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• Power is the direct contributor of “heat” 
• Packaging of the chip 
• Heat dissipation cost 
• Power = PDynamic + Pstatic 

• Energy = P * ET 
• The electricity bill and battery life is related to energy! 
• Lower power does not necessary means better battery life if the 
processor slow down the application too much
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Power v.s. Energy



• Given a scaling factor S
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Dennardian Broken
Parameter Relation Classical Scaling Leakage Limited

Power Budget 1 1
Chip Size 1 1

Vdd (Supply Voltage) 1/S 1
Vt (Threshold Voltage) 1/S 1/S 1
tex (oxide thickness) 1/S 1/S

W, L (transistor 
dimensions)

1/S 1/S
Cgate (gate capacitance) WL/tox 1/S 1/S
Isat (saturation current) WVdd/tox 1/S 1
F (device frequency) Isat/(CgateVdd) S S

D (Device/Area) 1/(WL) S2 S2

p (device power) IsatVdd 1/S2 1
P (chip power) Dp 1 S2

U (utilization) 1/P 1 1/S2



Dark Silicon and the End of Multicore 
Scaling

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger 
University of Washington, University of Wisconsin—Madison, University of Texas at Austin, 

Microsoft Research
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Power consumption to light on all transistors
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• If we are able to cram more transistors within the same chip area (Moore’s law continues), 
but the power consumption per transistor remains the same. Right now, if we power the 
chip with the same power consumption but put more transistors in the same area because 
the technology allows us to. How many of the following statements are true? 
က: The power consumption per chip will increase 
က< The power density of the chip will increase 
က> Given the same power budget, we may not able to power on all chip area if we maintain the 

same clock rate 
က@ Given the same power budget, we may have to lower the clock rate of circuits to power on all 

chip area 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What happens if power doesn’t scale with process technologies?



Clock rate improvement is limited nowadays
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Solutions/trends in dark silicon era
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• Aggressive dynamic voltage/frequency scaling 
• Throughout oriented — slower, but more 
• Just let it dark — activate part of circuits, but not all 
• From general-purpose to domain-specific — ASIC
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Trends in the Dark Silicon Era



Aggressive dynamic frequency 
scaling
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More cores per chip, slower per core
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• The power consumption due to the switching of transistor 
states 

• Dynamic power per transistor 

• α: average switches per cycle 
• C: capacitance 
• V: voltage 
• f: frequency, usually linear with V 
• N: the number of transistors
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Dynamic/Active Power

Pdynamic ∼ α × C × V2 × f × N



• You may use cat /proc/cpuinfo to see all the details of your 
processors 

• You may add “| grep MHz” to see the frequencies of your cores 
• Only very few of them are on the boosted frequency
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Demo



• The power consumption due to leakage — transistors do not 
turn all the way off during no operation 

• Becomes the dominant factor in the most advanced process 
technologies.  

• N: number of transistors 
• V: voltage 
• Vt: threshold voltage where 
transistor conducts (begins to switch)
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Static/Leakage Power

Pleakag e ∼ N × V × e−VtHow about static power?



Slower, but more
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Single-ISA Heterogeneous Multi-Core 
Architectures: The Potential for Processor Power 

Reduction
Rakesh Kumar, Keith Farkas, Norm P. Jouppi, Partha Ranganathan, Dean M. Tullsen.

University of California, San Diego and HP Labs
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• You fit about 5 EV5 cores within the same area of an EV6 
• If you build a quad-core EV6, you can use the same area to 

• build 20-core EV5 
• 3EV6+5EV5
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Areas of different processor generations



• Energy * delay = Power * ET * 
ET = Power * ET2

!22

Energy-delay
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• Regarding “Single-ISA Heterogeneous Multi-Core Architectures”, how many of the 
following statements is/are correct? 
က: You need to recompile and optimize the binary for each core architecture to exploit the thread-

level parallelism in this architecture 
က< For a program with limited thread-level parallelism, single ISA heterogeneous CMP would 

deliver better or at least the same level of performance than homogeneous CMP 
က> For a program with rich thread-level parallelism, single ISA heterogeneous CMP would deliver 

better or at least the same level of performance than homogeneous CMP built with older-
generation cores 

က@ Spending more time on older-generation cores would always lead to better energy-delay 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

!24

Single ISA heterogeneous CMP



4EV6 v.s. 20 EV5 v.s. 3EV6+5EV5
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ARM’s big.LITTLE architecture
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4EV6 v.s. 20 EV5 v.s. 3EV6+5EV5
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Xeon Phi
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An Overview of Kepler GK110 and GK210 Architecture 
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing 

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute 

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly 

less power and generating much less heat output.  

