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SuperScalar Processor w/ ROB
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Recap: What about “linked list”
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LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP
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Simultaneous multithreading

!4

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4

5 6

7 8

3 4

76

8

① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

① ld   X1, 0(X10) 
② addi X10, X10, 8 
③ add  X20, X20, X1 
④ bne  X10, X2, LOOP 
⑤ ld   X1, 0(X10) 
⑥ addi X10, X10, 8 
⑦ add  X20, X20, X1 
⑧ bne  X10, X2, LOOP 
⑨ ld   X1, 0(X10) 
ɩ addi X10, X10, 8 
ꋷ add  X20, X20, X1 
ꋸ bne  X10, X2, LOOP
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SMT SuperScalar Processor w/ ROB
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SMT SuperScalar Processor w/ ROB
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Concept of CMP
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What software thinks about “multiprogramming” hardware
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• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done
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Coherency & Consistency



Snooping Protocol
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What happens when we write in coherent caches?
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for(i=0;i<size/4;i++) 
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• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

က: 0 1 2 3 4 5 6 7 8 9 
က< 1 2 5 9 3 6 8 10 12 13 
က> 1 1 1 1 1 1 1 1 64 100  
က@ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;



• Performance/correctness in multiprogramming 
• Dark Silicon and modern architectures
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Outline



Performance/correctness issues in 
multiprogramming environments
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False Sharing 

!15

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0]=0

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0 write miss/

invalidate

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

write miss

A[0]=0xDEADBEEF

write back

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0



L v.s. R
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Version L Version R

c

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

c



• 3Cs: 
• Compulsory, Conflict, Capacity 

• Coherency miss: 
• A “block” invalidated because of the sharing among processors.
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4Cs of cache misses



• True sharing 
• Processor A modifies X, processor B also want to access X.  

• False sharing 
• Processor A modifies X, processor B also want to access Y.  

However, Y is invalidated because X and Y are in the same block!
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False sharing



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same
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Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}



Possible scenarios
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Thread 1 
a=1;  
x=b;
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b=1;  
y=a;

(0,1)
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b=1;  

(0,0)

OoO Scheduling!



• Processor/compiler may reorder your memory operations/
instructions 
• Coherence protocol can only guarantee the update of the same 

memory address 
• Processor can serve memory requests without cache miss first 
• Compiler may store values in registers and perform memory 

operations later  
• Each processor core may not run at the same speed (cache 

misses, branch mis-prediction, I/O, voltage scaling and etc..) 
• Threads may not be executed/scheduled right after it’s spawned

!29

Why (0,0)?



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
က: (0, 0) 
က< (0, 1) 
က> (1, 0) 
က@ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 



• x86 provides an “mfence” instruction to prevent reordering 
across the fence instruction 

• x86 only supports this kind of “relaxed consistency” model. 
You still have to be careful enough to make sure that your code 
behaves as you expected
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fence instructions

thread 1 thread 2

  a=1;  

  x=b;

  b=1;  

  y=a;
a=1 must occur/update before mfence b=1 must occur/update before mfencemfence mfence



• Processor behaviors are non-deterministic  
• You cannot predict which processor is going faster 
• You cannot predict when OS is going to schedule your thread 

• Cache coherency only guarantees that everyone would 
eventually have a coherent view of data, but not when 

• Cache consistency is hard to support
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Take-aways of parallel programming



Power/Energy Consumption & 
Dark Silicon

Hung-Wei Tseng



• Power is the direct contributor of “heat” 
• Packaging of the chip 
• Heat dissipation cost 

• Energy = P * ET 
• The electricity bill and battery life is related to energy! 
• Lower power does not necessary means better battery life if the 

processor slow down the application too much
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Power v.s. Energy



• Regarding power and energy, how many of the following statements 
are correct? 
က: Lowering the power consumption helps extending the battery life 
က< Lowering the power consumption helps reducing the heat generation 
က> Lowering the energy consumption helps reducing the electricity bill 
က@ A CPU with 10% utilization can still consume 33% of the peak power 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Power & Energy



Power

!40



• The power consumption due to the switching of transistor 
states 

• Dynamic power per transistor 

• α: average switches per cycle 
• C: capacitance 
• V: voltage 
• f: frequency, usually linear with V 
• N: the number of transistors
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Dynamic/Active Power

Pdynamic ∼ α × C × V2 × f × N



• The power consumption due to leakage — transistors do not 
turn all the way off during no operation 

• Becomes the dominant factor in the most advanced process 
technologies.  

• N: number of transistors 
• V: voltage 
• Vt: threshold voltage where 

transistor conducts (begins to switch)
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Static/Leakage Power

Pleakag e ∼ N × V × e−Vt



• Given a scaling factor S
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Dennardian Scaling
Parameter Relation Classical Scaling

Power Budget 1
Chip Size 1

Vdd (Supply Voltage) 1/S
Vt (Threshold Voltage) 1/S 1/S

tex (oxide thickness) 1/S
W, L (transistor dimensions) 1/S

Cgate (gate capacitance) WL/tox 1/S
Isat (saturation current) WVdd/tox 1/S

F (device frequency) Isat/(CgateVdd) S
D (Device/Area) 1/(WL) S2

p (device power) IsatVdd 1/S2

P (chip power) Dp 1
U (utilization) 1/P 1



• Given a scaling factor S
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Dennardian Broken
Parameter Relation Classical Scaling Leakage Limited

Power Budget 1 1
Chip Size 1 1

Vdd (Supply Voltage) 1/S 1
Vt (Threshold Voltage) 1/S 1/S 1

tex (oxide thickness) 1/S 1/S
W, L (transistor 

dimensions)
1/S 1/S

Cgate (gate capacitance) WL/tox 1/S 1/S
Isat (saturation current) WVdd/tox 1/S 1

F (device frequency) Isat/(CgateVdd) S S
D (Device/Area) 1/(WL) S2 S2

p (device power) IsatVdd 1/S2 1
P (chip power) Dp 1 S2

U (utilization) 1/P 1 1/S2



Power consumption to light on all transistors
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Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Dark Silicon and the End of Multicore 
Scaling

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger 
University of Washington, University of Wisconsin—Madison, University of Texas at Austin, 

Microsoft Research
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More cores per chip, slower per core
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• If we are able to cram more transistors within the same chip area (Moore’s law continues), 
but the power consumption per transistor remains the same. Right now, if we power the 
chip with the same power consumption but put more transistors in the same area because 
the technology allows us to. How many of the following statements are true? 
က: The power consumption per chip will increase 
က< The power density of the chip will increase 
က> Given the same power budget, we may not able to power on all chip area if we maintain the 

same clock rate 
က@ Given the same power budget, we may have to lower the clock rate of circuits to power on all 

chip area 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What happens if power doesn’t scale with process technologies?



• Final Review tonight — 7pm-8:20pm @ WCH 143 
• Homework #4 due 12/4 
• iEval submission — attach your “confirmation” screen, you get 

an extra/bonus homework 
• Project due on 12/2 
• Office hour for Hung-Wei this week — MWF 1p-2p
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Announcement


