
Performance (II)
Hung-Wei Tseng

Recap: von Neumman Architecture

!2

Processor

Memory

Storage

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

Recap: Definition of “Performance”

!3

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execution Time

1
Frequency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle

• The relative performance between two machines, X and Y.
Y is n times faster than X

• The speedup of Y over X

!4

Recap: Definition of “Speedup”

n =
Execution TimeX

Execution TimeY

Speedup =
Execution TimeX

Execution TimeY

Recap: demo — programmer & performance

!5

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity

Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

• Performance equation consists of the following three factors
① IC
② CPI
③ CT

 How many can a programmer affect?
A. 0
B. 1
C. 2
D. 3

!6

Recap: How programmer affects performance?

• How many instructions are there in “Hello, world!”

!7

Recap: programming languages & performance

Instruction count LOC Ranking

C 600k 6 1

C++ 3M 6 2

Java ~210M 8 5

Perl 10M 4 3

Python ~30M 1 4

• Compiler can reduce the instruction count, change CPI
— with “limited scope”

• Compiler CANNOT help improving “crummy” source code

!8

Recap: demo revisited — compiler optimization

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

Compiler can never add this — only the programmer can!

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm,

programming language, programmer
• Cycle Time (Seconds Per Cycle)

• Process Technology, microarchitecture, programmer
!9

Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program

× Cycles
Instruction × Seconds

Cycle

ET = IC × CPI × CT

Instruction Set Architecture (ISA)
& Performance

!10

• Operations
• Arithmetic/Logical, memory access, control-flow (e.g., branch,

function calls)
• Operands

• Types of operands — register, constant, memory addresses
• Sizes of operands — byte, 16-bit, 32-bit, 64-bit

• Memory space
• The size of memory that programs can use
• The addressing of each memory locations
• The modes to represent those addresses

!11

Recap: ISA — the interface b/w processor/software

Popular ISAs

!12

The abstracted “RISC-V” machine

!13

CPU
Program Counter

0x0000000000000004

Registers
X0 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 

X10 
X11 
X12 
X13 
X14 
X15 
X16 
X17 
X18 
X19 
X20 
X21 
X22 
X23 
X24 
X25 
X26 
X27 
X28 
X29 
X30 
X31

Memory

64-bit
64-bit

264 Bytes

ALU

add  
sub  
mul  
div  
 
 
 
 
 
 
and  
andi  
ori  
xori  
 
 
 
 
beq  
blt  
hal

0x0000000000000000 
0x0000000000000008 
0x0000000000000010 
0x0000000000000018 
0x0000000000000020 
0x0000000000000028 
0x0000000000000030 
0x0000000000000038

0xFFFFFFFFFFFFFFC0 
0xFFFFFFFFFFFFFFC8 
0xFFFFFFFFFFFFFFD0 
0xFFFFFFFFFFFFFFD8 
0xFFFFFFFFFFFFFFE0  
0xFFFFFFFFFFFFFFE8  
0xFFFFFFFFFFFFFFF0 
0xFFFFFFFFFFFFFFF8

lw  
ld  
sw  
sd  

FP Registers
F0 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 

F10 
F11 
F12 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 
F21 
F22 
F23 
F24 
F25 
F26 
F27 
F28 
F29 
F30 
F31

64-bit

• Definition of “Performance”
• What affects each factor in “Performance Equation”
• Instruction Set Architecture & Performance

!14

Outline

Subset of RISC-V instructions

!15

Category Instruction Usage Meaning
Arithmetic add add x1, x2, x3 x1 = x2 + x3

addi addi x1,x2, 20 x1 = x2 + 20
sub sub x1, x2, x3 x1 = x2 - x3

Logical and and x1, x2, x3 x1 = x2 & x3
or or x1, x2, x3 x1 = x2 | x3
andi andi x1, x2, 20 x1 = x2 & 20
sll sll x1, x2, 10 x1 = x2 * 2^10
srl srl x1, x2, 10 x1 = x2 / 2^10

