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von Neumann model &
Performance equation
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Execution Time

- The simplest kind of performance
- Shorter execution time means better performance
- Usually measured in seconds

clock

instruction memory

120007a30: 0f00bb27 1ldah gp,15(t12)
120007a34: 509cbhd23 1da gp,—25520(gp)

120007a38: 00005d24 1dah t1,0(gp)
Processor 120007a3c: 0000bd24 1ldah t4,0(gp)

120007a40: 2cak22a@ 1dl  t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: ©0003d24 1dah t@,0(gp)
InStrl/tCtiOI’lS 120007a4c: 2ca4e2b3 stl zero,—-23508(t1)
2 —>120007a50: 0004ff47 clr voO
HOW many Of these y 120007a54: 28a4e5b3 stl zero,-23512(t4)
Program 120007a58: 20a42la4 ldq  t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
P 120007a60: 0204el47 mov t0, tl
How Iong Is it take to 120007a64: 0304Ff47 clr  t2
o 120007a68: 0500e0c3 b 120007280
execution each of these? ] eves bt ]
Cycles > Seconds
Instruction Cycle



CPU Performance Equation

1
P r'iror -
€ fO mance Execution Time
; ' ] Cycles
Execution Time = Lstructions % — ‘ X Seconds
Program Instruction Cvcle
ET = IC X CPIX CT /
1

1GHz = 10°Hz = —sec per cycle = 1 ns per cycle :
10° Frequency(i.e.,clock rate)
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Performance Equation (X)

- Assume that we have an application composed with a total of
5000000000 instructions, in which 20% of them are "Type-A"
iInstructions with an average CPI of 8 cycles, 20% of them are
"Type-B" instructions with an average CPI of 4 cycles and the rest
iInstructions are " Type-C" instructions with average CPI of 1 cycle. If
the processor runs at 3 GHz, how long is the execution time?

A. 3678C  ET=(5x 10°) x (20% X 8 +20% X 4 + 60% X 1) X ——sec = 5
‘ B. 5sec ‘ average CPI

C 667sec ET=ICXCPIXCT

D. 15 sec

E. 45 sec



Speedup

- The relative performance between two machines, Xand Y. Y is n
times faster than X

Execution Timey,

n = ; :
Execution Timey

- The speedup of Y over X

Execution Timey,

Speedup =

Execution Timey



Speedup of Y over X

- Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

Percentage of CPI of Type-A Percentage of CPIlof Type-B Percentage of CPIlof Type-C

Clock Rate Instructions

Type-A Insts. Insts. Type-B Insts. Insts. Type-C Insts. Insts.
Machine X 3 GHz 500000 20% 8 20% a4 60% 1
Machine Y 5 GHz 500000 20% 13 20% 4 60% 1
. 6 20% X 4 1 1 = 4
A 09 ETy = (5 X 10°) X (20% X 13 +20% x4 + 60% X 1) X o ec
Execution Timey
B. 0.25 Sp eedup ~ Execution Timey
C. 0.8
=2 =1.25
D. 1.25 | 4
E. Nochanges



What Affects Each Factor In
Performance Equation




Summary of CPU Performance Equation

1
Performance =
f Execution Time
: : Instructi Cycles [y d
Execution Time = 22220 « ¢ 2N
Program Instruction Cycle

ET=I1CXCPIXCT

- |C (Instruction Count)
- ISA, Compiler, algorithm, programming language, programmer
- CPI (Cycles Per Instruction)

- Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

- Cycle Time (Seconds Per Cycle)
- Process Technology, microarchitecture, programmer
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Programmer’s impact

- By adding the “sort” in the following code snippet, what the programmer

changes in the performance equation to achieve better performance?
std: :sort(data, data + arraySize):

for (unsigned ¢ = 0; c < arraySizex1000; ++c) {

1f (datalc%arraySize] >= INT_MAX/2)
A. CPI

sum ++;
B. IC — weincreased IC, suppose to make the
C. CT performance worse

D. IC & CPI

1



Demo — programmer & performance

for(i = 0; 1 < ARRAY_SIZE; i++)
{
for(j = ©; j < ARRAY_SIZE; j++)
{
c[1i1[3j] = al1]1[jl+b[1]1[3];

for(j = ©; j < ARRAY_SIZE; j++)
{
for(i = ©; 1 < ARRAY_SIZE; i++)
{
c[i]1[j] = ali1l[j1+b[11[j];