GK110 and GK210 are both designed to provide fast double precision computing performance to 

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU 

architecture, which is designed primarily for fast graphics performance and single precision consumer 

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32 

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing 

double precision calculations at a rate of up to 1/3 of single precision compute performance. 

Full Kepler GK110 and GK210 implementations include 15 SMX units and six 64‐bit memory controllers.  
Different products will use different configurations.  For example, some products may deploy 13 or 14 

SMXs. Key features of the architecture that will be discussed below in more depth include: 

x The new SMX processor architecture 

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at 

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O 

implementation. 

x Hardware support throughout the design to enable new programming model capabilities 

x GK210  expands upon GK110’s on-chip resources, doubling the available register file and shared 

memory capacities per SMX. 

 

SMX (Streaming 
Multiprocessor)

Thread 
scheduler

GPU 
global 

memory

High-
bandwidth 

memory 
controllers

The rise of GPU
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Streaming Multiprocessor (SMX) Architecture 

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most 
powerful multiprocessor we’ve built for double precision compute workloads. 

  

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units 
(LD/ST). 

 

 

Each of these performs 
the same operation, but 
each of these is also a 

“thread” A total of 16*12 = 192 cores!



Just let it dark
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NVIDIA’s Turing Architecture
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Programming in Turing Architecture
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cublasErrCheck(cublasSetMathMode(cublasHandle, CUBLAS_TENSOR_OP_MATH)); 

convertFp32ToFp16 <<< (MATRIX_M * MATRIX_K + 255) / 256, 256 >>> (a_fp16, a_fp32, 
MATRIX_M * MATRIX_K); 
   convertFp32ToFp16 <<< (MATRIX_K * MATRIX_N + 255) / 256, 256 >>> (b_fp16, b_fp32, 
MATRIX_K * MATRIX_N); 

cublasErrCheck(cublasGemmEx(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, 
                MATRIX_M, MATRIX_N, MATRIX_K, 
                &alpha, 
                a_fp16, CUDA_R_16F, MATRIX_M, 
                b_fp16, CUDA_R_16F, MATRIX_K, 
                &beta, 
                c_cublas, CUDA_R_32F, MATRIX_M, 
                CUDA_R_32F, CUBLAS_GEMM_DFALT_TENSOR_OP)); 

Use tensor cores

Make them 16-bit

call Gemm



NVIDIA’s Turing Architecture
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You can only use either type of these ALUs, but not all of them



The rise of ASICs
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• This is what we need in RISC-V in each iteration
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Say, we want to implement a[i] += a[i+1]*20

ld   X1, 0(X0) 
ld   X2, 8(X0) 
add  X3, X31, #20 
mul  X2, X2, X3 
add  X1, X1, X2 
sd   X1, 0(X0)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX
ID
IF

WB
MEM
EX

WB
MEM WB

IDIF EX MEM WB



This is what you need for these instructions
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Specialize the circuit
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Specialize the circuit
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Specialize the circuit
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Specialize the circuit
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Rearranging the datapath
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ld   X1, 0(X0) 
ld   X2, 8(X0) 
add  X3, X31, #20 
mul  X2, X2, X3 
add  X1, X1, X2 
sd   X1, 0(X0)



The pipeline for a[i] += a[i+1]*20
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Multiplier
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a[0] += a[1]*20a[1] += a[2]*20a[2] += a[3]*20a[3] += a[4]*20Each stage can still 
be as fast as the 

pipelined 
processor

But each stage is 
now working on 

what the original 6 
instructions would 

do



A Cloud-Scale Acceleration Architecture
Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael 
Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd 

Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, 
Doug Burger 
Microsoft
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• Field Programmable Gate Array 
• An array of “Lookup tables (LUTs)”  
• Reconfigurable wires or say interconnects of LUTs 
• Registers 

• An LUT 
• Accepts a few inputs 
• Has SRAM memory cells that store all possible outputs 
• Generates outputs according to the given inputs 

• As a result, you may use FPGAs to emulate any kind of gates or 
logic combinations, and create an ASIC-like processor
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FPGA
FPGA



Configurable cloud
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TOR TOR

L1

Hardware acceleration plane

Traditional software (CPU) server 
plane

SQL
Deep neural 
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Web search 
ranking GFT Offload

Web search 
ranking

FPGA acceleration board

2-socket CPU server

Network switch (top of rack, cluster)

NIC – FPGA link

FPGA – switch link

L2

TOR

Interconnected FPGAs form a 
separate plane of computation 

Can be managed and used 
independently from the CPU

TOR

L1

TOR



• Foundation for all accelerators 
• Includes PCIe, Networking and DDR IP 
• Common, well tested platform for development 

• Lightweight Transport Layer 
• Reliable FPGA-to-FPGA Networking 
• Ack/Nack protocol, retransmit buffers  
• Optimized for lossless network 
• Minimized resource usage
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• Local: Great service acceleration 
• Infrastructure: Fastest cloud network 
• Remote: Reconfigurable app fabric (DNNs)
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Use cases



• Tail Latency == 1 in X servers being slow 
• Why is this bad? – Each user request 
now needs several servers – Changes of 
experience tail is much higher 

• If 99% of the server’s response time is 
10ms, but 1% of them take 1 second to 
response 
• If the user only needs one, the mean is OK 
• If the user needs 100 partitions from 100 
servers, 63% of the requests takes more 
than 1 seconds.
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Tail latencies



• Lower & more consistent 99.9th tail latency 
• In production for years
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5 day bed-level latency

99.9% software latency

99.9% FPGA latency
average FPGA query load average software load

Day 1 Day 2 Day 3 Day 4 Day 5

1.0

2.0

3.0

4.0

5.0

6.0

7.0

N
or

m
al

iz
ed

 L
oa

d 
&

 L
at

en
cy

Q
ue

ry
 L

at
en

cy
 9

9.
9t

h 
 

(n
or

m
al

iz
ed

 t
o 

lo
w

es
t 

la
te

nc
y)

0.0

0.6

1.2

1.8

2.3

2.9

3.5

Query Load  
(normalized to lowest throughput)

0 1.5 3 4.5 6

Software
Local FPGA

Even at 2× query load, 
accelerated ranking has 
lower latency than 
software at any load



• Software defined networking 
• Generic Flow Table (GFT) rule based packet rewriting 
• 10x latency reduction vs software, CPU load now <1 core 
• 25Gb/s throughput at 25μs latency – the fastest cloud network 

• Capable of 40 Gb line rate encrypt and decrypt 
• On Haswell, AES GCM-128 costs 1.26 cycles/byte[1] (5+ 2.4Ghz cores to 
sustain 40Gb/s) 

• CBC and other algorithms are more expensive 
• AES CBC-128-SHA1 is 11μs in FPGA vs 4μs on CPU (1500B packet) 
• Higher latency, but significant CPU savings
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Accelerated networking
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• Economics: consolidation 
• Most accelerators have more 
throughput than a single host requires 

• Share excess capacity, use fewer 
instances 

• Frees up FPGAs for other use services 
• DNN accelerator 

• Sustains 2.5x busy clients in 
microbenchmark, before queuing 
delay drives latency up
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• Regarding MS’ configurable clouds that are powered by FPGAs, please identify how 
many of the following are correct 
က: Each FPGA is dedicated to one machine 
က< Each FPGA is connected through a network that is separated from the data center 

network  
က> FPGA can deliver shorter average latency for AES-CBC-128-SHA1 encryption and 

decryption than Intel’s high-end processors 
က@ FPGA-accelerated search queries are always faster than a pure software-based 

datacenter 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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MS’ “Configurable Clouds”



• Which of the following is the main reason why Microsoft 
adopts FPGAs instead of the alternatives chosen by their 
rivals? 
A. Cost 
B. Performance 
C. Scalability 
D. Flexibility 
E. Easier to program
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Why FPGAs?



