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Recap: Pipelining
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add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9,x10,x11 
sd  x1, 0(x12) 
xor x13,x14,x15 
and x16,x17,x18 
add x19,x20,x21 
sub x22,x23,x24 
ld  x25, 4(x26) 
sd  x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
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ID
IF
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MEM
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IF
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MEM
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IF
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MEM
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IF
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IF

WB
MEM
EX
ID
IF
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MEM
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IF
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MEM
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ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point, 
we are completing an 
instruction each cycle!

Cycles
In stru ctio n = 1



• Structural hazards — resource conflicts cannot support 
simultaneous execution of instructions in the pipeline 

• Control hazards — the PC can be changed by an instruction in 
the pipeline 

• Data hazards — an instruction depending on a the result that’s 
not yet generated or propagated when the instruction needs 
that
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Recap: Three pipeline hazards



• Stall can address the issue — but slow 
• Improve the pipeline unit design to allow parallel execution
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Recap: Solving Structural Hazards



• Assuming that we have an application with 20% of branch 
instructions and the instruction stream incurs no data hazards. 
When there is a branch, we disable the instruction fetch and 
insert no-ops until we can determine the PC. What’s the average 
CPI if we execute this program on the 5-stage RISC-V pipeline? 
A. 1 
B. 1.2 
C. 1.4 
D. 1.6 
E. 1.8
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Recap: The impact of control hazards

MEM
EX
ID

IF ID EX
IF ID

IF

add x1, x2, x3 
ld  x4, 0(x5) 
bne x0, x7, L
add x0, x0, x0 IF

WB
MEM
EX
ID

add x0, x0, x0 IF

WB

ID EX MEM WB
IF ID EX MEM WB

MEM WB

WB
MEM

IF

EX
ID EX MEM WB

1 + 20% × 2 = 1.4

sub x9,x10,x11 
sd  x1, 0(x12)



• 2-bit local predictor 
• 2-level global predictor 
• Hybrid predictors 
• Branch and coding
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Outline



Dynamic Branch Prediction
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• How many of the following statements are true regarding why we have to stall for 
each branch in the current pipeline processor 
က: The target address when branch is taken is not available for instruction fetch stage of 

the next cycle 
က< The target address when branch is not-taken is not available for instruction fetch 

stage of the next cycle 
က> The branch outcome cannot be decided until the comparison result of ALU is not out 
က@ The next instruction needs the branch instruction to write back its result 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

!10

Why can’t we proceed without stalls/no-ops?

You need a cheatsheet for that — branch target buffer

You need to predict that — history/states



A basic dynamic branch predictor
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PC

4
MU
X

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC    target PC St
ate

Branch Target Buffer



• Local predictor — every branch instruction has its own state 
• 2-bit — each state is described using 2 bits 
• Change the state based on actual outcome 
• If we guess right — no penalty 
• If we guess wrong — flush (clear pipeline 
registers) for mis-predicted instructions 
that are currently in IF and ID stages and 
reset the PC
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2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC    target PC St
ate

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

Predict Taken



2-bit local predictor
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i = 0; 
do { 
     sum += a[i]; 
} while(++i < 10);

i state predict actual
1 10 T T
2 11 T T
3 11 T T

4-9 11 T T
10 11 T NT

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

90% accuracy!
CPIaverage = 1 + 20% × 10% × 2 = 1.04



• What’s the overall branch prediction (include both branches) accuracy for this nested for 
loop? 
i = 0; 
do {  
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

(assume all states started with 00) 
A. ~25% 
B. ~33% 
C. ~50% 
D. ~67% 
E. ~75%
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2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
1 Y 00 NT T
1 X 01 NT NT
2 Y 01 NT T
2 X 00 NT T
3 Y 10 T T
3 X 01 NT NT
4 Y 11 T T
4 X 00 NT T
5 Y 11 T T
5 X 01 NT NT
6 Y 11 T T
6 X 00 NT T
7 Y 11 T T

For branch Y, almost 100%, 
For branch X, only 50%

Can we do a 
better job?



Two-level global predictor
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Reading: Scott McFarling. Combining Branch Predictors. Technical report WRL-TN-36, 1993.



• What’s the overall branch prediction (include both branches) accuracy for this nested for 
loop? 
i = 0; 
do {  
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

(assume all states started with 00) 
A. ~25% 
B. ~33% 
C. ~50% 
D. ~67% 
E. ~75%
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2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
0 Y 00 NT T
1 X 01 NT NT
1 Y 01 NT T
2 X 00 NT T
2 Y 10 T T
3 X 01 NT NT
3 Y 11 T T
4 X 00 NT T
4 Y 11 T T
5 X 01 NT NT
5 Y 11 T T
6 X 00 NT T
6 Y 11 T T

For branch Y, almost 100%, 
For branch X, only 50%

This pattern 
repeats all the time!



