
Performance (III) & Intro/ Memory 
Hierarchy

Hung-Wei Tseng



Recap: von Neumman Architecture

!2

Processor

Memory
Storage

Program
0f00bb27 
509cbd23 
00005d24 
0000bd24 
2ca422a0 
130020e4 
00003d24 
2ca4e2b3Ins

tru
cti

on
s 00c2e800  

00000008  
00c2f000  
00000008  
00c2f800  
00000008   
00c30000  
00000008 

Da
ta

0f00bb27 
509cbd23 
00005d24 
0000bd24 
2ca422a0 
130020e4 
00003d24 
2ca4e2b3Ins

tru
cti

on
s 00c2e800  

00000008  
00c2f000  
00000008  
00c2f800  
00000008   
00c30000  
00000008 

Da
ta

0f00bb27

00c2e800

509cbd23



Recap: Definition of “Performance”

!3

Execu tionTime = Instru ctions
Prog ram × Cycles

Instru ction× Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execu tionTime

1
Frequ ency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle



• The relative performance between two machines, X and Y. 
Y is n times faster than X

• The speedup of Y over X

!4

Recap: Definition of “Speedup”

n= Execu tionTimeX

Execu tionTimeY

Speedu p = Execu tionTimeX

Execu tionTimeY



Recap: Amdahl’s Law

!5

Speedu penh anced( f, s) = 1
(1 − f ) + f

s

f — The fraction of time in the original program 
s — The speedup we can achieve on f

Speedu penh anced = Execu tionTimebaseline

Execu tionTimeenh anced



• The maximum speedup is bounded by

!6

Amdahl’s Law Corollary #1

Speedu pmax( f, ∞) = 1
(1 − f ) + f

∞

Speedu pmax( f, ∞) = 1
(1 − f )



• If we can pick just one thing to work on/optimize

!7

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedu pmax( f1, ∞) = 1
(1 − f1)

Speedu pmax( f2, ∞) = 1
(1 − f2)

Speedu pmax( f3, ∞) = 1
(1 − f3)

Speedu pmax( f4, ∞) = 1
(1 − f4)

The biggest fx would lead 
to the largest Speedupmax!



• When f is small, optimizations will have little effect. 
• Common == most time consuming not necessarily the most 

frequent 
• The uncommon case doesn’t make much difference 
• The common case can change based on inputs, compiler 

options, optimizations you’ve applied, etc.

!8

Corollary #2 — make the common case fast!



• Amdahl’s Law (cont.) 
• Fair Comparisons 
• Right Metrics 
• Introduction to Memory Hierarchy

!9

Outline



Amdahl’s Law (cont.)

!10



• Compile your program with -pg flag 
• Run the program 

• It will generate a gmon.out 
• gprof your_program gmon.out > your_program.prof 

• It will give you the profiled result in your_program.prof

!11

Identify the most time consuming part



• With optimization, the common becomes 
uncommon. 

• An uncommon case will (hopefully) become the 
new common case. 

• Now you have a new target for optimization. 
• — You have to revisit “Amdahl’s Law” every time 

you applied some optimization
!12

If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media CPU

Storage 
Media CPU

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De, 
Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International 
Symposium on Microarchitecture, 2010.



• If the program spend 90% in A, 10% in B. Assume that an 
optimization can accelerate A by 9x, by hurts B by 10x... 

• Assume the original execution time is T. The new execution 
time

!13

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedu p = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT 
(1) consider overhead
(2) bound to slowdown



• Symmetric multicore processor with n cores (if we assume the 
processor performance scales perfectly)

!14

Amdahl’s Law on Multicore Architectures

Speedu pparallel( fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n



• Regarding Amdahl’s Law on multicore architectures, how many of the following statements 
is/are correct? 
က: If we have unlimited parallelism, the performance of each parallel piece does not matter as long 

as the performance slowdown in each piece is bounded 
က< With unlimited amount of parallel hardware units, single-core performance does not matter 

anymore 
က> With unlimited amount of parallel hardware units, the maximum speedup will be bounded by 

the fraction of parallel parts 
က@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange 

overhead is minor 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

!15

Amdahl’s Law on Multicore Architectures
https://www.pollev.com/hungweitseng close in 



• Regarding Amdahl’s Law on multicore architectures, how many of the following statements 
is/are correct? 
က: If we have unlimited parallelism, the performance of each parallel piece does not matter as long 

as the performance slowdown in each piece is bounded 
က< With unlimited amount of parallel hardware units, single-core performance does not matter 

anymore 
က> With unlimited amount of parallel hardware units, the maximum speedup will be bounded by 

the fraction of parallel parts 
က@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange 

overhead is minor 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

!16

Amdahl’s Law on Multicore Architectures
https://www.pollev.com/hungweitseng close in 