Why FPGA?
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Flexible



• Local, infrastructure and remote acceleration 
• Gen1 showed significant gains even for complex services (~2x for Bing) 
• Needs to have clear benefit for majority of servers: infrastructure 

• Economics must work 
• What works at small scale doesn’t always work at hyperscale and vice versa 
• Little tolerance for superfluous costs 
• Minimized complexity and risk in deployment and maintenance 

• Must be flexible 
• Support simple, local accelerators and complex, shared accelerators at the 
same time 

• Rapid deployment of new protocols, algorithms and services across the cloud
!64

Summary: What makes a configurable cloud?



In-Datacenter Performance Analysis of a 
Tensor Processing Unit 

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. 
Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. 
Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na- garajan, 
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. 

Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal- ter, W. Wang, E. Wilcox, and D. H. Yoon
Google Inc.
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What TPU looks like
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TPU Floorplan
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TPU Block diagram
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• Regarding TPUs, please identify how many of the following 
statements are correct. 
က: TPU is optimized for highly accurate matrix multiplications 
က< TPU is designed for dense matrices, not for sparse matrices 
က> A majority of TPU’s area is used by memory buffers 
က@ All TPU instructions are equally long 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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TPU (Tensor Processing Unit)



Experimental setup
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Performance/Rooflines
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Tail latency
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What NVIDIA says
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https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/
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• Fallacy: NN inference applications in data centers value throughput as much as 
response time.  

• Fallacy: The K80 GPU architecture is a good match to NN inference — GPU is 
throughput oriented  

• Pitfall: For NN hardware, Inferences Per Second (IPS) is an inaccurate summary 
performance metric — it’s simply the inverse of the complexity of the typical inference 
in the application (e.g., the number, size, and type of NN layers) 

• Fallacy: The K80 GPU results would be much better if Boost mode were enabled — 
Boost mode increased the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by 1.3X. The net gain in 
performance/Watt is 1.1X, and thus Boost mode would have a minor impact on LSTM1 

• Fallacy: CPU and GPU results would be comparable to the TPU if we used them more 
efficiently or compared to newer versions.
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Fallacies & Pitfalls



• Pitfall: Architects have neglected important NN tasks. 
• CNNs constitute only about 5% of the representative NN workload for Google. More 
attention should be paid to MLPs and LSTMs. Repeating history, it’s similar to when 
many architects concentrated on floating- point performance when most mainstream 
workloads turned out to be dominated by integer operations. 

• Pitfall: Performance counters added as an afterthought for NN hardware.  
• Fallacy: After two years of software tuning, the only path left to increase TPU 
performance is hardware upgrades.  

• Pitfall: Being ignorant of architecture history when designing a domain-specific 
architecture 
• Systolic arrays 
• Decoupled-access/execute 
• CISC instructions
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Fallacies & Pitfalls



Final words
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• Computer architecture is more important than you can ever imagine 
• Being a “programmer” is easy. You need to know architecture a lot to be a 
“performance programmer” 
• Branch prediction 
• Cache 

• Multicore era — to get your multithreaded program correct and perform well, you 
need to take care of coherence and consistency 

• We’re now in the “dark silicon era” 
• Single-core isn’t getting any faster 
• Multi-core doesn’t scale anymore 
• We will see more and more ASICs 
• You need to write more “system-level” programs to use these new ASICs. 

• Interested in latest architecture/system research? Joining EE260 next quarter
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Conclusion



• Final Exam next Monday @ 8am 
• Homework #4 due tonight 
• iEval submission — attach your “confirmation” screen, you get 
an extra/bonus homework 

• Office hour for Hung-Wei this week — MWF 1p-2p
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Announcement



• Top — Yu-Ching Hu 
• Runner-up — Irfan Ahmed Vezhapillil Aboobacker 
• Honorable mention — Abenezer Wudenhe
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Helper thread contest



Thank you all for this great 
quarter!


