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Tasks in processors supporting RISC-V ISA

- Instruction Fetch (IF) — fetch the instruction from memory

- Instruction Decode (ID)
- Decode the instruction for the desired operation and operands
- Reading source register values

- Execution (EX)
- ALU instructions: Perform ALU operations
- Conditional Branch: Determine the branch outcome (taken/not taken)
- Memory instructions: Determine the effective address for data memory access

- Data Memory Access (MEM) — Read/write memory
- Write Back (WB) — Present ALU result/read value in the target register

- Update PC

- If the branch is taken — set to the branch target address
- Otherwise — advance to the next instruction — current PC + 4

3



Pipelining
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add
1d
sub
sub
sd
XOY
and
add
sub
1d
sd

x1, x2, x3 KHEBEE

X4, O(x5)

X6, X7, X8
X9,x10, x11
x1, 0(x12)

x13, x14, x15
x16,x17,x18
x19,x20, x21
X22,X%X23, X24
X25, 4(x26)
x27, 0(x28)

Cycles

Instruction

_IF_| ID | EX |MEM| WB
After this point, ““m
we are completing an “nm
instruction each cycle!  [NEEELRESEIV




Three pipeline hazards

. Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

- Control hazards — the PC can be changed by an instruction in
the pipeline
- Data hazards — an instruction depending on a the result that's

not yet generated or propagated when the instruction needs
that



Structural Hazards



- Application: 80% ALU, 20% Loads

Cache & Performance

- Assume the 1-cycle L1 hit time allows the CPI to be 1
- L1 I-cache miss rate: 5%, hit time: 1 cycle

- L1 D-cache miss rate: 10%, hit time: 1 cycle

- L2 U-Cache miss rate: 20%, hit time: 10 cycles

- Main memory hit time: 100 cycles
- What's the average CPI?

1 cycle (no overhead) if hit

CPlaverage= CPlbase + miss_rate*miss_penalty

= 1+
Fetch Instruction

00%*(5%*(10+20%*(1*100)))

20%*(10%*(1)*(10+20%*((1)*100)))

Access Data

tag index | offset tag

index | offset

5% miss 10% miss
tag index 0 tag index 0
! !
tag index | B-1 tag index | B-1
I I
10 cycles if hit L2 $
20% miss tag index | 0
!
tag index B-1
100 cycles if hit DRAM
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Dealing with the conflicts between ID/WB

- The same register cannot be read/written at the same cycle

- Better solution: write early, read late

- Writes occur at the clock edge and complete long enough before
the end of the clock cycle.

- This leaves enough time for outputs to settle for reads
- The revised register file is the default one from now!

add x1, x2, x3 Nl IESIEIL

sub x6, x7, x8 F b | Ex |MeEm| wWER
sub x9, x1, x10 F Wb | EX |MEM| W

sd x11, 0(x12) IF b | EX [MEM| w



Structural Hazards

- What pair of instructions will be problematic if we allow ALU instructions
to skip the "MEM" stage?

a: 1d x1, o(x2) Il : MEM_yl
b: add x3, x4, x5 KR 3

C: sub x6, x7, x8 F Wb | Ex
d: sub x9,x10,x11 F Wb
e: sd x1, 0(x12) F
A. a&b

B. a&c

C. b&e

D. c&e

E. None
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What if we need to support more complex or longer instructions?

- If we need to support “floating point” arithmetics and it takes 4
stages for floating-point ALU execution

f.mul f1, 2, 3 |IERIEEIEEIEANE
1d x4, 0(x5) IF | ID | AQ | AR [MEM| X | WB

sub x6, x7, x8 IF D INT X X X WB

- All instructions have to be the same length in pipeline to avoid
structural hazards
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Solutions/work-around of pipeline hazards

. Structural

. Stall
- More read/write ports
- Split hardware units (e.g., instruction/data caches)
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Control Hazards



A basic dynamic branch predictor

Instruction

We need the next PC [y
to continue fetching!

Data Memory

Register File

1. PC+4 if the current
instruction is not a branch

2.1f it's a branch —

(1) Taken — Target address
(2) Not Taken—PC + 4




Let's stall whenever it's a branch

- Assuming that we have an application with 20% of branch
Instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and
iInsert no-ops until we can determine the PC. What's the average
CPIl if we execute this program on the 5-stage RISC-V pipeline?

A. add x1, x2, x3 IEHEEENEEEIEIEEE
B. 1.2

bne x8. x7. L SF LD | EX | MEM| WB
D16 (b xo 10 x11 “F | D | EX |MEM| WB |

E. 1.8 sd x1, 0(x12) ' IF | ID | EX |MEM| WB_

14+20%%x2=14
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The frequency of branch

Program Loads Stores Branches Jumps ALU operations
astar 28% 6% 18% 2% 46%
bzip 20% 7% 11% 1% 54%
gcc 17% 23% 20% 4% 36%
gobmk 21% 12% 14% 2% S50%
h264ref 33% 14% 5% 2% 45%
hmmer 28% 9% 17% 0% 46%
libquantum 16% 6% 29% 0% 48%
mefl 35% 1% 245 1% 29%
omnetpp 23% 15% 17% 1% 3%
perlbench 25% 14% 15% 7% 39%
sjeng 19% 7% 15% 3% 56%

xalancbmk 30% RG% 27 % 3% 3%

Figure A.29 RISC-V dynamic instruction mix for the SPECint2006 programs. Omnetpp includes 7% of the instruc-
tions that are floating point loads, stores, operations, or compares; no other program includes even 1% of other
instruction types. A change in gcc in SPECint2006, creates an anomaly in behavior. Typical integer pragrams have
load frequencies that are 1/5 to 3x the store frequency. In gcg, the store frequency is actually higher than the load
frequency! This arises because a large fraction of the execution time is spent in a loop that clears memory by storing
x0 (not where a compiler like gcc would usually spend most of its execution timel). A store instruction that stores a
register pair, which some other RISC ISAs have included, would address this issue.
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A basic dynamic branch predictor

Instruction Data Memory

Memory

Register File

branch PC target PC
OXx400048 | Ox400032

0x401080 |10x4601166
Ox4000F8 | 10x400100 101

Branch Tanget Buffer




2-bit/Bimodal local predictor

- Local predictor — every branch instruction has its own state
- 2-bit — each state is described using 2 bits
- Change the state based on actual outcome
- If we guess right — no penalty

registers) for mis-predicted instructions

- If we guess wrong — flush (clear pipeline E

that are currently in IF and |ID stages and

reset the PC

Q

©

branch PC targetPC ¢

0x400048 0x400032 |16

Predict Taken| 06x400080 | 0x400068 (11|
Ox401080 | 9x46116060 |06

OXx4000F8 | 9x4601600 (01

Taken

Not taken,

<—
Taken

18

Not taken

Weak
Not Taken

01 (1)



2-bit local predictor

i = @ / i state predict actual
do { 1 10 T T
sum += al1]; 2 11 T T
} while(++1 < 10): 3 1" T T
4-9 11 T T

Not take

Strong Weak 10 1 T NT
JELGHY ‘IIIII JELGH
10 (2
Takerh '+ = 90% accuracy!
................................................................ CPI =14+20% %X 10% x2 =1.04

Not taken ~ “V¢74s¢
Taken

Weak

01 (1)
Not taken

Not takenBh&aELC)

19



2-bit local predictor

- What's the overall branch prediction (include both branches) accuracy for this nested for
loop?

30={@; I branch? state prediction actual
if( 1 % 2 !'= @) // Branch X, taken if i % 2 == 0 X 00 NT T
ali] x= 2; 1 Y 00 NT T
ali]l += 1i; 1 X 01 NT NT
} while ( ++i < 100)// Branch Y 2 Y 01 NT T
2 X 00 NT T
(assume all states started with 00) 3 Y 10 T T
A ~25% 3 X 0) NT NT
| o 4 Y 11 T T
B. ~33% N X | 00 NT T
C. ~30% 5 I 11 T T
D._ ~67% For branch Y, almost 100%, [ X 01 NT NT
For branch X, only 50% 6 Y 11 T T
6 X 00 NT T
20 7 Y 11 T T




Two-level global predictor

Reading: Scott McFarling. Combining Branch Predictors. Technical report WRL-TN-36, 1993.
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Global history (GH) predictor

Global
History

Register
=(NT, T,NT,NT)

Predjct Taken

branch PC target PC

0x404048 0x400032
0x4000860 0x400068
0x401080 0x4011100
Ox4000F8 0x4001100

Branch Target Buiffer

States associated witg
(4]
(4]

00 | 22




Performance of GH predictor

1= 0;
do {
if( 1 % 2 !'= 0) // Branch X, taken if 1 % 2 == 0
ali] x= 2;
ali] += 1;
} while ( ++i < 100)// Branch Y

Near perfect after this
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branch? GHR state prediction actual
X 000 00 NT T
Y 001 (51%) NT T
X 011 (51%) NT NT
Y 110 00 NT T
X 101 00 NT T
Y 011 (51%) NT T
X 111 (51%) NT NT
Y 110 01 NT T
X 101 01 NT T
Y 011 01 NT T
X 111 (51%) NT NT
Y 110 10 T T
X 101 10 T T
Y 011 10 T T
X 111 (51%) NT NT
Y 110 11 T T
X 101 11 T T
Y 011 11 T T
X 111 (51%) NT NT
Y 110 11 T T
X 101 11 T T
Y 011 11 T T




Better predictor?

