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Recap: von Neumman Architecture
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Recap: Definition of “Performance”

1
P r'iror -
€ fO mance Execution Time
; ' ] Cycles
Execution Time = Lstructions % — ‘ X Seconds
Program Instruction Cvcle
ET = IC X CPIX CT /
1

1GHz = 10°Hz = —sec per cycle = 1 ns per cycle :
10° Frequency(i.e.,clock rate)
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Recap: Definition of “"Speedup”

- The relative performance between two machines, X and Y.
Y is n times faster than X

Execution Timey,

n = ; :
Execution Timey

- The speedup of Y over X

Execution Timey,

Speedup =

Execution Timey



Recap: Amdahl's Law

1
(1=f)+5

Sp eedup enhanced(f’ 5 ) —

f— The fraction of time in the original program
S — The speedup we can achieve on f

Execution Timey,, ;...

Sp eedup enhanced —

Execution Tlmeenhanced_
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Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f, ) =



Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

1
(1 Ifl)
T-7 The biggest f, would lead
l to the largest Speedup max!
(1 I]%)

(1= f4)

Speedup,. . (fi,0) =
Speedup,, . (f,, 00) =
Speedup,, . (f3,00) =
Speedup,. . (f,,0) =




Corollary #2 — make the common case fast!

- When f is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.
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Amdahl’'s Law (cont.)



ldentify the most time consuming part

- Compile your program with -pg flag
- Run the program

- It will generate a gmon.out
- gprof your_program gmon.out > your_program.prof

- It will give you the profiled result in your_program.prof
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If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media
Storage
Media CPU
- With optimization, the common becomes
uncommon.

- An uncommon case will (hopefully) become the
new common case.

- Now you have a new target for optimization.

You have to revisit "Amdahl’'s Law" every time
you applied some optimization

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,

Joel Coburn, Todor |. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010. 12
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Don’'t hurt non-common part too mach

- If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution

: ET,;, % 90 %
time  p7, =" + ET,,,x 10% x 10
ETI/IEW - 11 X ETOld
ET ET
Speedup = ETOM = - 1><ObidT = 0.91 X ....slowdown!
new . old

You may not use Amdahl’s Law for this case as Amdahl’'s Law does NOT

(1) consider overhead
(2) bound to slowdown
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Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
( 1 — ]gaamllelizable) | p
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https://www.pollev.com/hungweitseng close in 01:00

Amdahl’'s Law on Multicore Architectures

- Regarding Amdanhl’s Law on multicore architectures, how many of the following statements
Is/are correct?

® If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, single-core performance does not matter
anymore

® With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

moOoOwxz
AwN = O
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Amdahl’'s Law on Multicore Architectures

- Regarding Amdanhl’s Law on multicore architectures, how many of the following statements
is/are,correct? Speedup,,,aiiel(paraiietizabier ) =
(1 f]‘)ar?’l]lellzable) +

If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, smgle core performance does not matter
nymore Speeduppamllel(ﬁaamllellzable9 ) - ) speedup is determined by 1-f

rallelizable

With unlimited amount of parallel hardware units, the lfﬁlaxmum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

f_parallelizable X Speedup( < 1)

o >

m O|0O |9 .
A wlvl- o

m O
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Corollary #3, Corollary #4 & Corollary #5

1

Sp €€dbtp parallel (]g?amllelizable’ OO) — f_parallelizable

(1 _ﬁparallelizable) T 00
1

( 1 - ﬁyamllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- Single-core performance still matters — it will eventually dominate the
performance

- Finding more “parallelizable” parts is also important

- If we can build a processor with unlimited parallelism — the complexity
doesn't matter as long as the algorithm can utilize all parallelism —
that's why bitonic sort works!
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“"Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the

Computer, MITP, 1995
19



TFLOPS (Tera FLoating-point Operations Per Second)
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TFLOPS (Tera FLoating-point Operations Per Second)

- TFLOPS does not include instruction count!

