
Thread-Level Parallelism —
Simultaneous MultiThreading (SMT)

& Chip Multi-Processors (CMP)
Hung-Wei

SuperScalar Processor w/ ROB

!2

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

Recap: What about “linked list”

!3

LOOP: ld X10, 8(X10) 
 addi X7, X7, 1
 bne X10, X0, LOOP

Static instructions Dynamic instructions
① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

Ins
tru

cti
on

 Qu
eu

e

1

3

2

5

7

1 2
3 4

5 6

7 8
9 4

6

8

910

11ILP is low because of data
dependencies

Wasted slots

Wasted slots

Wasted slots

Wasted slots

Wasted slots
Wasted slots

• perf is a tool that captures performance counters of your
processors and can generate results like branch mis-prediction
rate, cache miss rates and ILP.

!4

Demo: ILP within a program

Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington

!5

• The processor can schedule instructions from different
threads/processes/programs

• Fetch instructions from different threads/processes to fill the
not utilized part of pipeline
• Exploit “thread level parallelism” (TLP) to solve the problem of
insufficient ILP in a single thread

• You need to create an illusion of multiple processors for OSs

!6

Simultaneous multithreading

Simultaneous multithreading

!7

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4

5 6

7 8

3 4

76

8

① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

① ld X1, 0(X10)
② addi X10, X10, 8
③ add X20, X20, X1
④ bne X10, X2, LOOP
⑤ ld X1, 0(X10)
⑥ addi X10, X10, 8
⑦ add X20, X20, X1
⑧ bne X10, X2, LOOP
⑨ ld X1, 0(X10)
ɩ addi X10, X10, 8
ꋷ add X20, X20, X1
ꋸ bne X10, X2, LOOP

1 2
3 4

5 6

7 8
9 10 9 10

1 2

3

54

6

11 12 11 12

9

7

8 9

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
က: Program counter
က< Register mapping tables
က> Physical registers
က@ ALUs
ကB Data cache
ကD Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

!12

Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from

SuperScalar Processor w/ ROB

!13

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

SMT SuperScalar Processor w/ ROB

!14

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…
Register

mapping table #1Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register

mapping table #2

PC #1
PC #2

• How many of the following about SMT are correct?
က: SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
က< SMT can improve the throughput of a single-threaded application
က> SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
က@ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

!19

SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache

• Improve the throughput of execution
• May increase the latency of a single thread

• Less branch penalty per thread
• Increase hardware utilization
• Simple hardware design: Only need to duplicate PC/Register
Files

• Real Case:
• Intel HyperThreading (supports up to two threads per core)

• Intel Pentium 4, Intel Atom, Intel Core i7
• AMD RyZen

!20

SMT

SMT SuperScalar Processor w/ ROB

!21

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…
Register

mapping table #1Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register

mapping table #2

PC #1
PC #2

O(IW4)

Wider-issue processors won’t give you much more

!22

The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang
Stanford University

!23

Wide-issue SS processor v.s. multiple narrower-issue SS processors

!24

6-way SS processor —
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor —
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)

Intel Sandy Bridge

!25

Core Core Core Core

Core Core Core Core

L3 $

L2 $ L2 $ L2 $ L2 $

L2 $ L2 $ L2 $ L2 $

Core

Core

Core

Core

Core

Core

Core

Core

!26

L3 $L3 $ L2
 $

L2
 $ L2 $

L2 $L2
 $

L2
 $ L2 $

L2 $

Concept of CMP

!27

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Performance of CMP

!28

• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming
both application X and application Y have similar instruction combination,
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better?
A. P1
B. P2

!33

SMT v.s. CMP

Architectural Support for Parallel
Programming

!34

• To exploit parallelism you need to break your computation into multiple
“processes” or multiple “threads”

• Processes (in OS/software systems)
• Separate programs actually running (not sitting idle) on your computer at the same
time.

• Each process will have its own virtual memory space and you need explicitly exchange
data using inter-process communication APIs

• Threads (in OS/software systems)
• Independent portions of your program that can run in parallel
• All threads share the same virtual memory space

• We will refer to these collectively as “threads”
• A typical user system might have 1-8 actively running threads.
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

!35

Parallel programming

What software thinks about “multiprogramming” hardware

!36

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

What software thinks about “multiprogramming” hardware

!37

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the
cache and keep working — incorrect result!

• Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time
• What value should be seen

• Consistency — All threads see the change of data in the same
order
• When the memory operation should be done

!38

Coherency & Consistency

• Snooping protocol
• Each processor broadcasts / listens to cache misses

• State associate with each block (cacheline)
• Invalid

• The data in the current block is invalid
• Shared

• The processor can read the data
• The data may also exist on other processors

• Exclusive
• The processor has full permission on the data
• The processor is the only one that has up-to-date data

!39

Simple cache coherency protocol

1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache

!40

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatagdatatag

memory address: 0x0 8 2 4
memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D
01
01
01
00
10
10
10
10

01
01
01
00
10
10
10
10

St
ate

s

St
ate

s

Snooping Protocol

!41

Invalid Shared

Exclusive

read miss(processor)

wr
ite

 m
iss

(p

roc
es

so
r)

write miss(bus)

write
requ

est(
proc

ess
or)

wr
ite

 m
iss

(b
us

)
wr

ite
 ba

ck
 da

ta

read
 miss(

bus
)

write
bac

k da
ta

read
miss/hit

read/write
miss (bus)

write hit

What happens when we write in coherent caches?

!42

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF write miss/
invalidate

sum = 0 sum = 0 sum = 0

read miss

sum = 0xDEADBEEF

write back
sum = 0xDEADBEEFsum = 0xDEADBEEF

• Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than
10 numbers)

က: 0 1 2 3 4 5 6 7 8 9
က< 1 2 5 9 3 6 8 10 12 13
က> 1 1 1 1 1 1 1 1 64 100
က@ 1 1 1 1 1 1 1 1 1 100
A. 0
B. 1
C. 2
D. 3
E. 4

!47

Cache coherency

thread 1 thread 2

while(1) 
 printf(“%d ”,a);

while(1) 
 a++;

• Final Review on 12/2 — 7pm-8:20pm
• Reading quiz due next Monday
• Homework #4 due 12/4
• iEval submission — attach your “confirmation” screen, you get an extra/bonus homework
• Project due on 12/2

• You can only turn-in “helper.c”
• mcfutil.c:refresh_potential() creates helper threads
• mcfutil.c:refresh_potential() calls helper_thread_sync() function periodically
• It’s your task to think what to do in helper_thread_sync() and helper_thread() functions
• Please DO READ papers before you ask what to do

• Formula for grading — min(100, speedup*100)
• No extension

• Office hour for Hung-Wei next week — MWF 1p-2p — no office hour this week

!65

Announcement

