Dynamic Branch Prediction

Hung-Wel Tseng

Recap: Pipelining

YV) VI

add
1d
sub
sub
sd
XOY
and
add
sub
1d
sd

Recap: Pipelining

x1, x2, x3 IEEIE Cycles i
X4, O(x5) — . —

X6, X7, X8 Instruction
X9,x10, x11

x1, 0(x12)

x13, x14, x15

x16,x17,x18

x19,x20, x21 o | ex [vem we
X22,x23, X24 After this point, IF | ID | EX |MEM| WB
x25, 4(x26) we are completing an [[HIIEEIEINEIRY

instruction each cycle!

F 1D EX ME

x27, 0(x28)

Recap: Three pipeline hazards

. Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

- Control hazards — the PC can be changed by an instruction in
the pipeline
- Data hazards — an instruction depending on a the result that's

not yet generated or propagated when the instruction needs
that

Recap: Solving Structural Hazards

. Stall can address the issue — but slow
- Improve the pipeline unit design to allow parallel execution

Recap: The impact of control hazards

- Assuming that we have an application with 20% of branch
Instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and
iInsert no-ops until we can determine the PC. What's the average
CPIl if we execute this program on the 5-stage RISC-V pipeline?

A. 1 add x1, x2, x3 IEHEERNEIEIEEE

B. 1.2 e o x7. L “F | D | EX |MEM| WB
D16 (b xo 10 x11 “F | D | EX |MEM| WB |

E. 1.8 sd x1, 0(x12) ' IF | ID | EX |MEM| WB_

14+20%%x2=14

Outline

. 2-bit local predictor

- 2-level global predictor
- Hybrid predictors

- Branch and coding

Dynamic Branch Prediction

Why can’t we proceed without stalls/no-ops?

- How many of the following statements are true regarding why we have to stall for
each branch in the current pipeline processor

d The target address when branch is taken is not available for instruction fetch stage of

the next cycleYou need a cheatsheet for that — branch target buffer
@ The target address when branch is not-taken is not available for instruction fetch
stage of the next cycle

d The branch outcome szm?\gt%gggc?:é)eg Eﬁtclf Itﬁg EQ%}O&TSQA%?UWAP X?B‘?é” not out

® The next instruction needs the branch instruction to write back its result
A. O

B.
D.
E.

B WOIN -

10

A basic dynamic branch predictor

branch PC target PC
| ox400048 | 0x400032

o [State

0x401080 [|06x4011600 |06
Ox4000F8 |]|9x400100 |01

Branch Tayget Buffer

11

2-bit/Bimodal local predictor

- Local predictor — every branch instruction has its own state
- 2-bit — each state is described using 2 bits
- Change the state based on actual outcome
- If we guess right — no penalty

registers) for mis-predicted instructions

- If we guess wrong — flush (clear pipeline E

that are currently in IF and |ID stages and

reset the PC

Q

©

branch PC targetPC ¢

0x400048 0x400032 |16

Predict Taken| 06x400080 | 0x400068 (11|
Ox401080 | 9x46116060 |06

OXx4000F8 | 9x4601600 (01

Taken

Not taken,

<—
Taken

12

Not taken

Weak
Not Taken

01 (1)

2-bit local predictor

i = @ / i state predict actual
do { 1 10 T T
sum += al1]; 2 11 T T
} while(++1 < 10): 3 1" T T
4-9 11 T T

Not take

Strong Weak 10 1 T NT
JELGHY ‘IIIII JELGH
10 (2
Takerh '+ = 90% accuracy!
.. CPI =14+20% %X 10% x2 =1.04

Not taken “V¢74s¢
Taken

Weak

01 (1)
Not taken

Not takenBhuaELC)

13

2-bit local predictor

- What's the overall branch prediction (include both branches) accuracy for this nested for

loop?

1 = 0;

do_{

if(1 %2 '=0) // B
alil %= 2;
ali] += 1;

Canwedo a

} while (++1 < 100)// B better job?

(assume all states started wiui vuy

A.
B.
C.
D.

~25%
~33%
~50%
~6/%

For branch Y, almost 100%,
For branch X, only 50%

18

i
0
L
L
2
2
g
3
4
4
5
5
6
6
7

branch? state prediction actual
X 00 NT T
Y 00 NT T
X 01 NT NT
Y 0) NT T
X 00 NT T
Y 10 T T
X 0) NT NT
Y 11 T T
X 00 NT T
Y 11 T T
X 0) NT NT
Y 11 T T
X 00 NT T
Y 11 T T

Two-level global predictor

Reading: Scott McFarling. Combining Branch Predictors. Technical report WRL-TN-36, 1993.

19

2-bit local predictor

- What's the overall branch prediction (include both branches) accuracy for this nested for

loop?