. Consider two predictors — (L) 2-bit local predictor with unlimited BTB
entries and (G) 4-bit global history with 2-bit predictors. How many of the

fol t would all to out ?
aboa Ot\ﬁg %g?r(ljee Sm%oe s &eds%r%vgi °ou oery(u L_could be bettel

1 = 0;
do { i=0; do { do {
1if( 1 % 10 !'= 0) do { j = 0; 1f( rand() %2 == 0)
ali] x= 2; ali] += 1 do { ali]l x= 2;

ali] += 1;
} while ( ++i < 100)

S — T

alil += 1; } while ( ++1i < 100) sum += A[1%2+]1];

} while ( ++1 < 100);

R — T —

wh11e( ++j < 2):
} while ( ++1 < 1@@)

>

mo O|w
A W N O
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Hybrid predictors



gshare predictor

Global
A Hlstf)ry
Register
|_> =(NT, T,NT,NT)
00
01
_>

1000 @

branch PC I target PC

0x400048 0x400032
0x400080 0x400Pp68
0x401080 0x4011100
0x4000F8 0x4001100

Branch Target Buiffer

ociated with pattern

Predict Not Taken

States ass
)




gshare predictor

- Allowing the predictor to identify both branch address but also
use global history for more accurate prediction
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Tournament Predictor

Global Local
Histpry History
4—> Register Predictor

branch PC local history

0x400048 1000 =] 00|
Ox400080 9110 ‘:;
0x401080 1010

11
Ox4000F8 0110 10

11
10
11
10
00
00

g

branch PC target PC

0x400948 | 0x400032
0x400080 | 0x400063

11 Predict Taken
10

11
10
00

0x401080 0x401190

00 00

Ox4000F8 | 9x4600140 00

11

11 10

Branch Target Buiffer

10

States associated with histor

01

01

States associated wit

00

00
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Tournament Predictor

- The state predicts "which predictor is better”

- Local history
- Global history

- The predicted predictor makes the prediction

29



Branch predictor in processors

.- The Intel Pentium MMX, Pentium Il, and Pentium Il have local
branch predictors with a local 4-bit history and a local pattern
history table with 16 entries for each conditional jump.

- Global branch prediction is used in Intel Pentium M, Core, Core
2, and Silvermont-based Atom processors.

- Tournament predictor is used in DEC Alpha, AMD Athlon
Processors

- The AMD Ryzen multi-core processor's Infinity Fabric and the
Samsung Exynos processor include a perceptron based neural
branch predictor.

30



Branch and programming



Demo revisited

- Why the sorting the array speed up the code despite the increased
iInstruction count?

1f(option)
std::sort(data, data + arraySize);

for (unsigned 1 = 0; 1 < 100000; ++1) {

int threshold = std::rand();
for (unsigned i = @; 1 < arraySize; ++i) {
if (datali] >= threshold)

sum ++;
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Demo revisited

- Why the performance is better when option is not “O"
® The amount of dynamic instructions needs to execute is a lot smaller
@ The amount of branch instructions to execute is smaller
@ The amount of branch mis-predictions is smaller

@ The amount of data accesses is smaller Without With
A O if(option) sorting sorting
std::sort(data, data + arraySize); The
prediction
for (unsigned 1 = 0; 1 < 100000; ++1) { accuracy of
C. 2 int threshold = std::rand(); X before
D. 3 for {unsigned.i = 0; 1 < arraySize; ++1)F =)0l
‘ if (datali] >= threshold)pranch X The
E. 4 sum ++; prediction
} accuracy of 1057 100%
¥ X after

33 threshold



Four implementations

- Which of the following implementations will perform the best on modern pipeline
processors?

inline int popcount(uinté4_t x){
int c=0;

inline int popcount(uinté64_t x) {
int ¢ = 0;
while(x)

{

while(x) { X & 1;

C += x & 1; X >> 1;

X =X > 1; X & 1;

¥ X >> 1;

return c; X & 1;

¥ X >> 1

S — —" X & 1;
X >> 1;

inline int popcount(uinté4_t x) {

int ¢ = 0;

int tablel[16] = {0, 1, 1, 2, 1,
2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:

for (uinté4_t 1 = 0; 1 < 16; 1++)

inline int popcount(uinté4_t x) {
int ¢ = 0; return c;
int tablel[16] = {0, 1, 1, 2, 1,

2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:
while(x) {

— L4 {
c += tablel[(x & OxF)1]; c += table[(x & OxF)]1;
X = X >> 4;
\ X = X >> 4
return c; )
return c;

34




Why is C better than B?

- How many of the following statements explains the reason why B
outperforms C with compiler optimizations

@ C has lower dynamic instruction coun

than
only nee}s ongoa ,one add, one shift, the same amount of iterations

@ C has significantly lower branch mis-prediction rate than B

— the same number being F{edicted.

® C has significantly fewer branch instructions than B —the same amount of branches

: inline int popcount(uinté4_t x) {
@ C can InC_U Ergg;g{\?Joglﬁthnh%%oaalgldn§y have negative int ¢ = 9;
A O effect without architectural supports while(x) {
inline int popcount(uinté64_t x) { C += x & 1;
int table[161 = {0, 1, 1, 2, 1, ¢ *=X "
C. 2 2, 2,3, 1, 2, 2, 3, 2, 3, 3, 4}; NS
O while(x) { y i_ X 1f
D. 3 c += tablel[(x & OxF)]; X =X 2> 4
X = X >> 4 C += X & 1;
EE Zl } ' X = x >> 1;
return c; ;
, return c;

}




Why is D better than C?

- How many of the following statements explains the main reason why
B outperforms C with compiler optimizations

@ D has lower dynamic instruction count than C

— Compiler can do loop unrolling — no branches

@ D has significantly lower branch mis-prediction rate thaQ % )
— COou e
@ D has significantly fewer branch instructionsbthlan Cd N ;
— Mmaybe eliminated throu Ooop unroiiing...
@ D can incur fewer data hazards than C ' o )

— about the same

inline int popcount(uinté4_t x) {
int ¢ = 0;
int tablel[16] = {0, 1, 1, 2, 1,
2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:
while(x) {
c += tablel(x & OxF)]1;
X = X >> 4;

inline int popcount(uinté4_t x) o
int ¢ = 0;
int tablel[16] = {0, 1, 1, 2, 1,
2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4}:
for (uinté4_t 1 = 0; 1 < 16; 1++)
{
c += tablel(x & OxF)1;
X = X >> 4;
¥

return c;

}

return c;

}

o — e

e —— *7




All branches are gone with loop unrolling

inline int popcount(uinté4_t x) {
int ¢ = 0;
int tablel[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};

c += tablel[(x & OxF)];
X = X >> 4;

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel[(x & OxF)];
X = X >> 4

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel[(x & OxF)];
X = X >> 4;

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel(x & OxF)1;
X = X >> 4;

c += tablel[(x & OxF)];
X = X >> 4;

c += tablel(x & OxF)1;

Without knowing *i<16""in the for-loop,

C += table[(x & OxF)1; 4

this is natjpossible

= X >> 47

+= table[(x & OxF)1;
= X >> 4;

+= tablel[(x & OxF)];
= X >> 4y

return c;

3 37
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Hardware acceleration

- Because popcount is important, both intel and AMD added a
POPCNT instruction in their processors with SSE4.2 and
SSE4a

- In C/C++, you may use the intrinsic “_mm_popcnt_uc4" to get
# of "1"s in an unsigned 64-bit number

- You need to compile the program with -m64 -msse4.2 flags to
enable these new features

#include <smmintrin.h>

inline int popcount(uinté64_t x) {
int ¢ = _mm_popcnt_ub4(x);
return c;



Solutions/work-around of pipeline hazards

- Structural
. Stall
- More read/write ports
- Split hardware units (e.g., instruction/data caches)

- Control
. Stalls
- Branch predictions
- Compiler optimizations with ISA supports (e.g., delayed branch)

39



Data Hazards



Data hazards

- An Instruction currently in the pipeline cannot receive the
"logically” correct value for execution

- Data dependencies

- The output of an instruction is the input of a later instruction

- May result in data hazard if the later instruction that consumes the
result Is still in the pipeline

41



Example: vector scaling

shl X5, X11, 3

1= 0; add X5, Xb, X160

do { >LOOP: 1d X6, 0(X10)
vector[i] += scale; add X7, X6, X12

} while ( ++1i < size ) sd X7, 0(X10)

addi X10,X10, 8
bne X160, X5, LOOP

42



How many dependencies do we have?

- How many pairs of data dependences are there in the following RISC-V instructions?

1cC ngﬁe(x1@)

add /7, X6, X12
SC 7, 0(X10)
addi X10,X10, 8
bne X160, X5, LOOP

o >

m OloO|w .
o M wln -

m O
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Stalls on data hazards

- How many pairs of instructions in the following RISC-V instructions will results in data
hazards/stalls in a basic 5-stage RISC-V pipeline?

1d  X6,0(x10)NEN EX [MEM| WB
add X7,X6, X12 D | ID ID EX |MEM
SC X7,0(X10) F | IF | IF ID | ID
add1i X10,X10, 8 IF
bne X10,X5, LOOP

WB
ID

IF EX MEM| WB

F ID | ID|ID  EX |ME

o >

m OOl .
o1 hjwinNn =

m O
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Solution 2: Data forwarding

- Add logics/wires to forward the desired values to the
demanding instructions

- In our five stage pipeline — if the instruction entering the EXE
stage consumes a result from a previous instruction that is
entering MEM stage or WB stage

- A source of the instruction entering EXE stage is the destination of
an instruction entering MEM/WB stage

- The previous instruction must be an instruction that updates
register file

45



Do we still have to stall?