• Regarding Amdahl’s Law on multicore architectures, how many of the following statements 
is/are correct? 
က: If we have unlimited parallelism, the performance of each parallel piece does not matter as long 

as the performance slowdown in each piece is bounded 
က< With unlimited amount of parallel hardware units, single-core performance does not matter 

anymore 
က> With unlimited amount of parallel hardware units, the maximum speedup will be bounded by 

the fraction of parallel parts 
က@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange 

overhead is minor 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

!17

Amdahl’s Law on Multicore Architectures
Speedu pparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable × Speedu p( < 1)
∞

Speedu pparallel( fparallelizable, ∞) = 1
(1 − fparallelizable) speedup is determined by 1-f



• Single-core performance still matters — it will eventually dominate the 
performance 

• Finding more “parallelizable” parts is also important 
• If we can build a processor with unlimited parallelism — the complexity 

doesn’t matter as long as the algorithm can utilize all parallelism — 
that’s why bitonic sort works!

!18

Corollary #3, Corollary #4 & Corollary #5
Speedu pparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedu pparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



“Fair” Comparisons

!19

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the 
Computer, MITP, 1995



TFLOPS (Tera FLoating-point Operations Per Second)

!20



• TFLOPS does not include instruction count! 
• Cannot compare different ISA/compiler 
• Different CPI of applications, for example, I/O bound or computation bound 
• If new architecture has more IC but also lower CPI?

TFLOPS clock rate

XBOX One X 6 1.75 GHz

PS4 Pro 4 1.6 GHz

GeForce GTX 1080 8.228 3.5 GHz
!21

TFLOPS (Tera FLoating-point Operations Per Second)



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point 
intensive

!22

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instru ctions × 10−12

ExectionTime

= IC × % of floating point instru ctions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instru ctions × 10−12

CPI × CT



• Quote only 32-bit performance results, not 64-bit results. 
• Present performance figures for an inner kernel, and then represent these figures as the 

performance of the entire application. 
• Quietly employ assembly code and other low-level language constructs. 
• Scale up the problem size with the number of processors, but omit any mention of this fact. 
• Quote performance results projected to a full system. 
• Compare your results against scalar, unoptimized code on Crays. 
• When direct run time comparisons are required, compare with an old code on an obsolete system. 
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on 

the best sequential implementation. 
• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar. 
• Mutilate the algorithm used in the parallel implementation to match the architecture. 
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy 

environment. 
• If all else fails, show pretty pictures and animated videos, and don't talk about performance.

!23

12 ways to Fool the Masses When Giving Performance 
Results on Parallel Computers



 24



 25

125 TFLOPS 
Only @ 16-bit
floating point



They try to tell it’s the better AI hardware

!26

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/


• There is no standard on how they inference 
• What model? 
• What dataset? 

• That’s why Facebook is trying to promote an AI benchmark — 
MLPerf

!27

What’s wrong with inferences per second?



!28



 29



• The ISA of the “competitor” 
• Clock rate, CPU architecture, cache size, how many cores 
• How big the RAM? 
• How fast the disk?

!30

What’s missing in this video clip?



Choose the right metric — Latency 
v.s. Throughput/Bandwidth

!31



• Latency — the amount of time to finish an operation 
• access time 
• response time 

• Throughput — the amount of work can be done within a given 
period of time 
• bandwidth (MB/Sec, GB/Sec, Mbps, Gbps) 
• IOPs 
• MFLOPs

!32

Latency v.s. Bandwidth/Throughput



RAID — Improving throughput

!33

RAID 
ControllerAccess time: 10 ms

Bandwidth: 125 MB/sec

Aggregated Bandwidth: 500 MB/sec



• Compare (X) RAID consists of 4x H.D.D. where each has 10 ms 
access time and 125 MB/sec bandwidth — aggregated bandwidth 
at 500 MB/Sec (Y) a single SSD with 100 us access time and 
550MB/Sec bandwidth. Both accept 4KB data as the smallest 
request size. If we want to load a program with 100KB code size, 
how much faster is Y over X at least? 

