Basic Pipelined Processor

Hung-Wei Tseng

Recap: von Neumman Architecture

--—--
X “‘

Instructions

9Tte0bb27
$09cbd23
00005d24
0000bd24
2ca422a0

130020e4

00003d24
2ca492b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

56?cbd23;

l’ Instructions

Processor
Program

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4

00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000

. 00000008

Outline

- Basic Pipeline Processor Design

- Pipeline Hazards

- Structural Hazards
. Control Hazards

- Data Hazards

- Dynamic Branch Predictions

Recap: Why adding a sort makes it faster

- Why the sorting the array speed up the code despite the increased
iInstruction count?

if(option)
std::sort(data, data + arraySize):

for (unsigned 1 = 0; 1 < 100000; ++1i) {
int threshold = std::rand();
for (unsigned i = @; 1 < arraySize; ++1i) {
if (datali] >= threshold)
sum ++;

14

Recap: Adding a sort...

1f (option)
std::sort(data, data + arraySize);

for (unsigned ¢ = O; c < arraySizex1000; ++c) {

1f (datalckarraySizel]l >= INT_MAX/2)
sum ++;

15

Basic Processor Design

von Neumman Architecture

--—--
X “‘

56?cbd23;

9Tte0bb27 00c2e800
$09chd23 00000008
00005d24 00c21000
0000bd24 00000008
2ca422a0 00c21800
130020e4 00000008
00003d24 00c30000
2ca4e2b3 00000008

Processor

Program

0te0bb27 00c2e800
509cbd23 00000008
00005d24 00c21000
0000bd24 00000008
2ca422a0 00c21800
130020e4 00000008

Instructions

00003d24 00c30000
2ca4e2b3 . 00000008

l’ Instructions

17

Tasks in RISC-V ISA

- Instruction Fetch (IF) — fetch the instruction from memory

- Instruction Decode (ID)

- Decode the instruction for the desired operation and operands

- Reading source register values

- Execution (EX)

- ALU instructions: Perform ALU operations

- Conditional Branch: Determine the branch outcome (taken/not taken)

- Memory instructions: Determine the effective address for data memory access
- Data Memory Access (MEM) — Read/write memory

- Write Back (WB) — Present ALU result/read value in the target register

- Update PC

- If the branch is taken — set to the branch target address
- Otherwise — advance to the next instruction — current PC + 4

18

Simple implementation w/o branch

add x1, x2, x3 [HIEEEIN
1d x4, ©(x5) _IF 1D EX_MEM WB_

sub x6, x7, x8 IF | ID | EX [WB

sub x9,x10, x11

sd x1, 0(x12)

4

19

Pipelining

Pipelining

- Different parts of the processor works on different instructions
simultaneously

- A clock signhal controls and synchronize the beginning and the
end of each part of the work

- A pipeline register between different parts of the processor to
keep intermediate results necessary for the upcoming work

22

Pipelining

YV) VI

add
1d
sub
sub
sd
XOY
and
add
sub
1d
sd

Pipelining

X4, O(x5)

X6, X7, X8
X9,x160, x11
x1, 0(x12)

x13, x14, x15
x16,x17,x18
x19,x20, x21
X22,X23, X24
X25, 4(x26)
x27, 0(x28)

instruction each cycle!

Cycles

Instruction

After this point, “mm
we are completing an [[[IERIESIEIRT

_F D EX ME

24

Pipeline hazards

Three pipeline hazards

. Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

- Control hazards — the PC can be changed by an instruction in
the pipeline

- Data hazards — an instruction depending on a the result that's
not yet generated or propagated when the instruction needs
that

32

Can we get themright?

- Given a simple pipelined RISC-V processor that we discussed so far, how
many of the following code snippets can be executed with expected outcome?

