
Dynamic Branch Prediction
Hung-Wei Tseng

!2

Recap: Pipelining

Recap: Pipelining

!3

Recap: Pipelining

!4

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
In stru ctio n = 1

• Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

• Control hazards — the PC can be changed by an instruction in
the pipeline

• Data hazards — an instruction depending on a the result that’s
not yet generated or propagated when the instruction needs
that

!5

Recap: Three pipeline hazards

• Stall can address the issue — but slow
• Improve the pipeline unit design to allow parallel execution

!6

Recap: Solving Structural Hazards

• Assuming that we have an application with 20% of branch
instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and
insert no-ops until we can determine the PC. What’s the average
CPI if we execute this program on the 5-stage RISC-V pipeline?
A. 1
B. 1.2
C. 1.4
D. 1.6
E. 1.8

!7

Recap: The impact of control hazards

MEM
EX
ID

IF ID EX
IF ID

IF

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
add x0, x0, x0 IF

WB
MEM
EX
ID

add x0, x0, x0 IF

WB

ID EX MEM WB
IF ID EX MEM WB

MEM WB

WB
MEM

IF

EX
ID EX MEM WB

1 + 20% × 2 = 1.4

sub x9,x10,x11
sd x1, 0(x12)

• 2-bit local predictor
• 2-level global predictor
• Hybrid predictors
• Branch and coding

!8

Outline

Dynamic Branch Prediction

!9

• How many of the following statements are true regarding why we have to stall for
each branch in the current pipeline processor
က: The target address when branch is taken is not available for instruction fetch stage of

the next cycle
က< The target address when branch is not-taken is not available for instruction fetch

stage of the next cycle
က> The branch outcome cannot be decided until the comparison result of ALU is not out
က@ The next instruction needs the branch instruction to write back its result
A. 0
B. 1
C. 2
D. 3
E. 4

!10

Why can’t we proceed without stalls/no-ops?

You need a cheatsheet for that — branch target buffer

You need to predict that — history/states

A basic dynamic branch predictor

!11

PC

4
MU
X

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Branch Target Buffer

• Local predictor — every branch instruction has its own state
• 2-bit — each state is described using 2 bits
• Change the state based on actual outcome
• If we guess right — no penalty
• If we guess wrong — flush (clear pipeline
registers) for mis-predicted instructions
that are currently in IF and ID stages and
reset the PC

!12

2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

Predict Taken

2-bit local predictor

!13

i = 0; 
do {
 sum += a[i];
} while(++i < 10);

i state predict actual
1 10 T T
2 11 T T
3 11 T T

4-9 11 T T
10 11 T NT

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

90% accuracy!
CPIaverage = 1 + 20% × 10% × 2 = 1.04

• What’s the overall branch prediction (include both branches) accuracy for this nested for
loop?
i = 0; 
do {  
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0 
 a[i] *= 2; 
 a[i] += i; 
} while (++i < 100)// Branch Y

(assume all states started with 00)
A. ~25%
B. ~33%
C. ~50%
D. ~67%
E. ~75%

!18

2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
1 Y 00 NT T
1 X 01 NT NT
2 Y 01 NT T
2 X 00 NT T
3 Y 10 T T
3 X 01 NT NT
4 Y 11 T T
4 X 00 NT T
5 Y 11 T T
5 X 01 NT NT
6 Y 11 T T
6 X 00 NT T
7 Y 11 T T

For branch Y, almost 100%,
For branch X, only 50%

Can we do a
better job?

Two-level global predictor

!19

Reading: Scott McFarling. Combining Branch Predictors. Technical report WRL-TN-36, 1993.

• What’s the overall branch prediction (include both branches) accuracy for this nested for
loop?
i = 0; 
do {  
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0 
 a[i] *= 2; 
 a[i] += i; 
} while (++i < 100)// Branch Y

(assume all states started with 00)
A. ~25%
B. ~33%
C. ~50%
D. ~67%
E. ~75%

!20

2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
0 Y 00 NT T
1 X 01 NT NT
1 Y 01 NT T
2 X 00 NT T
2 Y 10 T T
3 X 01 NT NT
3 Y 11 T T
4 X 00 NT T
4 Y 11 T T
5 X 01 NT NT
5 Y 11 T T
6 X 00 NT T
6 Y 11 T T

For branch Y, almost 100%,
For branch X, only 50%

This pattern
repeats all the time!

Global history (GH) predictor

!21

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

=(NT, T,NT,NT)

Performance of GH predictor

!22

i = 0; 
do {  
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0 
 a[i] *= 2; 
 a[i] += i; 
} while (++i < 100)// Branch Y

i branch? GHR state prediction actual
0 X 000 00 NT T
0 Y 001 00 NT T
1 X 011 00 NT NT
1 Y 110 00 NT T
2 X 101 00 NT T
2 Y 011 00 NT T
3 X 111 00 NT NT
3 Y 110 01 NT T
4 X 101 01 NT T
4 Y 011 01 NT T
5 X 111 00 NT NT
5 Y 110 10 T T
6 X 101 10 T T
6 Y 011 10 T T
7 X 111 00 NT NT
7 Y 110 11 T T
8 X 101 11 T T
8 Y 011 11 T T
9 X 111 00 NT NT
9 Y 110 11 T T
10 X 101 11 T T
10 Y 011 11 T T

Near perfect after this

• Consider two predictors — (L) 2-bit local predictor with unlimited BTB
entries and (G) 4-bit global history with 2-bit predictors. How many of the
following code snippet would allow (G) to outperform (L)?