- How many pairs of instructions in the following RISC-V instructions will results in data
hazards/stalls in a basic 5-stage RISC-V pipeline with “full” data forwarding?

nave to stall

1d  X6,0(x10) NN
add X7,X6,X12
SO X7,0(X10)
addi X10,X10, 8

bne X10,X5, LOOP

>

moO O|W|.
A w N|=|o
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Problems with data forwarding

- What if our pipeline gets deeper? — Considering a newly designed pipeline where
memory stage is split into 2 stages and the memory access finishes at the 2nd memory
stage. By reordering which pair of the following instruction stream can we eliminate all
stalls without affecting the correctness of the code?

1d  X6.0(X10) “E EX , We are not making progress
add X7,X6,X12 ID
sd  X7,0(X10) IF EX | M1 | M2 WB

addi X10,X10, 8 EX M1 M2 WB
bne X10,X5, LOOP EX M1 | M2 WB

©@ ® ©@ ©@ 0
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The effect of code optimization

- By reordering which pair of the following instruction stream can we
eliminate all stalls without affecting the correctness of the code?
® 1c¢ X6,0(X10)

® add X7,X6, X12

® SC X7,0(X10)

® addi X10,X10, 8
® bne X10,X5, LOOP
A. (1) &((2)

B. (2) &(3)

C. 3)&(4)

D. (4) & (5)

E. None of the pairs can be reordered

48



If we can predict the future ...

- Consider the following dynamic instructions:
1d X6,0(X10)
add X7,X6, X12

addi X10,X10, 8
40 bne X10,X5, LOOP
Which of the following pair can we reorder without affecting the correctness if the branch prediction is perfect?
A. (2) and (4)
B. (3)and (5
D. (6) and (9)
E. (9) and (10)

@

@

® sd  X7,0(X10) Can we use "branch

® addi X10,X10, 8 . . . .

® bne X10,X5, LOOP prediction” to predict the

® 1d X6,0(X10) - i

> add X X6 X12 future and reorder Instructions
sd  X7,0(X10) across the branch?

O]

©
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Dynamic instruction scheduling/
Out-of-order (Oo00) execution



Tips of drawing a pipeline diagram

- Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, MEM,
WB in order — only valid if it’s single-issue, RISC-V 5-stage pipeline
- An instruction can enter the next pipeline stage in the next cycle if

- No other instruction is occupying the next stage

- This instruction has completed its own work in the current stage

- The next stage has all its inputs ready
- Fetch a new instruction only if

- We know the next PC to fetch
- We can predict the next PC

- Flush an instruction if the branch resolution says it's mis-predicted.

51



If we can predict the future ...

- Consider the following dynamic instructions:
® 1d X6,0(X10)

add X7,X6, X12

I I 1
sd X7,0(X10) Q o
addi X10,X10, 8

bne X10,X5, LOOP e G e

1d  X6,0(X10) ‘
add X7,X6, X12 @
sd X7,0(X10) l o Q

1 X10,X10, 8

® Q @ @ ® ©®@ ©®

©
Q
o
o
o

bne X10,X5, LOOP @
Which of the following pair can we reorder without affecting the corréctness if the branch prediction is perfect?

A. (2)and (4) We still can only reorder (5) and (6)

B. (3)and (5
C. (5) and (6) even though (2) & (4) are not
D. (6) and (9) depending on each other!

E. (9) and (10)
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False dependencies

- We are still limited by false dependencies — because we have instructions without
dependencies sharing registers!

- They are not "true” dependencies because they don't have an arrow in data dependency
graph
- WAR (Write After Read): a later instruction overwrites the source of an earlier one
- 4and14and 3,6and2,7and 3,9and 5,9 and 6,9 and 8
- WAW (Write After Write): a later instruction overwrites the output of an earlier one

- 6and1,7and 2 1d  X6,0(X10)
add X7,X6,X12

sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5, LOO0OP
53
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Eliminating false dependencies

- We're constrained in scheduling because instructions

- WAR — a "logically” later instruction overwrites the input register

- WAW — a “logically” later instruction overwrites the output
register

- Since all the issues arises from “overwriting” — rename the
output registers for instructions

. Two different mechanisms introduced

- Tomasulo algorithm — rename/remap output to reservation stations
- Register renaming — rename/remap output to physical registers

54



Pipeline iIn Tomasulo

. Dispatch (D) — allocate a “reservation station” for a decoded
Instruction

- |ssue (I) — collect pending values/branch outcome from common
data bus

- Execute (INT, AQ/AQ/MEM, M1/M2/M3, BR) — send the instruction
to its corresponding pipeline if no structural hazards

- Write Back (WB) — broadcast the result through CDB

55



Overview of a processor supporting Tomasulo's algorithm
Fetch/decode instruction —3,

L/S RSV#

lmm.

= Queue

ddr.Op
SD
IINS
P
‘SDB

AQ1

Reservation.q»

Unresolved X1

Stations A%S

AQ4

— 1 < v

Address Integer

ddr.

LD1
LD2
LD3

Data

RSV #

Value

Speculative®

X2

—Instruction Branch 53— Register Status Table —

INST
1

ADD1

‘SDB

ADD?2

7‘

Floating-

<

Point Adder

MUL1
MUL?2

INST
1

)
O
-0

P

-

Floating-
Point Mul/Div

INS

BR1

Branch

Common Data Buses (CDBs)



Tomasulo In motion

® 1d X6,0(X10) D MEM | WB
® add X7,X6,X12 D ——— m
® sd X7,0(X10) nﬂ AR mm
® addi X10,X10,8
® bne X10,X5,LOO0P
o 14 x6,00410 nnmmmm
®@ add X7,X6,X12 INT
sd X7,0(X10) AQ MEM
® addi X10,X10,8 Takes 13 CVCIeS to nﬂ m WB
1  bpne X10.X OOF i 1€ i 1 ‘ 1 ot
INST Vj Vot A Y Ao A oot 4

-y = - -y - - - - - -

LD1
LD2
LD3
ST1
ST2
ST3
ADD1
ADD2
MULA1
MUL2
BR

add 8 ADD2 9
—ai—— X2t 7 —

br [X5] ADD1 10



Register renaming

. K. C. Yeager, "The Mips R10000 superscalar microprocessor,” in IEEE Micro, vol. 16, no. 2,

pp. 28-41, April 1996.

- R.E.Kessler, "The Alpha 21264 microprocessor,” in IEEE Micro, vol. 19, no. 2, pp. 24-36,

March-April 1999. 58



Tomasulo In motion

® 1d X6,0(X10) D MEM | WB
® add X7,X6,X12 D ——— m
® sd X7,0(X10) nﬂ AR mm
® addi X10,X10,8
® bne X10,X5,LOO0P
o 10 x6,00x10) nnmmmm
:jd i;)@(fxiéi no reservation stzation foradd! P n - ﬁm o
O AN Takes 13 cycles to H =l
10 bne X10,X DOP i 1€ . ‘ OI

INST Vj VK \fot A - Aot A mot == _. . .l

LD1
LD2
LD3

ST1

ST2

ST3
ADD1
ADD2
MULA1
MUL2
BR

add 8 ADD2 9
L 7 1 B —

br [X5] ADD1 10



Recap: Why is B better than A?

inline int popcount(uinté4_t x){

int c=0;
while(x) A and x2, x1, 1
c += x & 1; add x3, x3, x2
X = X > 1; shr x1, x1, 1
¥ bne x1, x©, LOOP
return c; 4*n instructions

: and x1, 1 and 1
g add X3, X2 shr 1
inline int popcount(uinté4_t x) { shr x1, 1 shr 2
int ¢ = 0; and x1, 1 shr 3
while(x) { add X3, X2 shr 4
c += x & 1; shr x1, 1 and 1
X = X > 1; and x1, 1 and 1
c += x & 1; add X3, X2 and 1
X = X > 1; shr x1, 1 add X2
c += X & 1; and x1, 1 add X7
X = X >> 1; add X3, X2 add X8
c += X & 1; shr x1, 1 add X9
X = X > 1; bne X0, LOOP bne LOOP
¥ * - *in :
return c: 13*(n/4) = 3.25*n instructions | | |
} s Only one branch for four iterations in A




Recap: Why is B better than A?

and
add
shr
and
add
shr
and
add
shr
and
add
shr
bne

61

and
shr
shr
shr
shr
and
and
and
add
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add
bne
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Register renaming

- Decouple "reservation stations” from functional units

- Provide a set of "physical registers” and a mapping table mapping
"architectural registers” to "physical registers”

- Allocate a physical register for a new output

- Stages

- Dispatch (D) — allocate a "physical” for the output of a decoded
Instruction

- Issue (I) — collect pending values/branch outcome from common data bus

- Execute (INT, AQ/AQ/MEM, M1/M2/M3, BR) — send the instruction to its
corresponding pipeline if no structural hazards

- Write Back (WB) — broadcast the result through CDB
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Overview of a processor supporting register renaming

Fetch/decode instruction 5 = u
Renaming Unresolved physical =
X1 register #
lodic Branch O p3 |
._. . Register _ Physical
= — mapping table Msters
Instruction — i |
= Queue =
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
— Load — — Store ]

— Queue - — Queue -
Address
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Rﬁﬂister renaming in motion

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)

1
p
3
4
5
6
7
8
9

64
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1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12

Rﬁgister renaming in motion
B

1
p
3
4
5
6
7
8
9

65
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Rﬁgister renaming in motion
1d X6,0(X10) —m

add  X7,X6,X12 R |1
sd  X7,0(X10) R

addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12
sd P2, 0(X10)
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Rﬁgister renaming in motion
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12
sd P2, 0(X10)
addi P3, X10, 8

1
p
3
4
5
6
7
8
9

67
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Rﬁgister renaming in motion
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP

