Thread-Level Parallelism —
Parallel Programming

Hung-Wel

SuperScalar Processor w/ BDB

Fetch/decode instruction

4 A

Renaming Unresolved physical i’ -'
X1 register #
lodic Branch 0 P3 B
._. . Register - Physical
= — mapping table Wsters
- Instruction — i |
= Queue =
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
— Load — — Store]

— Queue - — Queue -
Address

Recap: What about "linked list"

II.I

[fesasios] (5)

[Lregses {1 ..

Static instructions Dynamic instructions e

LOOP: 1d X10, 8(X10) 1d ILI‘D”'AI Ab ‘fd WiMl
addi X7, X7, 1 Is low because o ata ok bie 0

bne X10, X©, LOOP dependencies | iy il O
1d X10, 8(X10) | [Wastedsiots

addi X7, X7, 1
bne X160, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

ONONONONONONONONOC

ONONONONONONONBONC

Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X160, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP

1d X1, 0(X19)
addi X160, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X160, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP

Q
-
Q
-
O
c
0
ajd
Q
-
p -
ajd
({p)
=

SMT SuperScalar Processor w/ RO
m Fetch / hysical reglster# T>c

decode | Renaming Reglster
M|nstructlo logic mapping table #1
 biysaTieg p5 hysical

vaI|

E - Reglster Reglsters
—Instruction - mapping table #2 jjj | |
= Queue =
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
— Load — — Store]

— Queue - — Queue -
Address

SMT SuperScalar Processor é

FetCh/ hysical reglster#
m decode Renaming Reglitebﬁ #1
logic i i g
. brvscaTtes p5 hysical
O(IW)

M|nstructlo
Register Reglsters

mapping table #2 jjj | |
ddress Integer Floating- Floating- Branch
Resolution ALU Point Adder Point Mul/Div

vaI|

o

ddr.

Dest

(@)
QO
o

I\/alu:

— Load — N Store -

— Queue - — Queue -
Address

Concept of CMP

Processor

Core Core Core Core

Registers Registers Registers Registers
L1-$ L1-$ L1-$ L1-$

LY LY LY LY
L2-$ L2-$ L2-$ L2-$

Last-level $ (LLC)

What software thinks about “multiprogramming” hardware

Thread Thread

L1-$ L1-$
A A A A
L2-$ L2-$ L2-$ L2-$
SR SR SR SR
Shared Virtual Address Space

Coherency & Consistency

- Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time

- What value should be seen

- Consistency — All threads see the change of data in the same
order

- When the memory operation should be done

Snooping Protocol

read/write
miss (bus)

read
miss/hit

read miss(processor)

write miss(bus)

rite miss(bus)
at

write miss
(processor)
write bac

write hit

What happens when we write in coherent caches?

: - . - - . for(1=3%size/4;1<size;1
for(1i=0;i<size/4;1++)for(i=size/4;1<size/2;1+ - . . 3um += alil;
sum += al[il: sum += alil; for(i=size/2;1<3*size/4 @ ++
! sum += al[il:

Thread Thread Thread Thread

sum = OxDEADBEEF sum = @ sum = OxDEADBEEF Mite miss/

= invalidate

sun = expeaiaked Virtual Address Space

11

Cache coherency

- Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to O as assume we will output more than

10 numbers
thread 1 thread 2

while(1) while(1)
printf(“%d ",a); a++;

® 0123456789

® 1259368101213
® 1111111164100
®@ 111111111100

A. O

Mmoo W
Alwip =

m

12

Outline

- Performance/correctness in multiprogramming
- Dark Silicon and modern architectures

13

Performance/correctness issues in
multiprogramming environments

False Sharing

- . 1

A[@] = oxDEADBEEF
A[1]
AL2]
AL3]

>

ite miss/
L invalidate

= A e

Write bacw:-- safesunnns .

Alel=exbEQFted Virtual Address Space

15

Lv.s.R

Version L Version R

volid xthreaded_vadd(void xthread_id) volid xthreaded_vadd(void *xthread_id)
{ {

int tid = *(int *)thread_id; int tid = *(int x)thread_id;

int 1i; int 1;

for(i=tid; 1<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i< (tid+1)*(ARRAY_SIZE/NUM_OF THREADS) ;i++)

{ {

cli] = ali]l + b[i]; cli] = ali]l + b[i];

¥ ¥

return NULL; return NULL;
¥ ¥

C C

20

4Cs of cache misses

- 3Cs:
- Compulsory, Conflict, Capacity

. Coherency miss:
- A "block” invalidated because of the sharing among processors.