Global history (GH) predictor
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PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC    target PC

Branch Target Buffer

0100

Global 
History 
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

=(NT, T,NT,NT)



Performance of GH predictor
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i = 0; 
do {  
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

i branch? GHR state prediction actual
0 X 000 00 NT T
0 Y 001 00 NT T
1 X 011 00 NT NT
1 Y 110 00 NT T
2 X 101 00 NT T
2 Y 011 00 NT T
3 X 111 00 NT NT
3 Y 110 01 NT T
4 X 101 01 NT T
4 Y 011 01 NT T
5 X 111 00 NT NT
5 Y 110 10 T T
6 X 101 10 T T
6 Y 011 10 T T
7 X 111 00 NT NT
7 Y 110 11 T T
8 X 101 11 T T
8 Y 011 11 T T
9 X 111 00 NT NT
9 Y 110 11 T T
10 X 101 11 T T
10 Y 011 11 T T

Near perfect after this



• Consider two predictors — (L) 2-bit local predictor with unlimited BTB 
entries and (G) 4-bit global history with 2-bit predictors. How many of the 
following code snippet would allow (G) to outperform (L)?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Better predictor?

i = 0; 
do {  
    if( i % 10 != 0) 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100);

I

i = 0; 
do {  
    a[i] += i; 
} while ( ++i < 100); 
II

i = 0; 
do {  
    j = 0; 
    do { 
      sum += A[i*2+j]; 
    }  
    while( ++j < 2); 
} while ( ++i < 100);

III

i = 0; 
do {  
    if( rand() %2 == 0) 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)

IV

about the same about the same L could be better



Hybrid predictors
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gshare predictor
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PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC    target PC

Branch Target Buffer

0100

Global 
History 
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 pa

tte
rn 00

01
10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Not Taken

=(NT, T,NT,NT)

⊕ 1100

0100

1000



• Allowing the predictor to identify both branch address but also 
use global history for more accurate prediction
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gshare predictor



0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC    target PC St
ate

Tournament Predictor
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PC

4
MU
X

Branch Target Buffer

0100

Global 
History 
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St
ate

s a
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ed
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10
11
10
11
10
00
00
00
11
10
01
00

0x400048 1000
0x400080 0110
0x401080 1010
0x4000F8 0110

branch PC    local history

Local 
History 
Predictor

St
ate
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10
11
10
11
10
00
00
00
11
10
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Predict Taken



• The state predicts “which predictor is better” 
• Local history 
• Global history 

• The predicted predictor makes the prediction
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Tournament Predictor



• The Intel Pentium MMX, Pentium II, and Pentium III have local 
branch predictors with a local 4-bit history and a local pattern 
history table with 16 entries for each conditional jump. 

• Global branch prediction is used in Intel Pentium M, Core, Core 
2, and Silvermont-based Atom processors. 

• Tournament predictor is used in DEC Alpha, AMD Athlon 
processors 

• The AMD Ryzen multi-core processor's Infinity Fabric and the 
Samsung Exynos processor include a perceptron based neural 
branch predictor.
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Branch predictor in processors



Branch and programming
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• Why the sorting the array speed up the code despite the increased 
instruction count?
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Demo revisited

    if(option) 
        std::sort(data, data + arraySize); 

    for (unsigned i = 0; i < 100000; ++i) { 
        int threshold = std::rand(); 
        for (unsigned i = 0; i < arraySize; ++i) { 
            if (data[i] >= threshold) 
                sum ++; 
        } 
    }



• The population count (or popcount) of a specific value is the 
number of set bits (i.e., bits in 1s) in that value. 

• Applications 
• Parity bits in error correction/detection code 
• Cryptography 
• Sparse matrix 
• Molecular Fingerprinting 
• Implementation of some succinct data structures like bit vectors 
and wavelet trees.
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Demo: Popcount



• Given a 64-bit integer number, find the number of 1s in its 
binary representation. 

• Example 1:
Input: 9487
Output: 7
Explanation: 9487’s binary 
representation is 
0b10010100001111
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Demo: pop count

int main(int argc, char *argv[]) { 

     uint64_t key = 0xdeadbeef; 

     int count = 1000000000; 
     uint64_t sum = 0; 
      
     for (int i=0; i < count; i++) 
     {  
        sum += popcount(RandLFSR(key));  
     } 
     printf("Result: %lu\n", sum); 
     return sum; 
} 



• Which of the following implementations will perform the best on modern pipeline 
processors? 

•
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Four implementations

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
     int c = 0;  
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};  
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
   int c = 0;  
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B
inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D



Why is B better than A?
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inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
   int c = 0;  
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP
4*n instructions
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP

and  x2, x1, 1 
shr  x4, x1, 1 
shr  x5, x1, 2 
shr  x6, x1, 3 
shr  x1, x1, 4 
and  x7, x4, 1 
and  x8, x5, 1 
and  x9, x6, 1 
add  x3, x3, x2 
add  x3, x3, x7 
add  x3, x3, x8 
add  x3, x3, x9 
bne  x1, x0, LOOP

Only one branch for four iterations in A
13*(n/4) = 3.25*n instructions



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
က: B has lower dynamic instruction count than A 
က< B has significantly lower branch mis-prediction rate than A 
က> B has significantly fewer branch instructions than A 
က@ B can incur fewer data hazards  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0;  
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B



• How many of the following statements explains the reason why B 
outperforms C with compiler optimizations 
က: C has lower dynamic instruction count than B 
က< C has significantly lower branch mis-prediction rate than B 
က> C has significantly fewer branch instructions than B 
က@ C can incur fewer data hazards  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is C better than B?

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.— the same amount of branches
inline int popcount(uint64_t x) { 
   int c = 0;  
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0;  
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};  
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

— Probably not. In fact, the load may have negative 
effect without architectural supports



• Reading quiz due next Monday 
• Homework #3 due next Wednesday 
• Project due on 12/2 — roughly three weeks from now 

• You can only turn-in “helper.c” 
• mcfutil.c:refresh_potential() creates helper threads 
• mcfutil.c:refresh_potential() calls helper_thread_sync() 
function periodically 

• It’s your task to think what to do in helper_thread_sync() and 
helper_thread() functions 

• Please DO READ papers before you ask what to do 
• Formula for grading — min(100, speedup*100) 
• No extension
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Announcement