1
p
3
4
5
6
7
8
9
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Reaister renam
1d  X6,0(X10) eﬁ

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP
1d P4, 0(P3)

L
p
3
i
5
6
7
8
9

69
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Reaister renam
1d  X6,0(X10) eﬁ

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)

add X7,X6,X12 R
sd X7,0(X10)

addi X10,X10,8

bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use

P1, X12
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12

© 0O NO O & WIN =

70
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Reaister renam
1d  X6,0(X10) eﬁ

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12 R |
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use

L
p
3
i
5
6
7
8
9
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o
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Reaister renam
1d  X6,0(X10) eﬁ

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12 R | |
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use

L
p
3
i
5
6
7
8
9

-t
o
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i enaming in motion

Reg
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)

add X7,X6,X12 R | | |
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register

P2, 0(X10)

P4, 0(P3)
P5, P1, X12
P5, 0(P3)
P6, P3, 8
P6, 0(X10)

© 0O NO O & WIN =

73
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n motion

Rﬁgister renaming
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

Physical Register

2 - 5

P2, 0(X10)

I I

P4, 0(P3)
add P5, P1, X12
sd P5, 0(P3)
addi P6, P3, 8
bne P6, 0(X10)

© 0O NO O & WIN =

74
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n motion

Rﬁgister renaming
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register

2 - 5

© 0O NO O & WIN =
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Reg
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

P5, P1, X12
P5, 0(P3)

add
sd

© 0O NO O & WIN =

[/ bne P6, 0(X10)

Physical Register
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Reg
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

© 0O NO O & WIN =

sd P5, 0(P3)

[/ bne P6, 0(X10)

Physical Register
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Reg
1d X6,0(X10)

add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

© 0O NO O & WIN =

sd P5, 0(P3)

-t
o

Physical Register
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Rec |ster renaming in motion
1d X6,0(X10)

add  X7,X6,X12 m
W x7,000 nmwm

addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)

Ilm-
addi X10,X10,8

x10,x5, Loor|ISSUE all Instructions R | We

Renamed instruction Physical Register Valid Value In use Valid Value In use
ETER AT 1 1 1 1

© © ® O @ @ ®© ® ® ©

P1
P5
P3

© 0O NO O & WIN =

sd P5, 0(P3)

79
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1d
add
sd
addi
bne
1d
add
sd
addi
bne

Throu

X6,0(X10)
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP
X6,0(X10)
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP

Instruction Queue

h data flow

graph analysis

INT — 2 cycles for depending
Instruction to start

MEM — 4 cycles for the
depending instruction to start
MUL/DIV — 4 cycles for the
depending instruction to start
BR — 2 cycles to resolve



Super Scalar



Superscalar

- Since we have more functional units now, we should fetch/
decode more instructions each cycle so that we can have more
Instructions to issue!

- Super-scalar: fetch/decode/issue more than one instruction
each cycle

- Fetch width: how many instructions can the processor fetch/
decode each cycle

- Issue width: how many instructions can the processor issue each
cycle

82



Overview of a processor supporting register renaming

Fetch/decode instruction 55 u
. ' P1 -
Renhaming Unresolved . rpehgﬁgf; -

What if we widenthe  |oqic Branch ., o | oh I
pipeline to fetch/issue . Register - Physica
two instructions at the — . mapping table Wsters

same time? 1struction — i |
- Queue =
|
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
— Load — — Store ]

— Queue - — Queue -
Address
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2-1ssue RR processor in motion
1d  X6,0(X10) “
add X7,X6,X12 | i

sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction Physical Register Valid Value In use Valid Value In use
1d P1, 0(X10)
add P2, P1, X12

L
p
3
i
5
6
7
8
9
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1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
Renamed instruction
1d P1, o(X10)
add P2, P1, X12
sd P2, o(X10)

ad

L
p
3
i
5
6
7
8
9

-t
o

di P3, X10, 8

RR processor in motion

Physical Register Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
p
3
4
5
6
7
8
9

-t
o

d

di
e

d

di
e
1d

add
sd

X6,0(X10)
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP
X6,0(X10)

X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP

Renamed instruction

P1,
P2,
P2,

addi P3,

bne
1d

P3,
P4,

0(X10)
P1, X12
9(X10)
X10, 8
X5, LOOP
o(P3)

Physical Register

86

Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
p
3
4
5
6
7
8
9

-t
o

d

di
e

d

di
e
1d

add
sd

X6,0(X10)
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP
X6,0(X10)
X7,X6,X12
X7,0(X10)

X10,X10, 8
X10, X5, LOOP

Renamed instruction

P1,
P2,
P2,

addi P3,

bne
1d
add
sd

P3,
P4,
P5,
P5,

0(X10)
P1, X12
9(X10)
X10, 8
X5, LOOP
o(P3)
P1, X12
0(P3)

Physical Register
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Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
p
3
4
5
6
7
8
9

-t
o

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P

Renamed instruction

1d
add
sd
addi
bne
1d
add
sd
addi
bne

P1,
P2,
P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

0(X10)
P1, X12
0(X10)
X10, 8
X5, LOOP
o(P3)
P1, X12
0(P3)
P3, 8
0(X10)

Physical Register

88

Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
p
3
4
5
6
7
8
9

-t
o

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P

Renamed instruction

1d
add
sd
addi
bne
1d
add
sd
addi
bne

P1,
P2,
P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

2-

0(X10)
P1, X12
0(X10)
X10, 8
X5, LOOP
o(P3)
P1, X12
0(P3)
P3, 8
0(X10)

Physical Register

89

Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

© 0O NO O & WIN =

10

X6,0(X10)
d X7,X6,X12
X7,0(X10)
di X10,X10,8

e X10,X5,LO0P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P

Renamed instruction

sd
addi
bne
1d
add
sd
addi
bne

P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

P1, X12
0(X10)
X109, 8
X5, LOOP
o(P3)
P1, X12
0(P3)
P3, 8
0(X10)

Physical Register

90

rocessor in motion
MEM

Valid Value In use

Valid Value In use
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2-issue RR l%rocessor iIn motion
1d X6,0(X10) IEEMI

1 AR
add  X7,X6,X12 |
sd  X7,0(X10) | e
addi X10,X19,8 INT
| BR WB
. >
T T

bne X10,X5,LOO0P
Physical Register Valid Value In use

1d X6,0(X10)
add X7,X6,X12 R
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

L
p
3
i
5
6
7
8
9
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1d
add
sd

addi X10,X10,8

bne
1d
add
sd

addi X10,X10,8

bne

1
p
3
4
5
6
7
8
9

-t
o

X6,0(X10)
X7,X6,X12
X7,0(X10)

X10, X5, LOOP
X6,0(X10)
X7,X6,X12
X7,0(X10)

X10, X5, LOOP

Renamed instruction

rocessor in motion

ﬁ
:
BR WB
R A ew | we
| | | | |

Physical Register

92

Valid Value In use
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add X7,X6,X12
EREETIrs
BR WB
AR AQ wew | wa
add X7,X6,X12 R | | | | | INT

sd  X7,0(X10)
addi X10,X10,8
sd  X7,0(X10) e
addi X10,X10,8

2-issue RR processor in motion
bne X10,X5,LOO0P
bne X10,X5,LOO0P

1d  X6,0(X10) 1 | AR AQ | MEM
|
|
INT
|
1d X6,0(X10) |
Renamed instruction

Physical Register Valid Value In use

2 - 5

P2, 0(X10)
P3, X10, 8

I I

P5, P1, X12
P5, 0(P3)

© 0O NO O & WIN =

(J [7 [ (J

P6, 0(X19) 23

-t
o



© © ® O @ @ ®© ® ® ©

add X7,X6,X12
EREETIrs
BR WB
AR AQ wew | wa
add X7,X6,X12 R | | | | | INT

sd  X7,0(X10)
addi X10,X10,8
sd  X7,0(X10) e
addi X10,X10,8

2-issue RR processor in motion
bne X10,X5,LOO0P
bne X10,X5,LOO0P

1d  X6,0(X10) 1 | AR AQ | MEM
|
|
INT
|
1d X6,0(X10) |
Renamed instruction

Physical Register Valid Value In use

2 - 5

P2, 0(X10)
P3, X10, 8

I I

P5, P1, X12
P5, 0(P3)

© 0O NO O & WIN =
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P6, 0(X19) 1
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

© 0O NO O & WIN =

-t
o

d

di
e

d

di
e

Renamed instruction

addi

add

sd

2-issue RR processor in motion

X6,0(X10) 1 | AR AQ |MEM

X7,X6,X12 |

X7,0(X10) ﬂ | 0 AR | AQ | MEM |
X10,X10, 8 INT

X10, X5, LOOP | BR WB

X6,08(X10) | AQ |MEM | WB
X7,X6,X12 R I 1 1 1 1 INT WB
X7,0(X10) e
X10,X10, 8

X10, X5, LOOP ' BR | WB

Physical Register Valid Value In use

P1, X12
o(P3)

95

P6, 0(X19)

Valid Value In use
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1d
add
sd
addi
bne
1d
add
sd
addi
bne

2- |ssue RR orocessor in motion

X6,0(X10) R AQ | MEM | WB
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP
X6,0(X10)
X7,X6,X12
X7,0(X10)
X10,X10, 8
X10, X5, LOOP

Renamed instruction Physical Register Valid Value In use Valid Value In use

© 0O NO O & WIN =

-t
o

addi

sd

1 1

2 - 5

P1
P5
P3

[ I

P3, X106, 8

I )

— -

P5, 0(P3)

= —=
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2-1S
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

addi P3, X190, 8

© 0O NO O & WIN =

sd P5, 0(P3)