Data Transfer ld ld x1, 8(x2) x1 = mem[x2+8]
sd sd x1, 8(x2) mem[x2+8] = x1

Branch beq beq x1, x2, 25 if(x1 == x2), PC = PC + 100
bne bne x1, x2, 25 if(x1 != x2), PC = PC + 100

Jump jal jal 25 $ra = PC + 4, PC = 100

jr jr $ra PC = $ra

The only type of instructions can access memory

Popular ISAs

!16

Complex Instruction Set
Computers (CISC) Reduced Instruction Set Computers (RISC)

• CISC (Complex Instruction Set Computing)
• Examples: x86, Motorola 68K
• Provide many powerful/complex instructions

• Many: more than 1503 instructions since 2016
• Powerful/complex: an instruction can perform both ALU and memory operations
• Each instruction takes more cycles to execute

• RISC (Reduced Instruction Set Computer)
• Examples: ARMv8, RISC-V, MIPS (the first RISC instruction, invented by the

authors of our textbook)
• Each instruction only performs simple tasks
• Easy to decode
• Each instruction takes less cycles to execute

!17

How many operations: CISC v.s. RISC

The abstracted x86 machine

!18

CPU
Registers

RAX 
RBX 
RCX 
RDX 
RSP 
RBP 
RSI 
RDI 
R8 
R9 

R10 
R11 
R12 
R13 
R14 
R15 
RIP 

FLAGS 
CS 
SS 
DS 
ES 
FS 
GS

Memory

64-bit

64-bit

264 Bytes

ALU

ADD  
SUB  
IMUL  
 
 
 
 
 
 
 
AND  
OR  
XOR  
 
 
 
 
 
JMP  
JE  
CALL  
RET

0x0000000000000000 
0x0000000000000008 
0x0000000000000010 
0x0000000000000018 
0x0000000000000020 
0x0000000000000028 
0x0000000000000030 
0x0000000000000038

0xFFFFFFFFFFFFFFC0 
0xFFFFFFFFFFFFFFC8 
0xFFFFFFFFFFFFFFD0 
0xFFFFFFFFFFFFFFD8 
0xFFFFFFFFFFFFFFE0  
0xFFFFFFFFFFFFFFE8  
0xFFFFFFFFFFFFFFF0 
0xFFFFFFFFFFFFFFF8

MOV

RISC-V v.s. x86

!19

RISC-V x86

ISA type Reduced Instruction Set
Computers (RISC)

Complex Instruction Set
Computers (CISC)

instruction width 32 bits 1 ~ 17 bytes
code size larger smaller
registers 32 16

addressing modes reg+offset

base+offset
base+index

scaled+index
scaled+index+offset

hardware simple complex

• Using the same language, the same source code, regarding the compiled program on
x86 and RISC-V, how many of the following statements is/are “generally” correct?
① The RISC-V version would contain more instructions than its x86 version
② The RISC-V version tends to incur fewer memory accesses than its x86 version
③ The RISC-V version needs a processor with higher clock rate than its x86 version if the

CPI of both versions are similar
④ The RISC-V version needs a processor with lower CPI than its x86 version if the x86

processor runs at the same clock rate
A. 0
B. 1
C. 2
D. 3
E. 4

!20

RISC-V v.s. x86
https://www.pollev.com/hungweitseng close in

• Using the same language, the same source code, regarding the compiled program on
x86 and RISC-V, how many of the following statements is/are “generally” correct?
① The RISC-V version would contain more instructions than its x86 version
② The RISC-V version tends to incur fewer memory accesses than its x86 version
③ The RISC-V version needs a processor with higher clock rate than its x86 version if the

CPI of both versions are similar
④ The RISC-V version needs a processor with lower CPI than its x86 version if the x86

processor runs at the same clock rate
A. 0
B. 1
C. 2
D. 3
E. 4

!21

RISC-V v.s. x86
https://www.pollev.com/hungweitseng close in

Amdahl’s Law — and It’s
Implication in the Multicore Era

!22

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl’s Law

!23

Speedupenhanced(f, s) = 1

(1 − f) + f
s

f — The fraction of time in the original program
s — The speedup we can achieve on f

