
First Day of CS203:
Advanced Computer Architecture

Hung-Wei Tseng

CS203: Let’s say something!

!2

What’s your
name?

What’s your favorite
topic in computer

science?
Why’re you

taking CS203

 3

CS203: Let’s say something!

!4

What’s your
name?

What’s your favorite
topic in computer

science?
Why’re you

taking CS203

CS203: Let’s say something!

!5

What’s your
name?

What’s your favorite
topic in computer

science?
Why’re you

taking CS203

!6

2018 Turing Award

!7

John Hennessy
David Patterson

Hung-Wei
Tseng

 8

Computer Architecture

Enables

Deep Learning

Computer architecture also enables …

!9

What’s computer architecture?

!10

The manner in which the components
of a computer or computer system are

organized and integrated

What’re those “components”?

!11

Desktop Computer

!12

Processor
DRAM

I/O
 C

on
ne

ct
or

s (
e.

g.
,

ke
yb

oa
rd

/m
ou

se
)

Peripherals
(e.g., GPUs)

Pe
rip

he
ra

ls

(e
.g

., H
.D

.D
.)

Server

!13

ProcessorProcessorProcessorProcessor

DRAM DRAM DRAM DRAM

DRAMDRAMDRAMDRAM

Peripher
als (e.g.,

GPUs)

Pe
rip

he
ra

ls
 (e

.g
.,

H
.D

.D
.)

I/O Connectors (e.g.,
keyboard/mouse)

MacBook Pro 13”

!14

Processor +
GPU

DRAM
SSD

WiFi Modules/
CodecsI/O

Connectors

iPhone 11

!15

Processor
+GPU
DRAM

SSD

Network
Modules/Codecs

Network
Modules/

Codecs

Power
Management

IC

I/O
Connectors

I/O
Connec

tors

Play Station 4

!16

Processor
+ GPU

DRAM

DRAM

DRAM

DRAM Peripher
als (e.g.,
codecs)

Pe
rip

he
ra

ls

(e
.g

., H
.D

.D
.)

I/O
 C

on
ne

ct
or

s
(e

.g
., H

DM
I)

Nintendo Switch

!17

Processor
+ GPU

DR
AM

Network
Modules/

Codecs

Peripherals
(e.g., memory

cards.)

I/O Connectors
(e.g., HDMI)

Tesla Model 3

!18

Proces
sor

Proces
sorDR

AM

DR
AM

DR
AM

DR
AM

SSD

Po
w

er
 M

an
ag

em
en

t
IC

SSDI/O
 C

on
ne

ct
or

s

I/O
 C

on
ne

ct
or

s

Processors and memory modules are everywhere!

!19

Processors
Memory

Why are “Processor” & “Memory”
everywhere?

!20

von Neumman Architecture

!21

Processor

Memory

Storage

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

How my “C code” becomes a “program”

!22

Source Code

Compiler
(e.g., gcc)

Program
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns

Linker

Objects, Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507In

st
ru

ct
io

ns

How my “Java code” becomes a “program”

!23

Compiler
(e.g., javac)

Jave Bytecode (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a
00130014
07001507In

st
ru

ct
io

ns

Source Code

Java Virtual
Machine (e.g., java)

Other (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507In

st
ru

ct
io

ns

How my “Python code” becomes a “program”

!24

Interpreter
(e.g., python)

Source Code

Program
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns

Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507In

st
ru

ct
io

ns

Challenges of
von Neumann Architecture

!25

!26

Moore’s Law

(1) Moore, G. E. (1965), 'Cramming more components onto integrated circuits', Electronics 38 (8) .

(1)

Moore’s Law is the most
important driver for

historic CPU performance
gains

ICs are increasingly popular

ICs are well established

ICs are more reliable

ICs are small

ICs are easy to manufacture
and they’re getting smaller and

smaller!

Heat is a solvable issue

Designing ICs can be easy

ICs are widely applicable

• The number of transistors we can build in a fixed area of silicon doubles
every 12 ~ 24 months.

!27

Moore’s Law

(1) Moore, G. E. (1965), 'Cramming more components onto integrated circuits', Electronics 38 (8) .

(1)
Tr

an
sis

to
r C

ou
nt

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000

10,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Moore’s Law is the most
important driver for

historic CPU performance
gains

CPU is important but…

!28

52 %/year 23 %/
year

12 %/
year

3.5 %/
year

 29

Multicore processors

!30

Intel P4
(2000)
1 core

Intel Nahalem
(2010)
4 cores

Nvidia Tegra 3
(2011)
5 cores

AMD Athlon 64 X2
(2005)
2 cores

SPARC T3
(2010)

16 cores

AMD Zambezi
(2011)

16 cores

Heterogeneous Computer Architecture

!31

FPGA

TPU

GPU

Memory

Storage

Processor

Performance gap between Processor/Memory

!32

Heterogeneous Computer Architecture

!33

FPGA

TPU

GPU

Memory

Storage

Processor

Slow
memory

Data
movements

Why should I care about
“Computer Architecture”

!34

What do you care when you’re writing a program?