; }
; }
O(n 2) Complexity O(n 2)
Same Instruction Count? Same
Same Clock Rate Same

Better CPI Worse

12



Programmers can also set the cycle time

https://software.intel.com/sites/default/files/comment/1/16807/how-to-change-frequency-on-linux-pub.ixt

Subject: setting CPU speed on runring linux system

If the 0S8 is Linux, yoa can manually control the CPU speed by reading and writing some virtual files in the "/proc"

l.] Is the system capable cf soitware CPU speed control?
If the "directory" /sys/devices/system/cpu/cpul/cpufreq exists, spead is controllable.
-- If it does not exist, ycu mav reed -0 go to tre BIOS and turr on EIST and ary other C and F state control and vi:

2.) what speed is the box set to row?
Do the follcwing:

$ cc /sys/devices/systam/cpu

3 cet ./cpul/cpuireg/cpuinfo_max_freg
3193000

$ cét ./cpul/cpuireqg/couinio_min_freq
159¢€000

3.] what speeds car 1 set to?

Do

$ cat /sys/devices/systen/cpu/cpul/cpafreq/scalirg_ava:ilable frequencies

It will l:st highest settakle to lowest; example from ny NHM "Smackover”™ DX58S0 HEDT bcard, 1 see:

3192000 3292000 3059000 2926000 2793000 2GGO000 2527000 2394000 2261000 212800C 1935000 1862000 1729000 1596C0

You can chocse from among those numbers tc set the "high water' mark and "low water" mark for spead. If you set "h

4.) Show ne how to set all to higkest settable speed!
Use the following little sh/ksh/bésh script:
cc /sys/devices/system/cpu # a virtual directory made visible by device drivers
newSpaedTep="awk '{print $1}' ./cpuld/cpufreq/scaling available frequencies’
newspzedLcw=$nevspeedTop # make them the same in this example
for ¢ in ./cpu(0-9]* ; dc
echo SnewSpeedTop >§./c}/cpufreq/scaling max freq
echo snewspeedLow >$<c}/cpuireq/scaling_min_freq
done

VY NV VL uvwmw

.] How do I returr to the default - i.e. allow machine to vary from highest to lowest?
dit line # 3 of tke scr:ipt above, and re-run it. Change the line:
$ newsSpeedLcw=$SnewtpeedTop # make them the same in this example

[ 3 PP .

o O Y


https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

Programming languages

- How many instructions are there in "Hello, world!"

Instruction count Ranking

14



Instructions

3teobh27
a@9chd23
00005d24
9000bd24
2ca422a0
130020e4
09003d24
2ca4se2b3

L=
00c2e300
80000003
00c21000
2800000063
@0c21300
00000008
00c30000
00000003

" Instructions

589cbd23

00020800

efeehbb27
50%9chd23
pReRsd24
000Bhd24
2ca422a0
130020e4
00eB3d24

Instructions

cafebabe
00000033
001d0a00
06000109
00100011
0800120a
00130014
07001507

e0c2e800
Po6pboeas
eec2feae
0000000es
BBc21880
foeeeeas
00c30000

___bbopeeas

Storage
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00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

n 9fedbh27
€ 509chd23

O o0005d24

= 2cas422a0@
= 130020e4
) oppee3d24

Recap: How my “C code” becomes a “program”
Objects, Libraries

Source Code

Compiler
(e.9.,gcc)

0foe0bb27
509chd23
00005d24
0000bd24
2ca422a6
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

One Time Cost!



Recap: How my “Java code” becomes a "“program”

- Source Code
’ ik
; Other (.class) « ,
¢ febab =
§ 83939333 288§§§3§ e
001d0ado '
. 06000705 | = 00000008 ]ava

00100011 ég 90c2f800
0800120a 00000008
99139914 00c30000

eeeeeee (e‘g., javaC)

- -
> ---‘_._ a

Javé Bytecode (.class)

00c2e306
00000003
. 00c21000

3te0bh27
289chd23
00005d24

Compiler

Instructions

Instructions

Instructions

cafebabe
00000033
001d0aoo
06000109
00100011

0800120a
00130014
07001507

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008




Recap: How my “Python code” becomes a “program”

Libraries Source Code

cafebabe 00c2e800

00000033 00000008
001deace| . @0c2f00e On
06000709 | 4+ 00000008

00100011 8 00c2800

0800120a 00000008
00130014 00c30000

07001507 00000008

00020200
e

Instructions

ateobh27 00c2e3006
a@9chd23 000000038
00005d24 00c27000
29000bd24 000000063
2ca422a0 @0c21300
130020e4 00000008
00003d24 00c30000
2ca4e2b3 0600000038

Processor

Instructions




Revisited the demo with compiler optimizations!