Speedupenhanced =
Execution Timebaseline

Execution Timeenhanced

Amdahl’s Law

!24

Execution Timebaseline = 1

f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced =
Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced(f, s) = 1

(1 − f) + f
s

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

• No change
• 1.25
• 1.5
• 2
• None of the above

!25

Recap: Speedup
https://www.pollev.com/hungweitseng close in

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

• No change
• 1.25
• 1.5
• 2
• None of the above

!26

Recap: Speedup

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

• No change
• 1.25
• 1.5
• 2
• None of the above

!27

Recap: Speedup

ET = IC × CPI × CT
ETbaseline = (5 × 105) × (20% × 6 + 80% × 1) × 1

2 × 10−9 sec = 5−3

ETenhanced = (5 × 105) × (20% × 12 + 80% × 1) × 1
4 × 10−9 sec = 4−3

Speedup =
Execution Timebaseline

Execution Timeenhanced

= 5
4 = 1.25

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.

• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions
by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

!28

Replay using Amdahl’s Law

How much time in load/store?
How much time in the rest?

500000 × (0.2 × 6) × 0.5 ns = 300000 ns → 60 %
500000 × (0.8 × 1) × 0.5 ns = 200000 ns → 40 %

Speedupenhanced(f, s) = 1

(1 − f) + f
s

Speedupenhanced(40 % ,2) = 1
(1 − 40%) + 40 %

2

= 1.25 ×

 29

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

!30

Practicing Amdahl’s Law
https://www.pollev.com/hungweitseng close in

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

!31

Practicing Amdahl’s Law
https://www.pollev.com/hungweitseng close in

Speedupenhanced(95 % ,100) = 1
(1 − 95%) + 95 %

100

= 16.81 ×

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:  
 
 
 
 
 

• If optimization #1 and optimization #2 are not dis-joint: 

Amdahl’s Law on Multiple Optimizations

Speedupenhanced(fOpt1, fOpt2, sOpt1, sOpt2) = 1

(1 − fOpt1 − fOpt2) + f_Opt1
s_Opt1 + f_Opt2

s_Opt2

Speedupenhanced(fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, sOnlyOpt1, sOnlyOpt2, sBothOpt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2

= 1

(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + + f_BothOpt1Opt2
s_BothOpt1Opt2 + f_OnlyOpt1

s_OnlyOpt1 + f_OnlyOpt2
s_OnlyOpt2

!33

Practicing Amdahl’s Law (2)
• Final Fantasy XIV spends lots of time loading a

map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

https://www.pollev.com/hungweitseng close in

!34

Practicing Amdahl’s Law (2)
• Final Fantasy XIV spends lots of time loading a

map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

https://www.pollev.com/hungweitseng close in

• Final Fantasy XIV spends lots of time loading a
map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

!35

Practicing Amdahl’s Law (2)

Speedupenhanced(95 % ,5 % ,100,2) = 1
(1 − 95% − 5%) + 95 %

100 + 5 %
2

= 28.98 ×

!36

Speedup further!
• With the latest flash memory technologies,

the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

https://www.pollev.com/hungweitseng close in

!37

Speedup further!
• With the latest flash memory technologies,

the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

https://www.pollev.com/hungweitseng close in

• With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

!38

Speedup further!

Speedupenhanced(16 % , x) = 1
(1 − 16%) + 16 %

x

= 2

x = 0.47 Does this make sense?

• The maximum speedup is bounded by

!39

Amdahl’s Law Corollary #1

Speedupmax(f, ∞) = 1

(1 − f) + f
∞

Speedupmax(f, ∞) = 1
(1 − f)

• With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

!40

Speedup further!

Speedupmax(16 % , ∞) = 1
(1 − 16%)

= 1.19

2x is not possible

• If we can pick just one thing to work on/optimize

!41

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

The biggest fx would lead
to the largest Speedupmax!

• When f is small, optimizations will have little effect.
• Common == most time consuming not necessarily the most

frequent
• The uncommon case doesn’t make much difference
• The common case can change based on inputs, compiler

options, optimizations you’ve applied, etc.

!42

Corollary #2 — make the common case fast!