10

97

ocessor in motion

AR |_AQ_ MEM_
AQ mm

INT

ERNEETIT
| BR | w8

Valid Value In use



© © ® O @ @ ®© ® ® ©

([ ] [ ] ([ ]
2-1S ocessor iIn motion
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)

I
I
add X7,X6,X12 R

INT
ﬁll AR |_AQ_ MEM_

BR

o mm
|

| INT
sd X7,0(X10) ' __mmm
addi X10,X10,8 R

bne X10,X5, LOOP ' BR | WB

Renamed instruction Valid Value In use

addi P3, X190, 8

© 0O NO O & WIN =

sd P5, 0(P3)

98

10



What about “linked list"

- For the following C code and it's translation in RISC-V, how many cycles it takes the
processor to issue all instructions? Assume the current PC is already at the first instruction
and this linked list has only three nodes. This processor only fetches 1 instruction per cycle,
with exactly the same register renaming hardware and pipeline as we showed previously.

do {

number of nodes++; LOOP: 1d X100, 8(X10)
addi X7, X7, 1

current = current—>next;
bne X10, X0, LOOP

} while ( current != NULL )

A. 9
B. 1

O O
o = O

m!
W
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What about "lin

Static instructions

LOOP: 1d
addi
bne

X10, 8(X10)
X7, X7, 1

X10, X0,

LOOP

Dynamic instructions

ONONONONONONONONOC

1d
addi
bne
1d
addi
bne
1d
addi
bne

X109,
X7,
X109,
X109,
X7,
X109,
X109,
X7,
X109,

8(X10)
X7, 1
X0, LOOP
8(X10)
X7, 1
X0, LOOP
8(X10)
X7, 1
X0, LOOP

100

Instruction Queue




What about “lin

Static instructions  Dynamic instructions

X7 is changed by
(8) already!!!

LOOP: 1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP

1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X160, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

Instruction Queue

What if (6) is
mis-predicted .................

ONONONONONONONONOC
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Without additional mechanisms...

. |f we meet a branch

- Any instruction after the branch cannot be issued

- If the branch is mispredicted — flush the instruction queue entries
of later instructions

Hurt performance!

102



In which pipeline stage can we have exceptions?

- How many of the following pipeline stages can we have exceptions?
(® |F — page fault, illegal address

@ |D — unknown instruction
® EXE — divide by zero, overflow, underflow
® MEM — page fault, illegal address

103



Without additional mechanisms...

. |f we meet a branch

- Any instruction after the branch cannot be issued

- If the branch is mispredicted — flush the instruction queue entries
of later instructions

- If we have to handle exceptions precisely
. All instruction cannot be issued out-of-order!

Hurt performance!
000 becomes useless!

104



Make O00 great again!
— Reorder Buffer (ROB)



Speculative Execution

- Any execution of an instruction before any prior instruction finishes is
considered as speculative execution

- Because it's speculative, we need to preserve the capability to
restore to the states before it’'s executed

- Branch mis-prediction
- Exceptions

106



Reorder buffer/Commit stage

- Reorder buffer — a buffer keep track of the program order of
Instructions

- Can be combined with IQ or physical registers — make either as a
circular queue

- Commit stage — should the outcome of an instruction be
realized

- An instruction can only leave the pipeline if all it's previous are
committed

- If any prior instruction failed to commit, the instruction should yield
it's ROB entry, restore all it's architectural changes

107
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2-1ssue RR processor in motion
1d  X6,0(X10) “
add X7,X6,X12 | i

sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction
1d P1, 0(X10)
add P2, P1, X12

Physical Register Valid Value In use Valid Value In use

© 0O NO O & WIN =

108
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2-1ssue RR processor in motion

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction
1d p1, o(xze) 4@ head
add P2, P1, X12
sd P2, 0(X10)

addi P3, x10, 8 < tail

Physical Register Valid Value In use Valid Value In use

-

L
p
3
i
5
6
7
8
9

109

-t
o



© © ® O @ @ ®© ® ® ©

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

© 0O NO O & WIN =

10

X6,0(X10)
d X7,X6,X12
X7,0(X10)
di X10,X10,8

e X10,X5,LO0P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P

Renamed instruction

add
sd
addi
bne
1d

P1,
P2,
P2,
P3,
P3,
P4,

0(X10)
P1, X12
9(X10)
X10, 8
X5, LOOP
o(P3)

Physical Register

10

Valid Value In use

Valid Value In use
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1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
p
3
4
5
6
7
8
9

-t
o

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO0P

Renamed instruction

1d
add
sd
addi
bne
1d
add
sd

P1,
P2,
P2,
P3,
P3,
P4,
P5,
P5,

0(X10)
P1, X12
9(X10)
X10, 8
X5, LOOP
o(P3)
P1, X12
0(P3)

4 head

4 tail

Physical Register

111

Valid Value In use

Valid Value In use




1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
X10, X5, LOOP

Renamed instruction Physical Register
P1, 0(X10)
add P2, P1, X12
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP
1d P4, o(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

© © ® O @ @ ®© ® ® ©

Valid Value In use Valid Value In use

© 0O NO O & WIN =

4 iail 1z

10
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2-issue RR l%r&:essor iIn motion

1d  X6,0(X10) WB
L
| |
INT C

| BR

| AR

add X7,X6,X12
Physical Register

sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

1a p1, exie) 4@ head

Valid Value In use Valid Value In use

add P2, P1, X12 P1
sd P2, 0(X10) P5
addi P3, X10, 8 P3

bne P3, X5, LOOP
1d P4, O(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

L
p
3
i
5
6
7
8
9

4 tail 13
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2-issue RR l%rocessor iIn motion

1d  X6,08(X10) 'MEM | WB
ﬁ
R

add X7,X6,X12
Physical Register Valid Value In use Valid Value In use

sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P

Renamed instruction

add P2, P1, X12 ‘ head
sd P2, 0(X10)
addi P3, X190, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12
sd P5, O(P3)
addi P6, P3, 8
bne P6, 0(X10)

© 0O NO O & WIN =

4 tail 14
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2-issue RR &r?ﬂgessor iIn motion

1d  X6,0(X10) 1| AR wB C
add X7,X6,X12 I | INT | WB
sd X7,0(X10) I I I I
addi X10,X19,8 INT C C C
bne X10,X5,LOO0P | BR @ WB
1d  X6,0(X10) | AR AQ
add X7,X6,X12 R I I I
sd  X7,0(X10) R
addi X10,X10,8
Renamed instruction Physical Register Valid Value In use Valid Value In use
. - ¥ ' m o X5
add P2, P1, X12 ‘ head
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12
sd P5, 0(P3)

addi Pé6, P3, 8
bne P6, 0(X10)

bne X10,X5,LOO0P

© 0O NO O & WIN =

4 tail 1o
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sd X7,0(X10)

2-issue RR l%rocessor in motion
MEM
addi X10,X10,8

1d X6,0(X10) WB C
| | | AR
C C C C
BR WB C C
AR AQ MEM | WB
| | I | |
bne X10,X5,LOO0P

1 AR
add X7,X6,X12 !
sd  X7,0(X10) ﬂ '
addi X10,X19,8 INT
bne X10,X5,LOO0P |
1d X6,0(X10) :
K
Renamed instruction Physical Register Valid Value In use Valid Value In use

add X7,X6,X12
X5

s« p2, exie) <@ head

addi P3, X10, 8
bne P3, X5, LOOP
1d P4, O(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

© 0O NO O & WIN =

4 tail 1o
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sd X7,0(X10)

2-issue RR l%rocessor in motion
MEM
addi X10,X10,8

1d  X6,0(X10) 1 | AR WB
add  X7,X6,X12 | | INT | wB
sd X7,0(X10) ﬂ | | | | AR | AQ
addi X10,X19,8 INT C C C C C
bne X10,X5,LOO0P | BR @ WB C C C
1d X6,0(X10) | AR AQ (MEM | WB C
Iliill I | I I I INT
bne X10,X5,LOO0P
Renamed instruction Physical Register Valid Value In use

add X7,X6,X12
X5

s« p2, exie) <@ head

addi P3, X10, 8
bne P3, X5, LOOP
1d P4, O(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

© 0O NO O & WIN =

4 tail 1
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o @ @
2-i1ssue RR l%rocessor In motion
1d  X6,08(X10) 1 | AR | AQ |MEM | WB
add  X7,X6,X12 | | INT | wB
sd  X7,0(X10) ﬂ | | | | | AR | AQ |MEM
addi X10,X19,8 INT C C C C C C
bne X10,X5,LOO0P | BR @ WB C C C C
1d X6,0(X10) | AR AQ MEM| WB C C

R | | | | | INT WB

R | | |

addi X10,X10,8 INT C C
bne X10,X5,LOO0P ﬂ

add X7,X6,X12
Renamed instruction Physical Register Valid Value In use Valid Value In use

sd X7,0(X10)
X5

s« p2, exie) <@ head

addi P3, X10, 8
bne P3, X5, LOOP
1d P4, O(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

© 0O NO O & WIN =

4 iail 118

10




© © ® O @ @ ®© ® ® ©

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)

addi X10,X10,8

bne

© 0O NO O & WIN =

ad
bn

10

sd

X10, X5, LOOP

Renamed instruction

o =

I

P5, 0(P3)
di Pé6, P3, 8
e P6, 0(X19)