- gcc has different optimization levels.
» -0O0 — no optimizations
- -03 —typically the best-performing optimization

for(1 = ©; 1 < ARRAY_SIZE; 1++)

{ for(3 = 0; 7 < ARRAY_SIZE; j++)
{ cliI[j] = al1ll3]+bl[11[]]1;

, }

for(y = 0; J < ARRAY_SIZE; j++)

{ for(i = ©; 1 < ARRAY_SIZE; i++)
{ c[11[3]1 = ali1[j1+b[11[3];

} }

18



Demo revisited — compiler optimization

- Compiler can reduce the instruction count, change CPI
— with “limited scope”

- Compiler CANNOT help improving “crummy” source code

for (unsigned ¢ = @; ¢ < arraySizex1000; ++c) {
1f (datalc%arraySizel] >= INT_MAX/2)
sum ++;

19



How many operations: CISC v.s. RISC

- CISC (Complex Instruction Set Computing)
- Examples: x86, Motorola 68K

- Provide many powerful/complex instructions
- Many: more than 1503 instructions since 2016

- Powerful/complex: an instruction can perform both ALU and memory operations
- Each instruction takes more cycles to execute

- RISC (Reduced Instruction Set Computer)

- Examples: ARMvS, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

- Each instruction only performs simple tasks
- Easy to decode

- Each instruction takes less cycles to execute

20



RISC-V v.s.x86

- Using the same language, the same source code, regarding the compiled program on
Xx86 and RISC-V, how many of the following statements is/are “generally” correct?
® The RISC-V version would contain more instructions than its x86 version
®@ The RISC-V version tends to incur fewer memory accesses than its x86 version

® The RISC-V version needs a processor with higher clock rate than its x86 version if the
CPI of both versions are similar

@ The RISC-V version needs a processor with lower CPI than its x86 version if the x86
processor runs at the same clock rate

OO0Ow>»
W N = O

m
1N
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Amdahl's Law—and It's
Implication in the Multicore Era

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.



Amdahl’'s Law

1
(- +%

Spe edupenhanced(f’ 5) =

f— The fraction of time in the original program
S — The speedup we can achieve on f

Execution Timey,, ;...

Speedup ,papced =

Execution Tlmeenhanced_

NV

23



Amdahl’'s Law

1
Sp eedup enhanced(f’ S ) —

(1—f)+1

ExeCUtion Timebaseline — 1

ExeCUtion Timeenhanced — (1 ‘f) + f/S <

Execution Timey, ... 1

Speedu = =
P Penhanced Execution Time,,}, . 0 (1—f)+ f
\)

24



2000 -~

Practicing Amdahl’'s Law

- Final Fantasy XV spends lots of time loading a &) steam
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the IR GGt

1000 -

STCRE COM

100 -

operating system, file system and the |/O I —— - 10 -
protocol. If we replace the H.D.D. with aflash  |[Eeasssmesss—"
drive, which provides 100x faster access time. [~ [EEtrerasR - ’ SN
By how much can we speed up the map Load times  [EPONE G it
loading process? R o s gy e ooy .. &0 sryora
A ~/X
. ~10x i
peedupenhanced(95 Jo IOO) = o n 16.81 X
~29x (1 =95%) A 100
E. ~T100x

