupmax( f, ∞) = 1
(1 − f )



• If we can pick just one thing to work on/optimize
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Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax( f1, ∞) = 1
(1 − f1)

Speedupmax( f2, ∞) = 1
(1 − f2)

Speedupmax( f3, ∞) = 1
(1 − f3)

Speedupmax( f4, ∞) = 1
(1 − f4)

The biggest fx would lead 
to the largest Speedupmax!



• When f is small, optimizations will have little effect. 
• Common == most time consuming not necessarily the most 
frequent 

• The uncommon case doesn’t make much difference 
• The common case can change based on inputs, compiler 
options, optimizations you’ve applied, etc.

82

Corollary #2 — make the common case fast!



• Compile your program with -pg flag 
• Run the program 

• It will generate a gmon.out 
• gprof your_program gmon.out > your_program.prof 

• It will give you the profiled result in your_program.prof

83

Identify the most time consuming part



• With optimization, the common becomes 
uncommon. 

• An uncommon case will (hopefully) become the 
new common case. 

• Now you have a new target for optimization. 
• — You have to revisit “Amdahl’s Law” every time 
you applied some optimization
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If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media CPU

Storage 
Media CPU

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De, 
Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International 
Symposium on Microarchitecture, 2010.



• If the program spend 90% in A, 10% in B. Assume that an 
optimization can accelerate A by 9x, by hurts B by 10x... 

• Assume the original execution time is T. The new execution 
time

85

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedup = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT 
(1) consider overhead
(2) bound to slowdown



Demo — sort
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• With optimization, the common 
becomes uncommon. 

• An uncommon case will (hopefully) 
become the new common case. 

• Now you have a new target for 
optimization — You have to revisit 
“Amdahl’s Law” every time you 
applied some optimization
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If we repeatedly optimizing our design based on Amdahl’s law...

Sort was the 
most significant

File I/O is now 
more critical to 
performance

Something else (e.g., 
data movement) 
matters more now



• Symmetric multicore processor with n cores (if we assume the 
processor performance scales perfectly)

88

Amdahl’s Law on Multicore Architectures

Speedupparallel( fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n



• Single-core performance still matters 
• It will eventually dominate the performance 
• If we cannot improve single-core performance further, finding more 
“parallelizable” parts is more important

92

Corollary #3
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



Merge Sort
Demo — merge sort v.s. bitonic sort on GPUs

93

O(nlog2n)
Bitonic Sort 

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 

O(nlog2
2n)



Merge sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

9 10 17 20 5 8 13 15 2 4 6 71 14 11 12

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

O(n log n)

log n
you can merge with O(n) time 

with O(n) space



Parallel merge sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 11 12 9 10 17 20 5 8 13 15 2 4 6 7

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20



Bitonic sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 12 11 9 10 20 17 5 8 15 13 2 4 7 6

1 11 12 14 20 17 9 10 5 8 15 13 7 6 2 4

1 11 12 14 20 17 10 9 5 8 13 15 7 6 4 2

1 11 10 9 20 17 12 14 7 8 13 15 5 6 4 2

1 9 10 11 12 14 20 17 13 15 7 8 5 6 4 2

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 



Bitonic sort (cont.)
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1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 2 4 5 6 7 8 9 10 11 12 13 15 14 17 20

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!

benefits — in-place merge (no additional space is necessary), very stable comparison 
patterns

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 



• If we can build a processor with unlimited parallelism 
• The complexity doesn’t matter as long as the algorithm can utilize all 
parallelism 

• That’s why bitonic sort or MapReduce works! 
• The future trend of software/application design is seeking for 
more parallelism rather than lower the computational complexity
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Corollary #4
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



“Fair” Comparisons
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Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the 
Computer, MITP, 1995 
V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered 
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.