A. 0
B. 1
C. 2
D. 3
E. 4

!27

Better predictor?

i = 0; 
do {  
 if(i % 10 != 0) 
 a[i] *= 2; 
 a[i] += i; 
} while (++i < 100);

I

i = 0; 
do {  
 a[i] += i; 
} while (++i < 100); 
II

i = 0; 
do {  
 j = 0; 
 do { 
 sum += A[i*2+j]; 
 }  
 while(++j < 2); 
} while (++i < 100);

III

i = 0; 
do {  
 if(rand() %2 == 0) 
 a[i] *= 2; 
 a[i] += i; 
} while (++i < 100)

IV

about the same about the same L could be better

Hybrid predictors

!28

gshare predictor

!29

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 pa

tte
rn 00

01
10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Not Taken

=(NT, T,NT,NT)

⊕ 1100

0100

1000

• Allowing the predictor to identify both branch address but also
use global history for more accurate prediction

!30

gshare predictor

0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC target PC St
ate

Tournament Predictor

!31

PC

4
MU
X

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

0x400048 1000
0x400080 0110
0x401080 1010
0x4000F8 0110

branch PC local history

Local
History
Predictor

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

• The state predicts “which predictor is better”
• Local history
• Global history

• The predicted predictor makes the prediction

!32

Tournament Predictor

• The Intel Pentium MMX, Pentium II, and Pentium III have local
branch predictors with a local 4-bit history and a local pattern
history table with 16 entries for each conditional jump.

• Global branch prediction is used in Intel Pentium M, Core, Core
2, and Silvermont-based Atom processors.

• Tournament predictor is used in DEC Alpha, AMD Athlon
processors

• The AMD Ryzen multi-core processor's Infinity Fabric and the
Samsung Exynos processor include a perceptron based neural
branch predictor.

!33

Branch predictor in processors

Branch and programming

!34

• Why the sorting the array speed up the code despite the increased
instruction count?

!35

Demo revisited

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned i = 0; i < 100000; ++i) { 
 int threshold = std::rand();
 for (unsigned i = 0; i < arraySize; ++i) {
 if (data[i] >= threshold)
 sum ++;
 }
 }

• The population count (or popcount) of a specific value is the
number of set bits (i.e., bits in 1s) in that value.

• Applications
• Parity bits in error correction/detection code
• Cryptography
• Sparse matrix
• Molecular Fingerprinting
• Implementation of some succinct data structures like bit vectors
and wavelet trees.

!41

Demo: Popcount

• Given a 64-bit integer number, find the number of 1s in its
binary representation.

• Example 1:
Input: 9487
Output: 7
Explanation: 9487’s binary
representation is
0b10010100001111

!42

Demo: pop count

int main(int argc, char *argv[]) {

 uint64_t key = 0xdeadbeef;

 int count = 1000000000;
 uint64_t sum = 0;

 for (int i=0; i < count; i++)
 {
 sum += popcount(RandLFSR(key));
 }
 printf("Result: %lu\n", sum);
 return sum;
}

• Which of the following implementations will perform the best on modern pipeline
processors?

•

!47

Four implementations

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A

inline int popcount(uint64_t x) {
 int c = 0;  
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};  
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

inline int popcount(uint64_t x) {
 int c = 0;  
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B
inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 for (uint64_t i = 0; i < 16; i++)  
 {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

D

Why is B better than A?

!52

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A

inline int popcount(uint64_t x) {
 int c = 0;  
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

and x2, x1, 1 
add x3, x3, x2 
shr x1, x1, 1 
bne x1, x0, LOOP
4*n instructions
and x2, x1, 1 
add x3, x3, x2 
shr x1, x1, 1 
and x2, x1, 1 
add x3, x3, x2 
shr x1, x1, 1 
and x2, x1, 1 
add x3, x3, x2 
shr x1, x1, 1 
and x2, x1, 1 
add x3, x3, x2 
shr x1, x1, 1 
bne x1, x0, LOOP

and x2, x1, 1 
shr x4, x1, 1 
shr x5, x1, 2 
shr x6, x1, 3 
shr x1, x1, 4 
and x7, x4, 1 
and x8, x5, 1 
and x9, x6, 1 
add x3, x3, x2 
add x3, x3, x7 
add x3, x3, x8 
add x3, x3, x9 
bne x1, x0, LOOP

Only one branch for four iterations in A
13*(n/4) = 3.25*n instructions

• How many of the following statements explains the reason why B
outperforms A with compiler optimizations
က: B has lower dynamic instruction count than A
က< B has significantly lower branch mis-prediction rate than A
က> B has significantly fewer branch instructions than A
က@ B can incur fewer data hazards
A. 0
B. 1
C. 2
D. 3
E. 4

!53

Why is B better than A?

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A
inline int popcount(uint64_t x) {
 int c = 0;  
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

• How many of the following statements explains the reason why B
outperforms C with compiler optimizations
က: C has lower dynamic instruction count than B
က< C has significantly lower branch mis-prediction rate than B
က> C has significantly fewer branch instructions than B
က@ C can incur fewer data hazards
A. 0
B. 1
C. 2
D. 3
E. 4

!58

Why is C better than B?

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.— the same amount of branches
inline int popcount(uint64_t x) {
 int c = 0;  
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

inline int popcount(uint64_t x) {
 int c = 0;  
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};  
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

— Probably not. In fact, the load may have negative
effect without architectural supports

• Reading quiz due next Monday
• Homework #3 due next Wednesday
• Project due on 12/2 — roughly three weeks from now

• You can only turn-in “helper.c”
• mcfutil.c:refresh_potential() creates helper threads
• mcfutil.c:refresh_potential() calls helper_thread_sync()
function periodically

• It’s your task to think what to do in helper_thread_sync() and
helper_thread() functions

• Please DO READ papers before you ask what to do
• Formula for grading — min(100, speedup*100)
• No extension

!66

Announcement