I | Il IV

aladd x1, x2, x3 |add x1, x2, x3 |add x1, x2, x3 |add x1, x2, x3
blld x4, 0(x1) 1d x4, 0(x5) 1d x4, 0(x5H) 1d x4, 0(x5)
c|sub x6, x7, x8 |[sub x6, x7, x8 |bne x0, x7, L sub x6, X7, X8
d|sub x9,x10,x11 |[sub x9, x1, x10|sub x9,x10,x11 |sub x9,x10,x11
elsd x1, 0(x12) |sd x11, 0(x12)|sd x1, 0(x12) [sd x1, 0(x12)

A O b cannot get x1 both Eil and d are We don‘tknowifd & e

produced by a accessing x1 at the will be executed or not
before WB 5th cycle until ¢ finishes
C.2 pata Structural Control
E- Z Hazard Hazard Hazard

33

Structural Hazards

add
1d

sub
add

sub
sd

Dealing with the conflicts between ID/WB

- The same register cannot be read/written at the same cycle
. Solution: insert no-ops (e.g, add x0, x0, x0) between them
- Drawback

- If the number of pipeline stages changes, the code won't work
- Slow

x1, x2, x3 EIEEESEEIRE

x4, 0(x5) F | ID | EX MEM| WB_

x6, X7, X8 _F | ID EX |MEM| WB_

X0, X0, X0 F | ID | EX |MEM| WB_

x9, x1, x10 IF | ID | EX |[MEM| WB_
x11, 0(x12) IF_| ID | EX |[MEM| WB_

35

Dealing with the conflicts between ID/WB

- The same register cannot be read/written at the same cycle

- Solution: stall the later instruction, allowing the write to present
the change in the register and the later can get the desired
value

- Drawback: slow

add x1, x2, x3 HEEESZEIED

1d x4, @(x5) IF | ID | EX |MEM| WB_

sub x6, x7, x8 IF_| ID | EX |MEM| WB_

sub x9, x1, x10 I ID | ID | EX |MEM| WB_
sd x11, 0(x12) _IF_| IF_ ID | EX [MEM| WB_

Dealing with the conflicts between ID/WB

- The same register cannot be read/written at the same cycle

- Better solution: write early, read late

- Writes occur at the clock edge and complete long enough before
the end of the clock cycle.

- This leaves enough time for outputs to settle for reads
- The revised register file is the default one from now!

add x1, x2, x3 Nl MESIEIN

sub x6, x7, x8 i Wb | Ex [mem| wEN
sub x9, x1, x10 F Mb | EX |MEM| W
sd x11, 0(x12) ' F b | EX |[MEM| W

O

Structural Hazards

. Stall can address the issue — but slow

- Improve the pipeline unit design to allow parallel execution

- Write-first, read later register files
- Split L1-Cache
- All instructions need to go through 5 stages

48

Control Hazards

Dynamic Branch Prediction

A basic dynamic branch predictor

branch PC target PC
| ox400048 | 0x400032

5 |State

0x401080 ([|9x461160 (06
Ox4000F8 |]6x400160 |01

Branch Tayget Buffer

62

registers) for mis-predicted instructions
that are currently in IF and ID stages and

reset the PC

9

(4]

branch PC targetPC ¢y

Ox400048 | Ox400032 |10

Predict Taken| 0x400080 | 0x400068 |11|
Ox401080 | 9x401100 |00

Ox4000F8 | 9x400100 |01

2-bit/Bimodal local predictor

- Local predictor — every branch instruction has its own state
- 2-bit — each state is described using 2 bits
- Change the state based on actual outcome
- If we guess right — no penalty

- If we guess wrong — flush (clear pipeline ,:5 Not taken

Taken Taken

Not taken

Taken
Weak
Not taken®BLLNELEY - Not Taken
01 (1)
Not taken

63

2-bit local predictor

i = @ / i state predict actual
do { 1 10 T T
sum += alil; 2 11 T T
} while(++1 < 10); 3 1" T T
4-9 11 T T
10 11 T NT
Take 90% accuracy!
.. CPI —1+20%x%10% %2 = 1.04

Not taken “V¢74s¢
Taken

Weak

01 (1)
Not taken

Not takenBLh L MELEY

64