21

False sharing

- True sharing
- Processor A modifies X, processor B also want to access X.

- False sharing

- Processor A modifies X, processor B also want to access Y.
However, Y Is invalidated because X and Y are in the same block!

22

{

Performance comparison

- Comparing implementations of thread_vadd — L and R, please identify which one will be

performing better and why .
Version L VersionR

volid xthreaded_vadd(void xthread_id)

volid xthreaded_vadd(void *xthread_id)

{
int tid = *(int *)thread_id; int tid = *(int x)thread_id;
int 1i; int 1;
for(i=tid; 1<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i< (tid+1)*(ARRAY_SIZE/NUM_OF THREADS) ;i++)
{ {
cli] = alil + bl[i]; cli] = alil + bl[i];
¥ ¥
return NULL; return NULL;
¥

A
C
D.
E.

_is better, because t

ne cache miss rate is lower

B. Ris better, because the cache miss rate is lower for(i = @ : i < NUM_OF_TME%ISn; Ell[ead

_is better, because the instruction count is lower tids[i] = i:
. . . . pthread_create(&thread[i], NULL, threaded_vadd, &tids
R IS better, because the instruction count is lower \

pthread_join(thread[i], NULL);

23

Possible scenarios

(0,1)

(1,0) 28 (0,0)

Why (0,0)?

- Processor/compiler may reorder your memory operations/
Instructions

- Coherence protocol can only guarantee the update of the same
memory address

- Processor can serve memory requests without cache miss first

- Compiler may store values in registers and perform memory
operations later

- Each processor core may not run at the same speed (cache
misses, branch mis-prediction, |/O, voltage scaling and etc..)

- Threads may not be executed/scheduled right after it's spawned

29

Again — how many values are possible?

- Consider the given program. You can safely assume the caches are
coherent. How many of the following outputs will yvou see?

@ (0,0)
@ (0,1)
® (1,0)
@ (1,1)

Oo0Ow?>»
W N = O

A
I

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

volatile int a,b;
volatile int x,y;
volatile int f;
voidx modifya(void *z) {
a=1;
X=b;
return NULL;
¥
voidx modifyb(void *z) {
b=1;
y=a;
return NULL;
¥

30

int main() {

int 1;

pthread _t thread[2];
pthread_create(&thread[0], NULL, modifya, NULL);
pthread_create(&thread[1], NULL, modifyb, NULL);
pthread_join(thread[9], NULL);
pthread _join(thread[1], NULL);
fprintf(stderr,” (%d, %d)\n",x,y);
return 0;

fence instructions

. X806 provides an “mfence” instruction to prevent reordering
across the fence instruction

- X86 only supports this kind of “relaxed consistency” model.
You still have to be careful enough to make sure that your code
behaves as you expected

thread 1 thread 2

a=1; b=1;
mfence a=1must occur/update before mfence mfenceb=1must occur/update before mfence
X=b; y=a;

31

Take-aways of parallel programming

- Processor behaviors are non-deterministic

- You cannot predict which processor is going faster
- You cannot predict when OS is going to schedule your thread

- Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

. Cache consistency is hard to support

32

Power/Energy Consumption &
Dark Silicon

Hung-Wel Tseng

Power v.s. Energy

- Power is the direct contributor of "heat”

- Packaging of the chip

- Heat dissipation cost

- Energy=P*ET

- The electricity bill and battery life is related to energy!

- Lower power does not necessary means better battery life if the
processor slow down the application too much

38

Power & Energy

- Regarding power and energy, how many of the following statements

are correct?
® Loweringt
@ Loweringt
® Loweringt

A. O

mo 6O w
hAIWN =

ne power consumption
ne power consumption

ne

ne

ps extending the battery life
ps reducing the heat generation

ne energy consumption helps reducing the electricity bill
@ A CPU with 10% utilization can still consume 33% of the peak power

39

Power

Dynamic/Active Power

- The power consumption due to the switching of transistor
states

- Dynamic power per transistor
P pnamic ~ A X CX V2 X XN

- o average switches per cycle

- C: capacitance

- V. voltage

- f. frequency, usually linear with V
- N: the number of transistors

41

Static/Leakage Power

- The power consumption due to leakage — transistors do not

turn all the way off during no operation

- Becomes the dominant factor in the most advanced process

technologies.
Pleakage ~ NX VX e_Vt i
- N: number of transistors 50
- V. voltage ®
- Vi threshold voltage where

transistor conducts (begins to switch) :

Figure 1: Leakage power becomes a growing problem as demands for more performance
and functionality drive chipmakers to nanometer-scale process nodes (Source: IBS).