2-issue RR l%r§>.=§.:essor iIn motion

e -
| | | | | AR | AQ [MEM | cC

INT c | c | c|lclc ¢ | c

| BR WB C | c | ¢c ¢ | ¢

R | | | | | INT WB C

R | | |

INT cC

| BR | WB

Physical Register Valid Value In use Valid Value In use

X5 P1 1 1

4 tail 19
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1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)

addi X10,X10,8
X10, X5, LOOP

Renamed instruction

bne

I ad
[V bn

I sd

2 - 5

P5, 0(P3)
di Pé6, P3, 8
e P6, 0(X19)

2-issue RR l%r§>.=§.:essor iIn motion

R we o
| | | | | AR | AQ [MEM | cC
INT C C C C C C C
i BR WB C C C C C
! AR AQ MEM | WB C C
R I | I I I INT WB C
R | | | | AR | AQ
ﬂ
I BR WB C C
Physical Register Valid Value In use Valid Value In use

X5 P1 1 1 P6

4 tail 120
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1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
addi X10,X10,8
bne X10,X5,LOO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)

addi X10,X10,8
X10, X5, LOOP

Renamed instruction

bne

I ad
[V bn

I sd

2 - 5

P5, 0(P3)
di Pé6, P3, 8
e P6, 0(X19)

2-issue RR l%r§>.=§.:essor iIn motion

R we o
| | | | | AR | AQ [MEM | cC
INT C C C C C C C
i BR WB C C C C C
R I | I I I INT WB C
R | | | | AR | AQ | MEM
ﬂ C
I BR WB C C C
Physical Register Valid Value In use Valid Value In use

X5 P1 1 1

4 tail 121
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2-issue RR l%r§>.=§.:essor iIn motion

1d  X6,0(X10) 1| AR WB
add  X7,X6,X12 | | INT | wB
sd  X7,0(X10) ﬂ | | | | | AR | AQ [MEM | cC
addi X10,X19,8 INT C C C C C C C
bne X10,X5,LOO0P | BR @ WB C C C C C
1d X6,0(X10) | AR AQ MEM| WB C C C
add X7,X6,X12 R | | I | | INT WB C

R | | | AQ |MEM  C
addi X10,X10,8 INT C C C C c
bne X10,X5,LOO0P | BR | WB C C C
Renamed instruction Physical Register Valid Value In use Valid Value In use

sd X7,0(X10)
ETmAT: 4 taihd % Sl 1 1

L
p
3
i
5
6
7
8
9
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Intel Sandy Bridge

Instruction

32k L1 Instruction Cache Pre decod S

Decoders

Branch Pred 1.5k uOP cache

In order

Qut-of-
order

AVX/FP Shuf
AVX/FP Bodl

AN BIChd Memory Cantrol

48 bytes/cycle

L2 Data Cache (MLC)

32k L1 Data Cache



How good is SS/O000/ROB w

- Consider the following dynamic instructions

® 1d X1, 0(X10)
® addi X10, X10, 8
® add X20, X20, X1

@

® b X10, X2, LOOP =

N - . ()

Assume a superscalar processor with issue width as 2 & ur 7= A

that can fetch up to 4 instructions per cycle, 3 cycles to exe -f—j @

and the loop will execute for 10,000 times, what's the avera - @ @
S

© 1d X1, 0(X10)
A' 05 ® addi X10, X190, 8
® add X20, X20, X1
B° 075 ® bne X10, X2, LOOP
C. 1 ® 1d X1, 0(X10)
. ® addi X10, X190, 8
D 1 25 @ add X20, X20, X1
P bne X160, X2, LOOP 3 cycles for every 4
1 ® 1d X1, 0(X10) . -
4D add X20, X20, X1 4
@ bne X100, X2, LOOP 124 15



4 inslruclions/cycle

INTEGER

6 ops dispatched

| E

2 loads + 1 store
per cycle

L |
M AU AW Acl

Micro-ops

FLOATING POINT

AMDZN

ZEN MICROARCHITECTURE

.« Fetch Four x86 instructions
Op Cache instructions

b

+ 4 |Integer units

- Large rename space — 168 Registers
~ 192 instructions in flight/8 wide retire

4 2 Load/Store units
~ 72 Out-of-Order Loads supported

4 2 Floating Point units x 128 FMACs
~ builtas 4 pipes, 2 Fadd, 2 Fmul

I-Cache 64K, 4-way
D-Cache 32K, 8-way
L2 Cache 512K, 8-way
Large shared L3 cache
2 threads per core

A A h A h



Solutions/work-around of pipeline hazards

- Structural
. Stall
- More read/write ports
- Split hardware units (e.g., instruction/data caches)

- Control

. Stalls

- Branch predictions

- Compiler optimizations with ISA supports (e.g., delayed branch)
- Data

. Stalls

- Data forwarding

- Compiler optimizations

- Dynamic scheduling

126



Why compiler optimization is insufficient

- Compiler cannot predict “dynamic” events
- Compiler doesn’t know if the branch is going or likely to taken or not
- Loop unrolling doesn't always work
- Compiler doesn't know if the memory access is going to be a miss or not
- Compiler can only optimize on features exposed by hardware

- Compiler can only see "architectural registers”, but cannot utilize
"physical registers”
- Has very limited power in “renaming”
.- Creates “false dependencies”

- Compiler optimization cannot be adaptive to micro architectural
changes — what if the pipeline changes?

127



Recap: What about "linked list"

II.I .........

[fesasios] (5)

[Lregses {1 ..

Static instructions  Dynamic instructions e .........

LOOP: 1d  X10, 8(X10) 1d ILI‘D”'AI Ab ‘fd WiMl .........
addi X7, X7, 1 Is low because o ata ok bie 0

bne X10, X©, LOOP dependencies | iy il O
1d  X10, 8(X10) | [Wastedsiots

addi X7, X7, 1
bne X160, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

ONONONONONONONONOC
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Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington

129



Simultaneous multithreading

- The processor can schedule instructions from different
threads/processes/programs

- Fetch instructions from different threads/processes to fill the
not utilized part of pipeline

- Exploit "thread level parallelism” (TLP) to solve the problem of
iInsufficient ILP in a single thread

- You need to create an illusion of multiple processors for OSs

130



Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

@ Program counter — you need to have one for each context
@ Register mapping tables — you need to have one for each context

® Physical registers — you can share

@ ALUs — you can share

® Data cache — you can share

® Reorder buffer/Instruction Queue

A 2 — you heed to indicate which context the instruction is from
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SMT SuperScalar Processor w/ RO
m Fetch / hysical reglster# T>c

decode | Renaming Reglster
M|nstructlo logic mapping table #1
 biyseaTieg p5 hysical

vaI|

E - Reglster Reglsters
—Instruction - mapping table #2 jjj | |
= Queue =
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
— Load — — Store ]

— Queue - — Queue -
Address




SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
bran Ch e SWe can execute from other threads/contexts instead of the current one

hurt, b/c you are sharing resource with other threads.

@ SMT can-improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width We can execute from other threads/
contexts instead of the current one

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

b/c we're sharing the cache

|60 W >
Mw|nv 2 o

m
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SMT

- Improve the throughput of execution
- May increase the latency of a single thread

- Less branch penalty per thread
- Increase hardware utilization

- Simple hardware design: Only need to duplicate PC/Register
Files

- Real Case:

- Intel HyperThreading (supports up to two threads per core)
- Intel Pentium 4, Intel Atom, Intel Core i/

. AMD RyZen
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SMT SuperScalar Processor é

FetCh/ hysical reglster#
m decode Renaming Reglitebﬁ #1
logic i i g
. brvscaTtes p5 hysical
O(IW)

M|nstructlo
Register Reglsters

mapping table #2 jjj | |
ddress Integer Floating- Floating- Branch
Resolution ALU Point Adder Point Mul/Div

vaI|

o

ddr.

Dest

(@)
QO
o

I\/alu:

— Load — N Store -

— Queue - — Queue -
Address




Wide-issue SS processor v.s. multiple narrower-issue SS processors

- 21 mm - - 21 mm »

Instruction

External Cache

Instructi
Interface nsf-'el:gt:on (32 KB)

External
Interface

Processor | Processor
#1 #2

TLB

Inst. Decode & Data
Rename Cache

(32 KB)

21 mm

Reorder Buffer,
Instruction Queues,
and Out-of-Order Logic

6-way SS proceséor —
3INT ALUs, 3FPALUs
I-cache:32KB, D-cache: 32KB

Q
©
o
o3
o
&
X
3]
2
O

Clocking & Pads

‘Chip L2 Cache (256KB)
unication Crossbar
-Chip L2 Cache (256KB)

4 2=issue SS processor —
4* (1INT ALUs,1FP ALUs
I-cache: 8KB, D-cache: S8KB)

' 1-acne #3 (oK) | 1-.acne #4 (Bn
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Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X160, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP

1d X1, 0(X19)
addi X160, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X160, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP

Q
-
Q
-
O
c
0
ajd
Q
-
p -
ajd
({p)
=
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Concept of CMP

Processor

Core Core Core Core

Registers Registers Registers Registers
L1-$ L1-$ L1-$ L1-$

LY LY LY LY
L2-$ L2-$ L2-$ L2-$

Last-level $ (LLC)
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Performance of CMP
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SMT v.s.CMP

- Both CMP & SMT exploit thread-level or task-level parallelism. Assuming
both application X and application Y have similar instruction combination,
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better?
A. P1
B. P2

142



Architectural Support for Parallel
Programming




What software thinks about “multiprogramming” hardware

Thread

L1-$

L1-$ L1-$
A A A
L2-$ L2-$ L2-$
SR SR SR
Shared Virtual Address Space
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Coherency & Consistency

- Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time

- What value should be seen

- Consistency — All threads see the change of data in the same
order

- When the memory operation should be done
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Coherent way-associative cache
memory address: Ox0 t a8g Zinsde ;X :?:ekt
memory address: @b@@@@l@@@@@l@‘@l@@
g g
© ©
oD tag data & D tag data
01 |1 0x29 IIJIJKKLLMMNNOOPP 01 |1 0x00 AABBCCDDEEGGFFHH
01 (1 OxDE QQRRSSTTUUVVWWXX 1|1 0x10 I1IJJKKLLMMNNOOPP
01 1|0 0x10 YYZZAABBCCDDEEFF 01]0 OxAl QQRRSSTTUUVVWWXX
00 (1 Ox8A AABBECCDDEEGGFFHH 00 |1 0x10 YYZZAABBCCDDEEFF
10 |1 Ox60 IIJIJKKLLMMNNOOPP 10 |1 0x31 AABBCECDDEEGGFFHH
10 |1 0x70 QQRRSSTTUUVVWWXX 10 |1 Ox45 IIJJKKLLMMNNOOPP
10 |1 0x10 QQRRSSTTUUVVWWXX 10 |1 Ox41 QQRRSSTTUUVVWWXX
10 |1 0x11 YYZZAABBCCDDEEFF 10 |1 Ox68 YYZZAABBCCDDEEFF
] T

hit?
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Simple cache coherency protocol

- Snhooping protocol
- Each processor broadcasts / listens to cache misses

- State associate with each block (cacheline)

- Invalid

- The data in the current block is invalid
- Shared

- The processor can read the data

- The data may also exist on other processors
- Exclusive

- The processor has full permission on the data
- The processor is the only one that has up-to-date data
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Snooping Protocol

read/write
miss (bus)

read
miss/hit

read miss(processor)

write miss(bus)

rite miss(bus)
at

write miss
(processor)
write bac

write hit



Cache coherency

- Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to O as assume we will output more than

10 numbers
thread 1 thread 2

while(1) while(1)
printf(“%d ",a); a++;

® 0123456789

® 1259368101213
® 1111111164100
®@ 111111111100

A. O

Mmoo W
Alwip =

m
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4Cs of cache misses

- 3Cs:
. Compulsory, Conflict, Capacity

. Coherency miss:
- A "block” invalidated because of the sharing among processors.
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Lv.s.R

Version L Version R

volid xthreaded_vadd(void xthread_id) volid xthreaded_vadd(void *xthread_id)
{ {

int tid = *(int *)thread_id; int tid = *(int x)thread_id;

int 1i; int 1;

for(i=tid; 1<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i< (tid+1)*(ARRAY_SIZE/NUM_OF THREADS) ;i++)

{ {

cli] = ali]l + b[i]; cli] = ali]l + b[i];

¥ ¥

return NULL; return NULL;
¥ ¥

C C
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Performance comparison

- Comparing implementations of thread_vadd — L and R, please identify which one will be
performing better and why

Version L Version R

volid xthreaded_vadd(void xthread_id) volid xthreaded_vadd(void *xthread_id)
{ {

int tid = *(int *)thread_id; int tid = *(int x)thread_id;

int 1i; int 1;

for(i=tid; 1<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i< (tid+1)*(ARRAY_SIZE/NUM_OF THREADS) ;i++)

{ {

cli] = ali]l + b[i]; cli] = ali]l + b[i];

¥ ¥

return NULL; return NULL;
¥ ¥

A. L is better, because the cache miss rate is lower

B. Ris better, because thhe cache miss rate is lower for(i = @ : 1 < NUM_OF_TME%ISn; Ell[ead

C. Lis better, because the instruction count is lower =~ * tids[i] = i:
. . . . pthread_create(&thread[i], NULL, threaded_vadd, &tids
D. Ris better, because the instruction count is lower \

pthread_join(thread[i], NULL);
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Again — how many values are possible?

- Consider the given program. You can safely assume the caches are
coherent. How many of the following outputs will yvou see?

@ (0,0)
@ (0,1)
® (1,0)
@ (1,1)

Oo0Ow?>»
W N = O

A
I

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

volatile int a,b;
volatile int x,y;
volatile int f;
voidx modifya(void *z) {
a=1;
X=b;
return NULL;
¥
voidx modifyb(void *z) {
b=1;
y=a;
return NULL;
¥
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int main() {

int 1;

pthread _t thread[2];
pthread_create(&thread[0], NULL, modifya, NULL);
pthread_create(&thread[1], NULL, modifyb, NULL);
pthread_join(thread[9], NULL);
pthread _join(thread[1], NULL);
fprintf(stderr,” (%d, %d)\n",x,y);
return 0;




Possible scenarios

(0,1)

(1,0) 154 (0,0)



fence instructions

. X806 provides an “mfence” instruction to prevent reordering
across the fence instruction

- X86 only supports this kind of “relaxed consistency” model.
You still have to be careful enough to make sure that your code
behaves as you expected

thread 1 thread 2

a=1; b=1;
mfence a=1must occur/update before mfence mfenceb=1 must occur/update before mfence
X=b; y=a;
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Power/Energy/Dark Silicon



Dynamic/Active Power

- The power consumption due to the switching of transistor
states

- Dynamic power per transistor
P pnamic ~ A X CX V2 X XN

- o average switches per cycle

- (C: capacitance

- V. voltage

- f. frequency, usually linear with V
- N: the number of transistors
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Static/Leakage Power

- The power consumption due to leakage — transistors do not
turn all the way off during no operation

- Becomes the dominant factor in the most advanced process

technologies.
] Leakag.e power
Pleakage ~J NX VX e_‘/t o B Dynamic power
- N: number of transistors 500
. V: voltage "0
- Vi threshold voltage where
transistor conducts (begins to switch) 0

QOhm 65nm 40hm 28nm 20nm

Figure 1: Leakage power becomes a growing problem as demands for more performance
and functionality drive chipmakers to nanometer-scale process nodes (Source: IBS).
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Dennardian Broken

- Given a scaling factor S

Parameter Relation Classical Scaling
Power Budget 1
Chip Size 1
Vdd (Supply Voltage) 1/S
Vt (Threshold Voltage) 1/S 1/S
tex (oxide thickness) 1/S
W, L (transistor 1/S
Cgate (éate cépac‘itance) WL /tox 1/S
Isat (saturation current) WVdd/tox 1/S
F (device frequency) Isat/(CgateVdd) S
D (Device/Area) 1/(WL) S2
p (device power) |satVdd 1/S2
P (chip power) Dp 1

U (utilization) 1/P 1
159
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1/S
1/S
1/S
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Power consumption to light on all transistors

Chip
T 1 1

1 1 1

1 1 1

=49W

Dennardian Scaling
Chip

0505050505050505050.5
050505050505 05050.5 0.5
0.505050505050505050.5
050505050505 05050.5 0.5
0505050505050505050.5
050505050505 05050.5 0.5
0505050505050505050.5
0505050505050505050.5
0505050505050505050.5
0.505050505050505050.5

=50W
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Dennardian Broken
Chip
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1
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Suppert

Intel” Xeon® Processor F7-889C

vad
Cratus Launched
Launch Date €@ Q216
Lithography @ Tdnm

Performance

# of Cores @

# of Threads @ 48
Processor Base lrequency € 2.20 GHz
Max Turbo Frequency O 3.40 GHz
Cache € 50 MB
Bus Speed € 2.6 GT/=
il of OFI Links © 3

TOP O 165 W
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What

happens if power doesn’t scale with process technologies?

- If we are able to cram more transistors within the same chip area (Moore's law continues),
but the power consumption per transistor remains the same. Right now, if we power the

chip wi

the tec
OT

th the same power consumption but put more transistors in the same area because
nnology allows us to. How many of the following statements are true?

he power consumption per chip will increase

@T
® G

he power density of the chip will increase
Iven the same power budget, we may not able to power on all chip area if we maintain the

same clock rate

@ G

Iven the same power budget, we may have to lower the clock rate of circuits to power on all

chip area

O0Ow»
WN = O

m
I
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Final Logistics

- Monday, December 9, 8:00 a.m. - 11:00 a.m.

- No makeup, no re-schedule — if you miss it, you have to take responsibilities
- Keep yourself health enough to attend the final is part of your job

- You may bring a calculator

- Mobile phones/smartphones are NOT allowed

- Show your work (except for multiple choices)
- You will get partial credits if you have some work done
- You will get O if you only give us the answer

- Please print — if we cannot read your answers, we will not give you grades
- No cheatsheet is allowed

- No cheating

- No review this time — | will be out-of-town right after finishing the grading

- You can discuss sample final with me/TA or your friend in private, but | won't respond any
on piazza
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Sample Final



Format of finals

- Multiple choices (10-15 questions, TBD)

- They're like your clicker/midterm multiple choices questions

- Cumulative, don't forget your midterm and midterm review

- Homework style calculation/operation based questions * 3-4
- Brief discussion/Open-ended * 4-5

- Explain your answer using less than 100 words. Some of them must
be as short as 30 words

- May not have a standard answer. You need to understand the
concepts to provide a good answer

165



Multiple choices



How many dependencies do we have?

- How many pairs of data dependences are there in the following RISC-V instructions?