TFLOPS (Tera FLoating-point Operations Per Second)
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TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point 
intensive
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Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point intensive
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TFLOPS (Tera FLoating-point Operations Per Second)

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz
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125 TFLOPS 
Only @ 16-bit
floating point



They try to tell it’s the better AI hardware
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https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/


Inference per second
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Inferences
Second = Inferences

Operation × Operations
Second

= Inferences
Operation × [ operations

cycle × cycles
second × #_of_PEs × Utilization_of_PEs]
Hardware Model Input Data

Operations per inference v

Operations per cycle v

Cycles per second v

Number of PEs v

Utilization of PEs v v

Effectual operations out of (total) operations v v
Effectual operations plus unexploited ineffectual 

operations per cycle v



• There is no standard on how they inference — but these affect! 
• What model? 
• What dataset? 

• That’s why Facebook is trying to promote an AI benchmark — 
MLPerf
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What’s wrong with inferences per second?



Choose the right metric — Latency 
v.s. Throughput/Bandwidth
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• Latency — the amount of time to finish an operation 
• Access time 
• Response time 

• Throughput — the amount of work can be done within a given 
period of time 
• Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps) 
• IOPs (I/O operations per second) 
• FLOPs (Floating-point operations per second) 
• IPS (Inferences per second)
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Latency v.s. Bandwidth/Throughput



• The following table shows the inference/second using ImageNet dataset and ResNet-50 
v1.5 model as well as the number of maximum concurrent “inferences” each machine can 
support. If we are targeting as making decisions for autonomous cars — requires a 
decision to be made within 100ms, which of the following architecture would work?

A. CPU and TPU 
B. TPU and GPU 
C. Only GPU 
D. Only TPU 
E. All would work well
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With MLPerf, are we good with inferences/second?

Intel® Xeon® Platinum 9200 
processors (CPU)

Google Cloud TPU v3 
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

MXU 128*128*2 4*4*320*8
Number of Maximum Parallel 

Inferencing Instances 224 128*2 = 256 4*320*8 = 10240
https://mlperf.org/inference-results/

5965.62
224 = 26.63Batches/Sec 32716

256 = 128 44977.8
10240 = 4.39

Seconds/Batch 1
26.63 = 37.55ms

1
128 = 7.81ms

1
128 = 227.79ms

Latency sensitive

Bandwidth

https://mlperf.org/inference-results/


RAID — Improving throughput
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RAID 
ControllerAccess time: 10 ms

Bandwidth: 125 MB/sec

Aggregated Bandwidth: 500 MB/sec



 Toyota Prius 100 Gb Network

bandwidth 290GB/sec 100 Gb/s or 
12.5GB/sec

total latency 3.5 hours 2 Peta-byte over 167772 seconds 
= 1.94 Days

latency in 
getting the first 

moivie
You see nothing in the first 3.5 hours

100GB/100Gb = 8 secs! 
You can start watching the first 

movie in 8 secs!

Latency/Delay v.s. Throughput
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•100 miles (161 km) from UCSD  
•75 MPH on highway! 
•Max load: 374 kg = 2,770 hard drives 
(2TB per drive)

•100 miles (161 km) from UCSD  
•Lightspeed! — 3*108m/sec 
•Max load:4 lanes operating at 25GHz
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• The ISA of the “competitor” 
• Clock rate, CPU architecture, cache size, how many cores 
• How big the RAM? 
• How fast the disk?
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What’s missing in this video clip?



• Quote only 32-bit performance results, not 64-bit results. 
• Present performance figures for an inner kernel, and then represent these figures as the 
performance of the entire application. 

• Quietly employ assembly code and other low-level language constructs. 
• Scale up the problem size with the number of processors, but omit any mention of this fact. 
• Quote performance results projected to a full system. 
• Compare your results against scalar, unoptimized code on Crays. 
• When direct run time comparisons are required, compare with an old code on an obsolete system. 
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on 
the best sequential implementation. 

• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar. 
• Mutilate the algorithm used in the parallel implementation to match the architecture. 
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy 
environment. 

• If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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12 ways to Fool the Masses When Giving Performance 
Results on Parallel Computers