A. 1x — no speedup 
B. 1.1x 
C. 4x 
D. 4.4x 
E. 100x

!34

The performance between RAID and SSD
https://www.pollev.com/hungweitseng close in 



• Compare (X) RAID consists of 4x H.D.D. where each has 10 ms 
access time and 125 MB/sec bandwidth — aggregated bandwidth 
at 500 MB/Sec (Y) a single SSD with 100 us access time and 
550MB/Sec bandwidth. Both accept 4KB data as the smallest 
request size. If we want to load a program with 100KB code size, 
how much faster is Y over X at least? 

A. 1x — no speedup 
B. 1.1x 
C. 4x 
D. 4.4x 
E. 100x

!35

The performance between RAID and SSD
https://www.pollev.com/hungweitseng close in 



• Compare (X) RAID consists of 4x H.D.D. where each has 10 ms 
access time and 125 MB/sec bandwidth — aggregated bandwidth 
at 500 MB/Sec (Y) a single SSD with 100 us access time and 
550MB/Sec bandwidth. Both accept 4KB data as the smallest 
request size. If we want to load a program with 100KB code size, 
how much faster is Y over X at least? 

A. 1x — no speedup 
B. 1.1x 
C. 4x 
D. 4.4x 
E. 100x

!36

The performance between RAID and SSD

ETHDDBestCase
= 10 ms

ETSSDworst
= 100KB

4K × 100 u s = 2.5 ms



• Increase bandwidth can hurt the response time of a single task
• If you want to transfer a 2 Peta-Byte video from UCSD

• 100 miles (161 km) from UCR 
• Assume that you have a 100Gbps ethernet 

• 2 Peta-byte over 167772 seconds = 1.94 Days 
• 22.5TB in 30 minutes 
• Bandwidth: 100 Gbps

!37

Latency and Bandwidth trade-off



 Toyota Prius  10Gb Ethernet

bandwidth 290GB/sec 100 Gb/s or  
12.5GB/sec

latency 3.5 hours 2 Peta-byte over 167772 seconds = 1.94 
Days

response time You see nothing in the first 3.5 hours You can start watching the movie as soon as you 
get a frame!

Or ...

!38

•100 miles (161 km) from 
UCSD 

•75 MPH on highway!
•50 MPG 
•Max load: 374 kg = 2,770 
hard drives (2TB per drive)



Memory Hierarchy
Hung-Wei Tseng



Performance gap between Processor/Memory

!40



Performance of modern DRAM

!41



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, consider we have DDR4 and the 
program is well-behaved that precharge is never necessary — the 
access latency is simply 26 ns. What’s the average CPI (pick the 
most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69

!42

The impact of “slow” memory
https://www.pollev.com/hungweitseng close in 



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, consider we have DDR4 and the 
program is well-behaved that precharge is never necessary — the 
access latency is simply 26 ns. What’s the average CPI (pick the 
most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69

!43

The impact of “slow” memory
https://www.pollev.com/hungweitseng close in 



• Assume that we have a processor running @ 2 GHz and a program with 
30% of load/store instructions. If the computer has “perfect” memory, 
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is 
simply 26 ns. What’s the average CPI (pick the most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69

!44

The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles



Thinking about water

!45



Alternatives?

!46

Fast, but expensive $$$



ProcessorProcessor
Memory Hierarchy

!47

DRAM

Storage

SRAM $

Processor 
Core

Registers

larger

fastest

< 1ns

tens of ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, in addition to DDR4, whose latency 
26 ns, we also got an SRAM cache with latency of just at 0.5ns and 
can capture 90% of the desired data/instructions. what’s the 
average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32

!48

How can memory hierarchy help in performance?
https://www.pollev.com/hungweitseng close in 



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, in addition to DDR4, whose latency 
26 ns, we also got an SRAM cache with latency of just at 0.5ns and 
can capture 90% of the desired data/instructions. what’s the 
average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32

!49

How can memory hierarchy help in performance?
https://www.pollev.com/hungweitseng close in 



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, in addition to DDR4, whose latency 
26 ns, we also got an SRAM cache with latency of just at 0.5ns and 
can capture 90% of the desired data/instructions. what’s the 
average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32

!50

How can memory hierarchy help in performance?

1 + (1 − 90%) × [100% × (52) + 30% × 52] = 7.76 cycles



• Office hour of Hung-Wei Tseng changes
— MF 1p-2p @ WCH 406 

• Check 
• website for slides/schedules 
• iLearn for quizs/assignments/podcasts 
• piazza for discussions 

• No lectures next week 
• Assignment #1 due 10/16 
• Reading quiz due 10/21

!55

Announcement