42

B Leakage power
[] Dynamic power

QOhm 65nm 40hm 28nm 20nm

Dennardian Scaling

» Given a scaling factor S

Parameter Relation Classical Scaling
Power Budget 1
Chip Size 1
Vdd (Supply Voltage) 1/S
Vt (Threshold Voltage) 1/S 1/S
tex (oxide thickness) 1/S
W, L (transistor dimensions) 1/S
Cgate (gate capacitance) WL/tox 1/S
Isat (saturation current) WVdd/tox 1/S
F (device frequency) Isat/(CgateVdd) S
D (Device/Area) 1/(WL) S2
p (device power) |satVdd 1/S2
P (chip power) Dp 1

U (utilization) 1/P 1
43

Dennardian Broken

» Given a scaling factor S

Parameter Relation Classical Scaling
Power Budget 1
Chip Size 1
Vdd (Supply Voltage) 1/S
Vt (Threshold Voltage) 1/S 1/S
tex (oxide thickness) 1/S
W, L (transistor 1/S
Cgate (éate cépac‘itance) WL /tox 1/S
Isat (saturation current) WVdd/tox 1/S
F (device frequency) Isat/(CgateVdd) S
D (Device/Area) 1/(WL) S2
p (device power) |satVdd 1/S2
P (chip power) Dp 1

U (utilization) 1/P 1
48

Leakage Limited

1/S
1/S
1/S

S2

g2
1/S2

Power consumption to light on all transistors

Chip
T 1 1

1 1 1

1 1 1

=49W

Dennardian Scaling
Chip

0505050505050505050.5
050505050505 05050.5 0.5
0.505050505050505050.5
050505050505 05050.5 0.5
0505050505050505050.5
050505050505 05050.5 0.5
0505050505050505050.5
0505050505050505050.5
0505050505050505050.5
0.505050505050505050.5

=50W

49

Dennardian Broken
Chip

1
1
1
1
7

RS, [, W . NS [t Y (. N, [, (S —
R, N W N, W, [W, W, [, (.

=100W!

Dark Silicon and the End of Multicore
Scaling

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger
University of Washington, University of Wisconsin—Madison, University of Texas at Austin,
Microsoft Research

50

Suppert

Intel” Xeon® Processor F7-889C

vad
Cratus Launched
Launch Date €@ Q216
Lithography @ Tdnm

Performance

of Cores @

of Threads @ 48
Processor Base lrequency € 2.20 GHz
Max Turbo Frequency O 3.40 GHz
Cache € 50 MB
Bus Speed € 2.6 GT/=
il of OFI Links © 3

TOP O 165 W

Int2|® Xeon® Processor F7-886G3

vd

Launched

3.20 GHz

3.50GHz

€0 ME

9.6 GT/s

140 W

More cores per chip, slower per core

Solutions

Intel” Xeon® Frocessor F7-8880

vd

Launched

44

Z2.20GHz

3230 GHz

55 MB

a5 GT/s

(¥

15CW

What

happens if power doesn’t scale with process technologies?

- If we are able to cram more transistors within the same chip area (Moore's law continues),
but the power consumption per transistor remains the same. Right now, if we power the

chip wi

the tec
OT

th the same power consumption but put more transistors in the same area because
nnology allows us to. How many of the following statements are true?

he power consumption per chip will increase

@T
® G

he power density of the chip will increase
iven the same power budget, we may not able to power on all chip area if we maintain the

same clock rate

@ G

iven the same power budget, we may have to lower the clock rate of circuits to power on all

chip area

O0Ow»
WN = O

m
I

52

Announcement

- Final Review tonight — 7pm-8:20pm @ WCH 143
- Homework #4 due 12/4

- IEval submission — attach your “"confirmation” screen, you get
an extra/bonus homework

- Project due on 12/2
. Office hour for Hung-Wei this week — MWF 1p-2p

53