Cannot compare different ISA/compiler
Different CPI of applications, for example, |/O bound or computation bound
If new architecture has more IC but also lower CPI?

TFLOPS clock rate

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 1080 8.228 3.5 GHz

21



Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

# of floating point instructions X 10712

TFLOPS =

Exection Time

IC X % of floating point instructions X 1072
ICX CPIx CT

% of floating point instructions X 10712

- CPIX CT IC is gone!

- Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point
Intensive
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12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

- Quote only 32-bit performance results, not 64-bit results.

- Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

- Quietly employ assembly code and other low-level language constructs.

- Scale up the problem size with the number of processors, but omit any mention of this fact.
- Quote performance results projected to a full system.

- Compare your results against scalar, unoptimized code on Crays.

- When direct run time comparisons are required, compare with an old code on an obsolete system.

- If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

- Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
- Mutilate the algorithm used in the parallel implementation to match the architecture.

- Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

- If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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nvidia.com

L[
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“ 1 NVIDIA.

Artificial Intelligence Computing Leadership from NVIDIA

CLOUD & DATA CENTER rropucTs v SOLUTIONS ~ FOR DEVELOPERS ~ TECHNOLOGIES ~

Tesla V100 AITRAINING  AIINFERENCE  HPC  DATACENTERGPUs  SPECIFICATIONS

e From recognizing speech ta training virtual personal assistants and teaching
esla
autonomous cars to drive, data scientists are taking on increasingly complex
challenges with Al. Solving these kinds of problems requires training deep learning

models that are exponentially growing in complexity, in a practical amount of time.

5.1 Hours

8X Tesla P100
15.5 Hours

0 4 8 12 16
Time to Solution in Hours-Lower Is Better With 640 , Tesla V100 is the world’s first GPU to break the 100 teraFLOPS

[TFLOPS) barrier of deep learning performance. The next generation of
NVLIink™ connects multiple V100 GPUs at up to 300 GB/s to create the world’s most
powerful computing servers. Al models that would consume weeks of computing

resources on previous systems can now be trained in a few days. With this dramatic
reduction in training time, a whole new world of problems will now be solvable with Al.
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The Most Advanced Data Center GPU Ever Built.

NVIDIA® Tesla® V100 is the world’s most advanced data center

GPU ever built to accelerate Al, HPC, and graphics. Powered by
NVIDIA Volta, the latest GPU architecture, Tesla V100 offers the
performance of up to 100 CPUs in a single GPU—enabling data
scientists, researchers, and engineers to tackle challenges that

were once thought impossible.

47X H gher Throughpu: than CPU
Cerver on Deep Learning Inference

Tesla V100 - ixa
Tesla P100 | 0
X CPU |
0 mx 20X  G0X AN 50X

Me~formanre Narmalized 1o 7ML

1 GPJ Node Replaces Up To ba CPU Noces

Noda Ran aremenrt: HPC Mivaed Woarklnad

Deep Learning Training in
Than a Worxday

125 TFLOPS

BXVIOC | 0n|y @ 16'bit
floating point
8X P10C T Tr—

lime ta So tion in Fours
Lovszr is Better

SPECIFICATIONS

o=l (ui

Tesla V100 Tesla Y100
PCle SXM2
GPU Architecture NVIDIA Volta
NVIDIA Tensor 64D
Cores
lgIVIDIA CUDA* 5,120
ores

Doub.e-Precision
Performance

7 TFLOPS 7.8 TFLOPS

Single-Precision

14 TFLOPS 15.7 TFLOPS

Performance
;""W 112TFLOPS | 125 TFLOPS

erformance
GPU Memory 32GB /16GB HBM2
Memaory
_Ba ndwidtn 90088/sec
ECC Yes
Inlerconnecl
Bandwidth 32GB/sec 300GB/sec
System Interface PCle Gen3 NVIDIA NVLink
Form Factor PCle Full

Height/Length RS

Max Pawer I




They try to tell it's the better Al hardware

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory ‘ 16 MB 24 MB . 11 MB
Power 300W /5W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S

26


https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

What's wrong with inferences per second?