25



Amdahl’'s Law on Multiple Optimizations

We can apply Amdahl’s law for multiple optimizations

These optimizations must be dis-joint!
If optimization #1 and optimization #2 are dis-joint:

fopt fopt2 1-fopt1-fopte

1
Speedup ., panced Optl’f Opt2> SOpt1> SOpt2) —

f_Optl f_Opr2
(1 _fOPﬂ _fOsz) | s_Optl | s_Opt2

If optimization #1 and optimization #2 are not dis-joint:

fOnIyOpt1 fOnIyOpt2 fBothOpt10pt2 1 'fOnIyOpt1 'fOnIyOptZ'fBothOpH Opt2

Speedup oppanced Jontyopit> Jontyopi2s JBothopt1 0pi2s Sontyopit> Sontyopi2s SBothop opi2) i

f_BothOpt10pt2 4 f_OnlyOpt1 4 f_OnlyOpt2
s_BothOpt10pt2 s_OnlyOptl s_OnlyOpt2

( 1 - f OnlyOptl — f OnlyOpt2 ~— f BothOpt1 Opt2) + +




Practicing Amdahl's Law (2) »-

- Final Fantasy XV spends lots of time loading a 10007
map — within which period that 95% of the time i) STEAM'  store com
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol. EENYSTA:S R AV
If we replace the H.D.D. with a flash drive, which ) [r—
provides 100x faster access time and a better FINAL FANTASY X0 VANDOWS EDITION - Gareral D

100 -

10 -

0

processor to accelerate the software overhead by Rl -simuiecrm Sekura - e Disk  Flash
2x. By how much can we speed up the map e e ) Fle % Qperating  miSCS

Ioad | ng proceSS? | run this game from an 7200 RPM hargdrive and load times ere pretty long... do anyone run
- g
A. ~7X

B. ~10x |
C. 17x Speedup,..;.......(95 % ,5 % ,100,2) =

E. ~100x

= 28.98 X

(1 —95% — 5%) + 25 + 2

27



Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f, ) =

28



2000

Speedup further!

- With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software

1000 -

100 -

10 -
overhead is now 84%. If we want to adopt )
a new memory technology to replace flash [EEEE—————. o P ———
. . 2 : IS as as
to achieve 2x speedup on loading maps, ) File Operating m iSCSI W Hardw
. ~Simulacrum Sakura §& System System

how much faster the new technology Load times
need S tO be? | run this game from an 7200 RPM hardrive and load times ere pretty long... dc anyone run

this game form an SSD7? are load times good?

A. ~bx

B. ~10x _ 1 _

C 20 Speedup,, . (16 % , 00) = T 16m = 1.19

D. ~100x 2x is not possible

E. None of the above

29



Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

1
(1 Ifl)
T-7 The biggest f, would lead
l to the largest Speedup max!
(1 I]%)

(1= f4)

Speedup,. . (fi,0) =
Speedup,, . (f,, 00) =
Speedup,, . (f3,00) =
Speedup,. . (f,,0) =

30



Corollary #2 — make the common case fast!

- When f is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.

31



If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media
Storage
Media CPU
- With optimization, the common becomes
uncommon.

- An uncommon case will (hopefully) become the
new common case.

- Now you have a new target for optimization.

You have to revisit "Amdahl’'s Law" every time
you applied some optimization

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,

Joel Coburn, Todor |. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010. 32

2000 -

1000 -

100 -

10 -

0

Disk Flash Fast NVM

O File = Operating m iSCSI m Hardw
System System



Don’'t hurt non-common part too mach

- If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution

: ET,;, % 90 %
time  p7, =" + ET,,,x 10% x 10
ETI/IEW - 11 X ETOld
ET ET
Speedup = ETOM = - 1><ObidT = 0.91 X ....slowdown!
new . old

You may not use Amdahl’s Law for this case as Amdahl’'s Law does NOT

(1) consider overhead
(2) bound to slowdown

33



Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
( 1 — ]gaamllelizable) | p

34



Corollary #3, Corollary #4 & Corollary #5

1

Sp €€dbtp parallel (]g?amllelizable’ OO) — f_parallelizable

(1 _ﬁparallelizable) T 00
1

( 1 - ﬁyamllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- Single-core performance still matters — it will eventually dominate the
performance

- Finding more “parallelizable” parts is also important

- If we can build a processor with unlimited parallelism — the complexity
doesn't matter as long as the algorithm can utilize all parallelism —
that's why bitonic sort works!

35



“"Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the

Computer, MITP, 1995
36



Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

# of floating point instructions X 10712

TFLOPS =

Exection Time

IC X % of floating point instructions X 1072
ICX CPIx CT

% of floating point instructions X 10712

- CPIX CT IC is gone!

- Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point
Intensive

37



12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

- Quote only 32-bit performance results, not 64-bit results.

- Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

- Quietly employ assembly code and other low-level language constructs.

- Scale up the problem size with the number of processors, but omit any mention of this fact.
- Quote performance results projected to a full system.

- Compare your results against scalar, unoptimized code on Crays.

- When direct run time comparisons are required, compare with an old code on an obsolete system.

- If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

- Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
- Mutilate the algorithm used in the parallel implementation to match the architecture.

- Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

- If all else fails, show pretty pictures and animated videos, and don't talk about performance.

38



nvidia.com

L[

< il

“ 1 NVIDIA.

Artificial Intelligence Computing Leadership from NVIDIA

CLOUD & DATA CENTER rropucTs v SOLUTIONS ~ FOR DEVELOPERS ~ TECHNOLOGIES ~

Tesla V100 AITRAINING  AIINFERENCE  HPC  DATACENTERGPUs  SPECIFICATIONS

e From recognizing speech ta training virtual personal assistants and teaching
esla
autonomous cars to drive, data scientists are taking on increasingly complex
challenges with Al. Solving these kinds of problems requires training deep learning

models that are exponentially growing in complexity, in a practical amount of time.

5.1 Hours

8X Tesla P100
15.5 Hours

0 4 8 12 16
Time to Solution in Hours-Lower Is Better With 640 , Tesla V100 is the world’s first GPU to break the 100 teraFLOPS

[TFLOPS) barrier of deep learning performance. The next generation of
NVLIink™ connects multiple V100 GPUs at up to 300 GB/s to create the world’s most
powerful computing servers. Al models that would consume weeks of computing

resources on previous systems can now be trained in a few days. With this dramatic
reduction in training time, a whole new world of problems will now be solvable with Al.

39



The Most Advanced Data Center GPU Ever Built.

NVIDIA® Tesla® V100 is the world’s most advanced data center

GPU ever built to accelerate Al, HPC, and graphics. Powered by
NVIDIA Volta, the latest GPU architecture, Tesla V100 offers the
performance of up to 100 CPUs in a single GPU—enabling data
scientists, researchers, and engineers to tackle challenges that

were once thought impossible.

47X H gher Throughpu: than CPU
Cerver on Deep Learning Inference

Tesla V100 - ixa
Tesla P100 | 0
X CPU |
0 mx 20X  G0X AN 50X

Me~formanre Narmalized 1o 7ML

1 GPJ Node Replaces Up To ba CPU Noces

Noda Ran aremenrt: HPC Mivaed Woarklnad

Deep Learning Training in
Than a Worxday

125 TFLOPS

BXVIOC | 0n|y @ 16'bit
floating point
8X P10C T Tr—

lime ta So tion in Fours
Lovszr is Better

SPECIFICATIONS

o=l (ui

Tesla V100 Tesla Y100
PCle SXM2
GPU Architecture NVIDIA Volta
NVIDIA Tensor 64D
Cores
lgIVIDIA CUDA* 5,120
ores

Doub.e-Precision
Performance

7 TFLOPS 7.8 TFLOPS

Single-Precision

14 TFLOPS 15.7 TFLOPS

Performance
;""W 112TFLOPS | 125 TFLOPS

erformance
GPU Memory 32GB /16GB HBM2
Memaory
_Ba ndwidtn 90088/sec
ECC Yes
Inlerconnecl
Bandwidth 32GB/sec 300GB/sec
System Interface PCle Gen3 NVIDIA NVLink
Form Factor PCle Full

Height/Length RS

Max Pawer I




They try to tell it's the better Al hardware

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory ‘ 16 MB 24 MB . 11 MB
Power 300W /5W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S

41


https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

What's wrong with inferences per second?

- There is no standard on how they inference

- What model?
- What dataset?

- That's why Facebook is trying to promote an Al benchmark —

MLPerf

42

® Pitfall: For NN hardware, Inferences Per Second (IPS)
I8 an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary
for NN hardware, as it’s simply the inverse of the complexity of
the typical inference in the application (e.g., the number, size, and
type of NN layers). For example, the TPU runs the 4-layer MLP1
at 360,000 1PS but the 89-layer CNNI1 at only 4,700 IPS, so TPU
IPS vary by 75X! Thus, using IPS as the single-speed summary is
even more misleading for NN accelerators than MIPS or FLOPS
are for regular processors [23], so IPS should be even more
disparaged. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide
varicty of NN architectures. Fathom is a promising new attempt at
such a benchmark suite [3].




