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SuperScalar Processor w/ ROB
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Recap: What about “linked list”
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LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP
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• perf is a tool that captures performance counters of your 
processors and can generate results like branch mis-prediction 
rate, cache miss rates and ILP.
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Demo: ILP within a program



Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington
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• The processor can schedule instructions from different 
threads/processes/programs 

• Fetch instructions from different threads/processes to fill the 
not utilized part of pipeline 
• Exploit “thread level parallelism” (TLP) to solve the problem of 
insufficient ILP in a single thread 

• You need to create an illusion of multiple processors for OSs
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Simultaneous multithreading



Simultaneous multithreading
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① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

① ld   X1, 0(X10) 
② addi X10, X10, 8 
③ add  X20, X20, X1 
④ bne  X10, X2, LOOP 
⑤ ld   X1, 0(X10) 
⑥ addi X10, X10, 8 
⑦ add  X20, X20, X1 
⑧ bne  X10, X2, LOOP 
⑨ ld   X1, 0(X10) 
ɩ addi X10, X10, 8 
ꋷ add  X20, X20, X1 
ꋸ bne  X10, X2, LOOP
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• To create an illusion of a multi-core processor and allow the core to run instructions 
from multiple threads concurrently, how many of the following units in the processor 
must be duplicated/extended? 
က: Program counter 
က< Register mapping tables 
က> Physical registers 
က@ ALUs 
ကB Data cache 
ကD Reorder buffer/Instruction Queue 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6
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Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from



SuperScalar Processor w/ ROB
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SMT SuperScalar Processor w/ ROB
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• How many of the following about SMT are correct? 
က: SMT makes processors with deep pipelines more tolerable to mis-predicted 

branches 
က< SMT can improve the throughput of a single-threaded application 
က> SMT processors can better utilize hardware during cache misses comparing with 

superscalar processors with the same issue width 
က@ SMT processors can have higher cache miss rates comparing with superscalar 

processors with the same cache sizes when executing the same set of applications. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache



• Improve the throughput of execution 
• May increase the latency of a single thread 

• Less branch penalty per thread 
• Increase hardware utilization 
• Simple hardware design: Only need to duplicate PC/Register 
Files 

• Real Case: 
• Intel HyperThreading (supports up to two threads per core) 

• Intel Pentium 4, Intel Atom, Intel Core i7 
• AMD RyZen
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SMT



SMT SuperScalar Processor w/ ROB
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Wider-issue processors won’t give you much more
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The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung 

Chang
Stanford University
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Wide-issue SS processor v.s. multiple narrower-issue SS processors
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6-way SS processor — 
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor — 
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)



Intel Sandy Bridge
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Concept of CMP
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Performance of CMP
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• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming 
both application X and application Y have similar instruction combination, 
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1 
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better? 
A. P1 
B. P2
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SMT v.s. CMP



Architectural Support for Parallel 
Programming
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• To exploit parallelism you need to break your computation into multiple 
“processes” or multiple “threads” 

• Processes (in OS/software systems) 
• Separate programs actually running (not sitting idle) on your computer at the same 
time. 

• Each process will have its own virtual memory space and you need explicitly exchange 
data using inter-process communication APIs 

• Threads (in OS/software systems) 
• Independent portions of your program that can run in parallel 
• All threads share the same virtual memory space 

• We will refer to these collectively as “threads” 
• A typical user system might have 1-8 actively running threads. 
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

!35

Parallel programming



What software thinks about “multiprogramming” hardware
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What software thinks about “multiprogramming” hardware

!37

Shared Memory
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for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the 
cache and keep working — incorrect result!



• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done
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Coherency & Consistency



• Snooping protocol 
• Each processor broadcasts / listens to cache misses 

• State associate with each block (cacheline) 
• Invalid 

• The data in the current block is invalid 
• Shared 

• The processor can read the data 
• The data may also exist on other processors 

• Exclusive 
• The processor has full permission on the data 
• The processor is the only one that has up-to-date data

!39

Simple cache coherency protocol



1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache
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1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF
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Snooping Protocol
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What happens when we write in coherent caches?
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for(i=0;i<size/4;i++) 
    sum += a[i];
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• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

က: 0 1 2 3 4 5 6 7 8 9 
က< 1 2 5 9 3 6 8 10 12 13 
က> 1 1 1 1 1 1 1 1 64 100  
က@ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;



• Final Review on 12/2 — 7pm-8:20pm 
• Reading quiz due next Monday 
• Homework #4 due 12/4 
• iEval submission — attach your “confirmation” screen, you get an extra/bonus homework 
• Project due on 12/2 

• You can only turn-in “helper.c” 
• mcfutil.c:refresh_potential() creates helper threads 
• mcfutil.c:refresh_potential() calls helper_thread_sync() function periodically 
• It’s your task to think what to do in helper_thread_sync() and helper_thread() functions 
• Please DO READ papers before you ask what to do 

• Formula for grading — min(100, speedup*100) 
• No extension 

• Office hour for Hung-Wei next week — MWF 1p-2p — no office hour this week
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Announcement