- There is no standard on how they inference

- What model?
- What dataset?

- That's why Facebook is trying to promote an Al benchmark —

MLPerf

27

® Pitfall: For NN hardware, Inferences Per Second (IPS)
I8 an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary
for NN hardware, as it’s simply the inverse of the complexity of
the typical inference in the application (e.g., the number, size, and
type of NN layers). For example, the TPU runs the 4-layer MLP1
at 360,000 1PS but the 89-layer CNNI1 at only 4,700 IPS, so TPU
IPS vary by 75X! Thus, using IPS as the single-speed summary is
even more misleading for NN accelerators than MIPS or FLOPS
are for regular processors [23], so IPS should be even more
disparaged. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide
varicty of NN architectures. Fathom is a promising new attempt at
such a benchmark suite [3].




1 GPU Node Replaces Up To 54 CPU Nodes
Node Replacement: HPC Mixed Workload

Life Science
(NAMD)

Physics
(GTC)

MILC)
(SPECFEM3D]
0 20 40 60

# of CPU-Only Nodes

CPU Server: Dual Xeon Gold 6140@2.30GHz, GPU Servers: same CPU server w/ 4x V100 PCle | CUDA
Version: CUDA 9.x| Dataset: NAMD [STMV), GTC (mpi#proc.in], MILC (APEX Medium), SPECFEM3D
[four_material_simple_modell | To arrive at CPU node equivalence, we use measured benchmark with up
to 8 CPU nodes. Thenwe use linear scaling to scale beyond 8 nodes.

HIGH PERFORMANCE
COMPUTING (HPC)

HPC is a fundamental pillar of modern science. From predicting weather to
discovering drugs to finding new energy sources, researchers use large computing
systems to simulate and predict our world. Al extends traditional HPC by allowing
researchers to analyze large volumes of data for rapid insights where simulation alone
cannot fully predict the real world.

Tesla V100 is engineered for the convergence of Al and HPC. It offers a platform for
HPC systems to excel at both computational science for sci%\tific simulation and data
science for finding insights in data. By pairing NVIDIA CUDA cores and Tensor Cores
within a unified architecture, a single server with Tesla V100 GPUs can replace
hundreds of commodity CPU-only servers for both traditional HPC and Al workloads.
Every researcher and engineer can now afford an Al supercomputer to tackle their
most challenging work.
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’ 8cx

Qualcommn
snapdragon

Extreme Multitasking Performance

e Dual 4K external monitors
» 1080p device display
« / applications

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.



What's missing in this video clip?

- The ISA of the "competitor”

- Clock rate, CPU architecture, cache size, how many cores
- How big the RAM?

- How fast the disk?

30



Choose the right metric — Latency
v.s. Throughput/Bandwidth




Latency v.s. Bandwidth/Throughput

. Latency — the amount of time to finish an operation

- access time

- response time

- Throughput — the amount of work can be done within a given
period of time

- bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)

- |OPs

- MFLOPs

32



RAID — Improving throughput

MORE SPECS

Model Code (Capaci*

Aggregated Bandwidth: 500 MB/sec

QIMENSION (WxHxD)
100X 285X 6.8 (mm)

RAID
Controller

TRIM SUPPCRT

Vee

o susman Access time: 10 ms
AES 25£-_‘|it Enavotion(Class 0) TCG/Cp o
1EEE‘567(Eru;rVL@;:d drive) Ba ndW|dth 1 25 M B/S -

performancez’ SEQUENTIAL READ

Up v 58C M3/

RANDOM WRITE (4KB, QD32)
Up ™0 82,000 I0FS

Environment AVERAGE FOWER CONSUVFTION
(SYSTEM LEVEL)?
1,000 GBE: Average 2.2'WMaximum 4.0 W
2.000 GB: Average 3.0 W Maximum42w
4,0C0 GB: Average 3.1 WMaximum 5S4 w
(Burst moce)
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The performance between RAID and SSD

- Compare (X) RAID consists of 4x H.D.D. where each has 10 ms
access time and 125 MB/sec bandwidth — aggregated bandwidth
at 500 MB/Sec (Y) a single SSD with 100 us access time and
550MB/Sec bandwidth. Both accept 4KB data as the smallest

request size. If we want to load a program with TO00KB code size,
how much fasteris Y over X at least?