1 GPU Node Replaces Up To 54 CPU Nodes
Node Replacement: HPC Mixed Workload

Life Science
(NAMD)

Physics
(GTC)

MILC)
(SPECFEM3D]
0 20 40 60

# of CPU-Only Nodes

CPU Server: Dual Xeon Gold 6140@2.30GHz, GPU Servers: same CPU server w/ 4x V100 PCle | CUDA
Version: CUDA 9.x| Dataset: NAMD [STMV), GTC (mpi#proc.in], MILC (APEX Medium), SPECFEM3D
[four_material_simple_modell | To arrive at CPU node equivalence, we use measured benchmark with up
to 8 CPU nodes. Thenwe use linear scaling to scale beyond 8 nodes.

HIGH PERFORMANCE
COMPUTING (HPC)

HPC is a fundamental pillar of modern science. From predicting weather to
discovering drugs to finding new energy sources, researchers use large computing
systems to simulate and predict our world. Al extends traditional HPC by allowing
researchers to analyze large volumes of data for rapid insights where simulation alone
cannot fully predict the real world.

Tesla V100 is engineered for the convergence of Al and HPC. It offers a platform for
HPC systems to excel at both computational science for sci%\tific simulation and data
science for finding insights in data. By pairing NVIDIA CUDA cores and Tensor Cores
within a unified architecture, a single server with Tesla V100 GPUs can replace
hundreds of commodity CPU-only servers for both traditional HPC and Al workloads.
Every researcher and engineer can now afford an Al supercomputer to tackle their
most challenging work.
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Choose the right metric — Latency
v.s. Throughput/Bandwidth




Latency v.s. Bandwidth/Throughput

. Latency — the amount of time to finish an operation

- access time

- response time

- Throughput — the amount of work can be done within a given
period of time

- bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)

- |OPs

- MFLOPs
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RAID — Improving throughput

MORE SPECS

Model Code (Capaci*

Aggregated Bandwidth: 500 MB/sec

QIMENSION (WxHxD)
100X 285X 6.8 (mm)

RAID
Controller

TRIM SUPPCRT

Vee

o susman Access time: 10 ms
AES 25£-_‘|it Enavotion(Class 0) TCG/Cp o
1EEE‘567(Eru;rVL@;:d drive) Ba ndW|dth 1 25 M B/S -

performancez’ SEQUENTIAL READ

Up v 58C M3/

RANDOM WRITE (4KB, QD32)
Up ™0 82,000 I0FS

Environment AVERAGE FOWER CONSUVFTION
(SYSTEM LEVEL)?
1,000 GBE: Average 2.2'WMaximum 4.0 W
2.000 GB: Average 3.0 W Maximum42w
4,0C0 GB: Average 3.1 WMaximum 5S4 w
(Burst moce)
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The performance between RAID and SSD

- Compare (X) RAID consists of 4x H.D.D. where each has 10 ms
access time and 125 MB/sec bandwidth — aggregated bandwidth
at 500 MB/Sec (Y) a single SSD with 100 us access time and
550MB/Sec bandwidth. Both accept 4KB data as the smallest
request size. If we want to load a program with TO00KB code size,
how much faster is Y over X at least?

A. 1x—no speedup

B. 1.1x
. ET — 10988 100 us = 2.5 ms
D. 4.4x 35D 051 4K '

E. 100x
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Latency and Bandwidth trade-off

- Increase bandwidth can hurt the response time of a single task
- If you want to transfer a 2 Peta-Byte video from UCSD

- 100 miles (161 km) from UCR

- Assume that you have a 100Gbps ethernet
. 2 Peta-byte over 167772 seconds = 1.94 Days
- 22.5TB in 30 minutes
- Bandwidth: 100 Gbps
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Memory Gap Problem



Present and future

By integrated electronics, I mean
technologies which are referred to
tronics today as well as any additi
result in electronics functions suppli