3(): {@; i branch? state prediction actual

1if(1 % 2 '= 0) // Branch X. taken 1if 1 % 2 == | 00 NT T
ali] x= 2; °)0 NT T ’

alil += i: Th p tt 01 NT NT
} while (++1 < 10 IS a ern J1 NT T ‘
g |)0 NT T |
(assume all states st: repeats a" the tlme. !)? NTT NTT
A. ~2570 Y 1 T T |
B. ~33% X 00 NT T |
C. ~50% Y 11 T T |
D. ~67% For branch Y, almost 100%, X o) NT NT |
E. ~75% For branch X, only 50% Y 11 T T |
X 00 NT T |
20 Y 1 T T |

Global history (GH) predictor

Global
History

Register
=(NT, T,NT,NT)

Predjct Taken

branch PC target PC

0x404048 0x400032
0x4000860 0x400068
0x401080 0x4011100
Ox4000F8 0x4001100

Branch Target Buiffer

States associated witg
(4]
(4]

00 | 21

Performance of GH predictor

1= 0;
do {
if(1 % 2 !'= 0) // Branch X, taken if 1 % 2 == 0
ali] x= 2;
ali] += 1;
} while (++i < 100)// Branch Y

Near perfect after this

22

© O 00 W0 N NOO OGO h~ALAWWMNMDMN= =00 -

-
o

-
o

branch? GHR state prediction actual
X 000 00 NT T
Y 001 (51%) NT T
X 011 (51%) NT NT
Y 110 00 NT T
X 101 00 NT T
Y 011 (51%) NT T
X 111 (51%) NT NT
Y 110 01 NT T
X 101 01 NT T
Y 011 01 NT T
X 111 (51%) NT NT
Y 110 10 T T
X 101 10 T T
Y 011 10 T T
X 111 (51%) NT NT
Y 110 11 T T
X 101 11 T T
Y 011 11 T T
X 111 (51%) NT NT
Y 110 11 T T
X 101 11 T T
Y 011 11 T T

Better predictor?

. Consider two predictors — (L) 2-bit local predictor with unlimited BTB
entries and (G) 4-bit global history with 2-bit predictors. How many of the

fol t would all to out L)?
aboa Ot\ﬁlg %g?r?ee sm%oe 4 &eds%r%vc\e/i oo oery (L3 L_could be bettel

1 = 0;
do { i=0; do { do {
1if(1 % 10 !'= 0) do { j = 0; 1f(rand() %2 == 0)
ali] x= 2; ali] += 1 do { ali]l x= 2;

ali] += 1;
} while (++i < 100)

S — T

alil += 1; } while (++1i < 100) sum += A[1%2+]1];

} while (++1 < 100);

R — T —

wh11e(++j < 2):
} while (++1 < 1@@)

>

mo O|w
A W N O

27

Hybrid predictors

gshare predictor

Global
A Hlstf)ry
Register
|_> =(NT, T,NT,NT)
00
01
_>

1000 @

branch PC I target PC

0x400048 0x400032
0x400080 0x400Pp68
0x401080 0x4011100
0x4000F8 0x4001100

Branch Target Biiffer

ociated with pattern

Predict Not Taken

States ass
)

gshare predictor

- Allowing the predictor to identify both branch address but also
use global history for more accurate prediction

30

Tournament Predictor

Global Local
Histpry History
4—> Register Predictor

branch PC local history

0x400048 1000 =] 00|
Ox400080 9110 ‘:;
0x401080 1010

11
Ox4000F8 0110 10

11
10
11
10
00
00

g

branch PC target PC

0x400948 | 0x400032
0x400080 | 0x400063

11 Predict Taken
10

11
10
00

0x401080 0x401190

00 00

Ox4000F8 | 9x4600140 00

11

11 10

Branch Target Buiffer

10

States associated with histor

01

01

States associated wit

00

00

31

Tournament Predictor

- The state predicts "which predictor is better”

- Local history
- Global history

- The predicted predictor makes the prediction

32

Branch predictor in processors

.- The Intel Pentium MMX, Pentium Il, and Pentium Il have local
branch predictors with a local 4-bit history and a local pattern
history table with 16 entries for each conditional jump.

- Global branch prediction is used in Intel Pentium M, Core, Core
2, and Silvermont-based Atom processors.

- Tournament predictor is used in DEC Alpha, AMD Athlon
Processors

- The AMD Ryzen multi-core processor's Infinity Fabric and the
Samsung Exynos processor include a perceptron based neural
branch predictor.

33

Branch and programming

Demo revisited

- Why the sorting the array speed up the code despite the increased
iInstruction count?

1f(option)
std::sort(data, data + arraySize);

for (unsigned 1 = 0; 1 < 100000; ++1) {

int threshold = std::rand();
for (unsigned i = @; 1 < arraySize; ++i) {
if (datali] >= threshold)

sum ++;

35

Demo: Popcount

- The population count (or popcount) of a specific value is the
number of set bits (i.e., bits in 1s) in that value.

- Applications
- Parity bits in error correction/detection code
- Cryptography
. Sparse matrix

- Molecular Fingerprinting

- Implementation of some succinct data structures like bit vectors
and wavelet trees.

41

Demo: pop count

- Given a 64-bit integer number, find the number of 1s in its
binary representation.