1c X6, 0(X10)
add X7, X6, X12
SC X7, 0(X10)
addi X10,X10, 8
bne X160, X5, LOOP

moowr
oONWN =
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False dependencies

- Consider the following dynamic instructions
@ 1d X12, 0(X20)

add X12, X160, X12

sub X18, X12, X160

1c X12, 8(X20)

add X14, X18, X12

add X18, X14, X14

SC X14, 16(X20)

® addi X20, X20, 8

which of the following pair is not a “false dependency”
A. (1) and (4)

1) and (8)

5) and (7)

4) and (8)

/) and (8)

Q ©@ ©®@ ® ©®@ ®

B. (
C. (
D. (
E. (
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What about “linked list"

- For the following C code and it's translation in RISC-V, how many cycles it takes the
processor to issue all instructions? Assume the current PC is already at the first instruction
and this linked list has only three nodes. This processor can fetch 2 instruction per cycle,
with exactly the same register renaming hardware and pipeline as we showed previously.

do {
number of nodes++; LOOP: 1d X100, 8(X10)

current = current->next; gddi Xig, ig, EOOP
} while ( current != NULL ) ne , X0,

A. 9
B. 1

m o O
W N = O
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CMP advantages

- How many of the following are advantages of CMP over traditional superscalar processor
® CMP can provide better energy-efficiency within the same area
@ CMP can deliver better instruction throughput within the same die area
(chip size)
® CMP can achieve better |ILP for each running thread

@ CMP can improve the performance of a single-threaded application without
modifying code

moOowre
A WN-—-O

170



How good is SS/O000/ROB with this code?

- Consider the following dynamic instructions

® 1d X1, 0(X10)

® addi X10, X10, 8
® add X20, X20, X1
® bne X100, X2, LOOP

Assume a superscalar processor with issue width as 2 & unlimited physical registers
that can fetch up to 4 instructions per cycle, 3 cycles to execute a memory instruction
and the loop will execute for 10,000 times, what's the average CPI?

A. 0.5
B. 0.75
C.~
D. 1.25
E. 1.5

171



Amdahl’'s Law on Multicore Architectures

- Regarding Amdahl’s Law on multicore architectures, how many of the following statements
Is/are correct?

® If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, single-core performance does not matter
anymore

® With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

moOoOwxz
AwN = O
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Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache
@ Critical word first and early restart
® Prefetching
@ Write buffer
A. O

moow
A WN =
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Virtual indexed, physical tagged cache limits the cache size

- If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the system use 4K pages.

A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way
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Power & Energy

- Regarding power and energy, how many of the following statements

are correct?
® Loweringt
@ Loweringt
® Loweringt

ne power consumption helps extending the battery life
ne power consumption helps reducing the heat generation

ne energy consumption helps reducing the electricity bill

@ A CPU with 10% utilization can still consume 33% of the peak power

A. O

B.
C.
D.
E.

A WN =
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MS' “Configurable Clouds”

- Regarding MS' configurable clouds that are powered by FPGAs, please identify how
many of the following are correct

® EachF

@ EachF
networ

PGA is dedicated to one machine

PGA is connected through a network that is separated from the data center
K

® FPGA can deliver shorter average latency for AES-CBC-128-SHA1 encryption and
decryption than Intel’s high-end processors

@ FPGA-accelerated search queries are always faster than a pure software-based
datacenter

moowx
AWN =0
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Free-answer questions



Performance evaluation with cache

- Consider the following cache configuration on RISC-V processor:

-1 D-L1 L2 DRAM
size 32K 32K 256K Big enough
block size 64 Bytes 64 Bytes 64 Bytes 4KB pages
associativity PRV 2-way 8-way

. 1 cycle (no penalty if 1 cycle (no penalty
access time it's a hit) i it's a hit) 10 cycles 100 cycles
local 2o, 10%, 20% dirty 15% (i.e., 15% of L1 misses, also

miss rate

miss in the L2), 30% dirty

Write policy N/A Write-back, write allocate
cEeEENEREE LRU replacement policy
The application has 20% branches, 10% loads/stores, 70% integer instructions.

1. Assume that TLB miss rate is 2% and it requires 100 cycles to handle a TLB miss. Also assume that the
branch predictor has a hit rate of 87.5%, what's the CPI of branch, L/S, and integer instructions? What is
the average CPI?

2. What if a load/store instruction becomes a load/store + an integer instruction to avoid address calculation?
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Branch prediction

- For each labeled branch in the code below (except the backward branch on the outer loop) which of the
following branch predictors will perform best.

- Global history (3 bits) to select a 2-bit predictor
- PC to select a 2-bit predictor

. static (you can choose the direction)
for (j = 0; j < 100; j++) {
for (1 = 0; 1 < 100;1i++) {

// rand3() returns 1,2, or 3 with equal probability
if(rand3() <= 1) { // A
b

if(1 % 3 == 0) {// B
¥

if (1 % 2 ==10) {// C
ks

if(1 % 6 ==0) {// D
¥

if (1 < 4) { // E
¥

¥ //F
¥ 179



Pipeline diagram

- Draw the pipeline diagram for the following instructions

® Loop:LD F1,0(X3)
® FADD  F2,F1,F4
® -MUL  F1,F2,F6
® ~ADD F1,F1,F5
® ~FADD F7/,F/7,F1
® ADD X2,X2,-1
@ BNEZ X2,Loop

©)

ADDI Xé6,X6, 4
® LD F3,0(X6)

- Assume we have a single-issue, in-order /7-stage pipeline: IF-ID-EX1/MEM1-EX2/MEM?2-
EX3/MEM3-EX4/MEM4-WB, predict taken, branch resolved in EX2

- If the loop is taken twice
- How many cycles would it take if the loop is taken 100 times? What's the average CPI?
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Register renaming

- Draw the pipeline diagram for the following instructions
@ Loop:LD F1,0(X3)
©) FADD F2,F1,F4

® FMUL F1,F2,F6
® FADD F1,F1,F5
® FADD F7,F7,F1
® ADD X2,X2,-1
@ BNEZ X2,Loop
® ADDI Xé6,X6,4
® LD F3,0(X6)

- Assume we have a dual-fetch, dual-issue, out-of-order pipeline where
- INT ALU takes 1 cycle
- FP ALU takes 3 cycles
- MEM pipeline: AR-AQ-MEM — 3 cycles in total
- BR takes 1 cycle to resolve
- If the loop is taken twice, how many cycles it takes to issue all instructions?

- If the loop is taken 100 times, what's the average CPI?
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Performance gain

- Your system has a memory latency of 160ns. You have setup timing on a carefully constructed loop to learn
more about your system. The loop is below
@ Loop:LD F1,0(X3)
©) FADD F2,F1,F4

® FMUL F1,F2,F6
® FADD F1,F1,F5
® FADD F7,F7,F1
® ADD X2,X2,-1
@ BNEZ X2,Loop
® ADDI Xé6,X6,4
® LD F3,0(X6)

- On an out-of-order machine, your runtime is slightly greater than 20ns per loop iteration, what is the primary
reason for this improvement (choose the best answer)?
A. Instruction Level Parallelism
B. Memory Level Parallelism
C. Thread Level Parallelism
D. Advanced Branch Prediction
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Best cache configuration

- Consider the following code. Integers and pointers are both 4 bytes.
struct List {

List * next:

int data;

void foo(List *head) {
List * cur = head;
while(cur->next) {
CUr = cur—->next;

- For a given total cache size, what cache line size will provide the best performance for this code?
(hint: Your answer should not depend on the number of lines or the associativity of the cache.)
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Reverse caching

- Below, we have given you four different sequences of addresses generated by a
program running on a processor with a data cache. Cache hit ratio for each sequence
Is also shown below. Assuming that the cache is initially empty at the beginning of
each sequence, find out the following parameters of the processor's data cache

(ensure that you sufficiently explain your answer)
- Associativity (1, 2, or 4 ways)
- Block size (1, 2, 4, 8, 16, or 32 bytes)
- Total cache size (256B, or 512B)
- Replacement policy (LRU or FIFO)
1. Address Sequence 1: [0, 2, 4, 8, 16, 32] Hit Ratio: 0.33
2. Address Sequence 2: [0, 512,1024,1536, 2048, 1536, 1024, 512, O] Hit Ratio: 0.33

3. Address Sequence 3: [0, 64,128, 256, 512, 256, 128, 64, O] Hit Ratio: 0.33
4. Address Sequence 4: [0, 512,1024, 0, 1536, 0, 2048, 512] Hit Ratio: 0.25

184



Open-ended questions



Code and cache miss rate

- Assume my cache has 16KB capacity, 16 byte block size and is
2-way set associative. Integers are 4 bytes. Give the C code for
a loop that has a very poor hit rate in this cache but whose hit
rate raises to almost 100% if we double the capacity to 32KB.
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Branch predictions

- Increasing the size of a branch predictor typically reduces the
chances of "aliasing" -- two branches sharing the same predictor.
Usually, sharing results in negative interference (decreased prediction
accuracy), but sometimes it can result in positive interference.
Assuming a PC-indexed table of 2-bit predictors

- Give an example of two branches (eg, show the T, N patterns for each, and

how they are interleaved) that would result in positive interference
(iIncreased overall prediction accuracy).

- Give an example of two branches that would result in negative
iInterference.

- Explain why most of the time you would expect to see negative
Interference with real code.
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SMT v.s.CMP

- Both CMP & SMT exploit thread-level or task-level parallelism. Assuming
both application X and application Y have similar instruction combination,
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better?
A. P1
B. P2
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Other open-ended questions

. Given the instruction front-end is decoupled from the backend
of the pipeline ALUs, do you think ISA still affect performance?

- What features in modern processor architecture enable the
potential of "Meltdown and Spectre” attacks? Should we live
without those features?

- What compiler optimizations would not be effective given OoO
execution hardware?

- If you're asked to build an Xeon Phi type processor where each
core also has many-way SMT, are you going to give the
processor more cache or better branch predictor?
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Other open-ended questions

- Can you name and briefly describe a few “trends” in the dark
silicon era?

- If you're asked to designh a machine learning hardware, what will
you do?

. Can we focus on improving the throughput of computing
iInstead of latency? Can you give an example on what type of
applications will not work well in this way
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