A. 1x—no speedup
B. 1.1x

C. 4x

D. 4.4x

E. 100x
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The performance between RAID and SSD

- Compare (X) RAID consists of 4x H.D.D. where each has 10 ms
access time and 125 MB/sec bandwidth — aggregated bandwidth
at 500 MB/Sec (Y) a single SSD with 100 us access time and
550MB/Sec bandwidth. Both accept 4KB data as the smallest
request size. If we want to load a program with TO00KB code size,
how much faster is Y over X at least?

A. 1x—no speedup

B. 1.1x
. ET — 10988 100 us = 2.5 ms
D. 4.4x 35D 051 4K '

E. 100x
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Latency and Bandwidth trade-off

- Increase bandwidth can hurt the response time of a single task
- If you want to transfer a 2 Peta-Byte video from UCSD

- 100 miles (161 km) from UCR

- Assume that you have a 100Gbps ethernet
. 2 Peta-byte over 167772 seconds = 1.94 Days
- 22.5TB in 30 minutes
- Bandwidth: 100 Gbps

37



Or...

Toyota Prius

*100 miles (161 km) from
UCSD
~— *75 MPH on highway!

-50 MPG
*Max load: 374 kg =2,770

hard drives (2TB per drive)

10Gb Ethernet

P 1.
|ate| lcy :3_5 I‘]O' IrS 2 eta bYte ovel H;; ; ;2 SeCOIIdS = 94

Days

response time

You see nothing in the first 3.5 hours

You can start watching the movie as soon as you
get a frame!
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Memory Hierarchy

Hung-Wel Tseng



Performance gap between Processor/Memory
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Performance of modern DRAM

Best case access time (no precharge) Precharge needed
Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI1 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2(y bit DDR?2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 3G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for arandom memory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged,;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.
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The impact of “slow” memory

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, consider we have DDR4 and the
program is well-behaved that precharge is never necessary — the

access latency is simply 26 ns. What's the average CPI (pick the
most close one)?

A. 9
B. 17/
C. 27
D. 35
E. 69
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The impact of “slow” memory

- Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPlis just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What's the average CPI (pick the most close one)?

A. 9

B. 1/

C. 27

D. 35

1 + 100% X (52) + 30% X 52 = 68.6 cycles
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Memory technology

Alternatives?

Typical access time

$ per GiB in 2012

SRAM semiconductor memary

0.5-2.5ns

$500-$1000

DRAM semiconductor memory 50-70ns $10-$20
Flash semiconductor memory 5,000-50,000ns $0.75-$1.00
Magnetic disk ©,000,000-20,000,000ns $0.05-$0.10

Fast, but expensive $$$
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Memory Hierarchy

fastest Processor
<1ns Processor @
Core T
~a
k Registers J 32 or 64 & '__»;s,l_ll,l‘
a few n SRAM $ KBs ~
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DRAM

Storage
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How can memory hierarchy help in performance?

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what's the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32
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How can memory hierarchy help in performance?

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what's the
average CPI (pick the most close one)?

A. 2

B. 4

14+ (1 =90%) % [100% % (52) + 30% x 52] = 7.76 cycles
D. 16

E. 32
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Announcement

. Office hour of Hung-Wei Tseng changes
— MF 1p-2p @ WCH 406

. Check

- website for slides/schedules
- ILearn for quizs/assignments/podcasts
- piazza for discussions

- No lectures next week

- Assignment #1 due 10/16
.- Reading quiz due 10/21
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