- Example 1:

IﬂpUt: 9487 int main(int argc, char sxargv[]) {
OUtpUt: 7 uinté4_t key = Oxdeadbeef;
Explanation: 9487/'s binary int count = 1060000000;

uinté4_t sum = 0;

representation Is e
Ob10010100001111 f ’ '

I3
printf("Result: %lu\n", sum);
return sum;

sum += popcount(RandLFSR(key));

42

Four implementations

- Which of the following implementations will perform the best on modern pipeline
processors?

inline int popcount(uinté4_t x){
int c=0;

inline int popcount(uinté64_t x) {
int ¢ = 0;
while(x)

{

while(x) { X & 1;

C += x & 1; X >> 1;

X =X > 1; X & 1;

¥ X >> 1;

return c; X & 1;

¥ X >> 1

S — —" X & 1;
X >> 1;

inline int popcount(uinté4_t x) {

int ¢ = 0;

int tablel[16] = {0, 1, 1, 2, 1,
2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:

for (uinté4_t 1 = 0; 1 < 16; 1++)

inline int popcount(uinté4_t x) {
int ¢ = 0; return c;
int tablel[16] = {0, 1, 1, 2, 1,

2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:
while(x) {

— L4 {
c += tablel[(x & OxF)1]; c += table[(x & OxF)]1;
X = X >> 4;
\ X = X >> 4
return c;)
return c;

47

Why is B better than A?

inline int popcount(uinté4_t x){
int c=0;
while(x) A and x2, x1, 1
c += x & 1; add x3, x3, x2
X = X > 1; shr x1, x1, 1
¥

bne x1, x0, LOOP

\ return c; 4*n instructions
and x2, x1, 1 and x2, x1, 1
T add x3, x3, x2 shr x4, x1, 1
inline int popcount(uinté4_t x) { shr x1, x1, 1 shr x5, x1, 2
int ¢ = 0; and x2, x1, 1 shr x6, x1, 3
while(x) { add x3, x3, x2 shr x1, x1, 4
c += X & 1; shr x1, x1, 1 and x7, x4, 1
X = X > 1; and x2, x1, 1 and x8, xb, 1
c += x & 1; add x3, x3, x2 and x9, x6, 1
X = X > 1; shr x1, x1, 1 add x3, x3, x2
c += X & 1; and x2, x1, 1 add x3, x3, x7
X = X > 1; add x3, x3, x2 add x3, x3, x8
c += X & 1; shr x1, x1, 1 add x3, x3, x9
X = X > 1; bne x1, x0, LOOP bne x1, x0, LOOP
Iy * - ko 3 :
return c: 13*(n/4) = 3.25*n instructions | | |
} »» Only one branch for four iterations in A

Why is B better than A?

- How many of the following statements explains the reason why B
outperforms A with compiler optimizations
@ B has lower dynamic instruction count than A
@ B has significantly lower branch mis-prediction rate than A
@ B has significantly fewer branch instructions than A

@ Bcan incur fewer data hazards inline int popcount(uinté4_t x) {
int ¢ = 0;
A. O inline int popcount(uinté4_t x){ while(x) {
int c=0; C += x & 1;
B. 1 while(x) { X = x > 1;
c += X & 1; c += x & 1;
C2 X = x >> 1; X = x >> 1;
¥ c += X & 1;
return c; X =X >> 1;
¥ c += x & 1;
E. 4 L — - — X = X > 1;
s
return c;

53 1

Why is C better than B?

- How many of the following statements explains the reason why B
outperforms C with compiler optimizations

@ C has lower dynamic instruction coun

than
only nee}s ongoa ,one add, one shift, the same amount of iterations

@ C has significantly lower branch mis-prediction rate than B

— the same number being F{edicted.

® C has significantly fewer branch instructions than B — the same amount of branches

: inline int popcount(uinté4_t x) {
@ C can InC_U Ergg;g{\?Joglﬁthnh%%oaalgldn§y have negative int ¢ = 9;
A O effect without architectural supports while(x) {
inline int popcount(uinté64_t x) { C += x & 1;
int table[161 = {0, 1, 1, 2, 1, ¢ *=X "
C. 2 2, 2,3, 1, 2, 2, 3, 2, 3, 3, 4}; NS
O while(x) { y i_ X 1f
D. 3 c += tablel[(x & OxF)]; X =X 2> 4
X = X >> 4 C += X & 1;
EE Zl } ' X = x >> 1;
return c; ;
, return c;

}

Announcement

- Reading quiz due next Monday
- Homework #3 due next Wednesday

- Project due on 12/2 — roughly three weeks from now

- You can only turn-in “helper.c”
- mcfutil.c:refresh_potential() creates helperthreads

- mcfutil.c:refresh _potential() callshelper_thread_sync()
function periodically

. |It's your task to think whattodoin helper _thread _sync() and
nelper_thread() functions

- Please DO READ papers before you ask what to do
- Formula for grading — min(100, speedup*100)
- No extension

66