!35

Algorithms
Data Structures

Software Engineering
Programming Languages

User Interfaces

Computer Architecture

Demo (1)

!36

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

O(nlog2n)

O(n)
if option is set to 1:

 otherwise, O(n):

O(nlog2n)

O(n)

Merge Sort
Demo (2) — merge sort v.s. bitonic sort

!37

O(nlog2n)
Bitonic Sort

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

O(nlog2
2n)

 38

 39

? ? ? ?

 40

Thinking about the washlet

!41

Or a Tesla

!42

What’s going to be in the class?

!43

Heterogeneous Computer Architecture

!44

FPGA

TPU

GPU

Memory

Storage

Processor
Program

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

00c2e800

509cbd23

Performance
• Performance

measurement
• What affects

performance
• Amdahl’s Law
• Metrics

Memory
• Memory

hierarchy
• Hardware

optimizations
• Software

optimizations

Processor
• Pipelining
• OoO Execution
• Branch

predictions
• Software

optimizations

Parallelism
• Parallel

hardware
• Thread-level
• Data-level
• Accelerators
• Software

optimizations

Tentative Schedule

!45

Topic Reading Due Note

09/30/2019 Introduction

10/02/2019 Performance Evaluation (I) Chapter 1

Cramming More Components Onto Integrated Circuits, G.E. Moore, Proceedings of the IEEE 86(1):82-85, Jan 1998

10/07/2019 Performance Evaluation (II) Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers 
Amdahl's Law in the Multicore Era

10/09/2019 Memory Hierachy Appendix B.1-B.4

10/14/2019 Homework #1 Move to 10/28/2019 as midterm
review

10/16/2019 Move to 11/18/2019

10/21/2019 Memory Hierachy (II) Chapter 2.1-2.3

10/23/2019 Memory Hierachy (III)

10/28/2019 Basic Processor Design Appendix C.1, Appendix C.2, Chapter 3.1 Homework #2

10/28/2019 Midterm Review 7pm @ WCH 143

10/30/2019 Branch prediction Chapter 3.3

An analysis of correlation and predictability: what makes two-level branch predictors work

Retrospective: a study of branch prediction strategies

11/04/2019 Midterm

11/06/2019 Branch prediction

11/13/2019 OOO Scheduling Chapter 3.4 Homework #3

11/18/2019 OOO Scheduling K. C. Yeager, "The Mips R10000 superscalar microprocessor," in IEEE Micro, vol. 16, no. 2, pp. 28-41, April 1996.

R. E. Kessler, "The Alpha 21264 microprocessor," in IEEE Micro, vol. 19, no. 2, pp. 24-36, March-April 1999.

11/18/2019 OOO Scheduling 7pm @ WCH 143

11/20/2019 SMT Chapter 3.11

Exploiting choice: instruction fetch and issue on an implementable simultaneous multithreading processor

Using a user-level memory thread for correlation prefetching

11/25/2019 CMP The case for a single-chip multiprocessor Homework #4

11/27/2019 Dark Silicon Dark silicon and the end of multicore scaling 
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction

12/02/2019 TPU, FPGA In-Datacenter Performance Analysis of a Tensor Processing Unit

A Configurable Cloud-Scale DNN Processor for Real-Time AI=

Project

12/04/2019 Final Review

12/09/2019 Final Exam 8a-11a
Subject to

change You need to complete the reading of H&P and papers Check due dates here

Learning eXperience

!46

Most lectures today …

!47

Me

You

I expect the lecture to be…

!48

• I’ll bring in activities to ENGAGE you in exploring your understanding of
the material
• Let you practice
• Bring out misconceptions
• Let us LEARN from each other about difficult parts.

• You will be GET CREDIT for your efforts to learn in class
• By answering questions with a clicker (Poll Everywhere)
• Answer 80% of the clicker questions in class, get 10% of your final grade

!49

Peer instruction

• Before the lecture — You need to complete the required reading
• During the lecture — I’ll bring in activities to ENGAGE you in exploring

your understanding of the material
• Popup questions
• Individual thinking — use your clicker to express your opinion
• Group discussion — use your clicker to express your group’s opinion
• Whole-classroom discussion — we would like to hear from you

!50

Peer instruction

Read Think Discuss

• Reading assignments from
• Computer Architecture: A Quantitative Approach (6th Edition)

by John Hennessy and David Patterson
• Papers

• Reading quizzes:
• On iLearn
• Due before the lecture, usually once a week. Check the schedule on our

webpage
• You will have two chances. We take the average
• No time limitation until the deadline
• No make up reading quizzes — we will drop probably one or two lowest at least

!51

Before lectures: reading quizzes

https://ilearn.ucr.edu

About the time of the Lecture — Setup polling everywhere

!52

Download the
“Poll

Everywhere”
app

Login through the app using
UCRNetID@ucr.edu

Join
PollEv.com/

hungweitseng

http://PollEv.com/hungweitseng
http://PollEv.com/hungweitseng

• Assignments
• The best way to prepare for midterm and final
• Publish on the website
• Submit through iLearn

• Project
• C/C++ programming
• Individual project
• It’s going to be a “contest” — the winner will have a prize

!53

Assignments and term project

Why papers?

!54

• Papers are written by authors who create/invent these artifacts
• First-hand information
• Not being cooked by media/press…

• Papers are reviewed based on originality
• Papers are reviewed by experts without conflict of interests

!55

No alternative facts

• Papers contain design principles that are missing in your textbook or
online documents

• You can apply these design principles and the skills of analyzing these
principles to anywhere (e.g. you will surprisingly find how the paper you
read next week affects software engineering)

• You can learn those whys for those proposed work

!56

Papers give you insights!

Industry cares

!57

• Every top 20 CS MS/PhD program has their students reading papers in
graduate-level classes

• You have to compete with them when you’re on the market
• You need some context to prove that you’re also geeky enough to be one

of their colleagues

!58

Make yourself more valuable

• For each paper, you should identify the followings:
• Why?

• Why should we care about this paper?
• What’s the problem that this paper is trying to address?

• What?
• What has been proposed?
• Contributions of the paper

• How?
• How does the paper accomplish the proposed idea?
• How does the result perform?

!59

How to read research papers

The most important thing when you’re  
reading/writing a paper

The second most important thing when  
you’re reading/writing a paper

They are important only if you  
want to implement the proposed idea

• What are those related papers that you read before?
• Compare with those related papers and re-exam their whys, whats and

hows
• What will you propose if you’re solving the same “why”?

!60

Recap & Brainstorm

• As a researcher
• You want to identify important problems
• You want to know what has been accomplished — don’t reinvent the wheels

• As an engineer
• You want to know if there is a solution of the design problems of your systems,

applications
• You want to know if you can apply the proposed mechanism
• You want to know how to do it

!61

Why is reading papers important

Logistics

!62

• Lectures: MW 9:30a-10:50a, Boyce 1471
• Schedule, slides on course webpage:

https://www.escalab.org/classes/cs203-2019fa/
• Discussion on piazza:

https://piazza.com/class/k12q0c5lo2v38k
• Reading quizzes, homework submissions on iLearn:

https://ilearn.ucr.edu/
• We do podcasting:

TBA

!63

Course resource

https://www.escalab.org/classes/cs203-2019fa/
https://piazza.com/class/k12q0c5lo2v38k
https://ilearn.ucr.edu/

• Website:
https://intra.engr.ucr.edu/~htseng/

• Office hour:
MW 1:00p-2:00p @ WCH 406

• E-mail: htseng+CS203@ucr.edu
• BS/MS in Computer Science,

National Taiwan University
• PhD in Computer Science,

University of California, San Diego
• Research Interests

• Intelligent storage devices
• Non-volatile memory based systems
• Near-data processing
• Anything could accelerate applications

!64

Instructor — Hung-Wei Tseng

https://intra.engr.ucr.edu/~htseng/
mailto:htseng+CS203@ucr.edu

• Office hours: TuTh 9:30a-10:30a @ WCH 110
• E-mail: shixiong.qi@email.ucr.edu

!65

Teaching Assistant — Shixiong Qi

mailto:shixiong.qi@email.ucr.edu

• Login/discussion in iLearn and piazza.
• Read the text before class!

• Computer Architecture: A Quantitative Approach (6th Edition)
by John Hennessy and David Patterson — previous editions are not supported

• I’m not going to cover everything in class, but you are responsible for all the assigned text.
• Papers

• Reading quizzes in iLearn (10%)
• Come to class (10%)

• I will cover things not in the book.
• 10% from clickers

• Homework throughout the course. (15%)
• Help to practice the concepts from each topic

• Project (10%)
• Midterm (20%)
• Cumulative final (35%)

!66

Your tasks

https://ilearn.ucr.edu
https://ilearn.ucr.edu

• You can see your grades on iLearn.

• Errors in grading
• If you feel there has been an error in how an assignment or test was graded, you have one week

from when the assignment is return to bring it to our attention. You must submit (via email to the
instructor and the appropriate TAs) a written description of the problem. Neither I nor the TAs will
discuss regrades without receiving an email from you about it first.

• For arithmetic errors (adding up points etc.)
• you do not need to submit anything in writing, but the one week limit still applies.

!67

Grading

• Don’t cheat.
• Cheating on a test will get you an F in the class and no option to drop, and a visit

with your college dean.
• Cheating on homework means you don’t have to turn them in any more, but you

don’t get points either. You will also take at least 25% penalty on the exam
grades.

• Copying solutions of the internet or a solutions manual is cheating
• They are incorrect sometimes

• Review the UCR student handbook
• When in doubt, ask.

!68

Academic Honesty

2012 Summer @ UCSD 2014 Summer @ UCSD 69

2016 Spring @ UCSD

2016 Summer @ UCSD

2016 Fall @
NC State

2017 Spring @ NC State
2017 Fall @ NC State

2018 Fall @ NC State
2018 Spring @ NC State

2019 Spring @ NC State

2019 Summer I @ UCSD

2019 Summer II @ UCSD

You
2019 Fall @ UCR

• Login piazza, iLearn
• Check our website
• Get “everywhere polling” ready
• Reading quiz due this Wednesday before class

!70

Announcements

Thank you!

!71