:ICs are increasingly

to miniaturize electronics cquipment
ereasingly complex electronic functi
space with minimum weight. Sever
evolved, including microassembly |
indivicdual components, thin-film s
semiconductor integrated circuits,

R —

Two-mil squares

With the dimensional tolerances already being
employed in integrated circuits, isolated high-per
formance transistors can be built on centers twi

thousandths of an inch apart. Such a two-mil squar¢
can also contain coveral kilnhme of vogistance o)

ICs are small™™™

(1) Mo

Moore's Law"

The establishment

L R e R

lncreasmg the yield

Linear circuitry

Integration will not change linear systcms as

.uluall) as digital systems. Still, a considerable
Re|l3bl|lty coun deerce of intewration will be achieved with lincar

= ~etBlshed 1 [ almost v'ICS are Wldely appllcable

Or ne\ (l‘ ll]()']\tl tlt('(l J] WU S AL VAL LRANVZIIFLD 15 WL TN gy

- . - - L

There is no fundamental obstacle to achieving
device yields of 100%. At present, packaging costs
so far exceed the cost of the semiconductor struc-

and v |uy] of pu)(hlctlcm—lcm mmpdwd to that of dis-
‘;?bh‘f ' erete components—it ollers reduced systems cost,
ture itself that there is no incentive to improve Mi0, 10 and in many svstems T Il])lO\'t"d ]}(‘Th)l'lﬂdll(.b h‘“

vields, but they can be raised as high as is eco- he rel;j [ li d
wen reahzed. ICS are more rellable
—

nomically justiied. No barrier exists comparable b fhat
to the thermodynamic equilibrium considerations ? N

ilure as the Heat problem

Will it be possible to remove the heat generated
DtabIISh by tens of thousands of components in a single

6 =
IS} 7 silicon chip!
A2 14f M ————Heat is a solvable issue
o2 13¢ S oore’s ,
Scé) 12 P . Day of reckoning
= e
Lo :0' 5 ,// Impc Clearly, we will be able to build such component-
==2a 9t i crammed cquipment. Next, we ask under what
SOW gt 3% h'°+0rlc circumstances we should do it. The total cost of

making a particular system function must be mini-
mized. To do so, we could amortize the engineer-
ing over several identical items, or cvolve Hexible
techniques for the engineering of large functions
so that no disproportionate expense nced be bore
by a particular array. Perhaps newly devised de-

Designing ICs can be easy

ICs are easy to manufacture
and they're getting smaller and
smaller!

P —————————— — — — — —

mponents onto integrated circuits', Electronics 38 (8) .




Performance gap between Processor/Memory

100,000
10,000 - e g g e e
S
2. OO0 A v ee ettt e e
(O
% Processor
E 100 el
o
10 e TR T TR T T o T Tn T T T oty TR o T Tn T Tt ottt o T o oo e Tt T T oo T oo T T
Memory
1 = = | T T T T |
1980 1985 1990 1995 2000 2005 2010 2015
Year
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Performance of modern DRAM

Best case access time (no precharge) Precharge needed
Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI1 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2(y bit DDR?2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 3G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for arandom memory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged,;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.
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The impact of “slow” memory

- Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPlis just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What's the average CPI (pick the most close one)?

A. 9

B. 1/

a5 | HI00%X GI]+[30% X 52| 68.6 cycles

Fetch Instructions Access Data
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Memory technology

Alternatives?

Typical access time

$ per GiB in 2012

SRAM semiconductor memary

0.5-2.5ns

$500-$1000

DRAM semiconductor memory 50-70ns $10-$20
Flash semiconductor memory 5,000-50,000ns $0.75-$1.00
Magnetic disk ©,000,000-20,000,000ns $0.05-$0.10

Fast, but expensive $$$
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Memory Hierarchy

fastest Processor
Processor
<1ns |
Core s f
e W 2
k Registers j 32o0ro64 e d g‘
a few n SRAM $ KBS ~

e

DRAM

Storage

tens of n

tens of ns
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How can memory hierarchy help in performance?

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what's the
average CPI (pick the most close one)?

A. 2
B. 4

1+ (1 -90%) + 7.76 cycles
D. 16 Fetch Instructions Access Data

E. 32

56



L1? L2? L3?

Bj CPU-Z - ID: wswpbb — X
CPU ICadwes I Mainboard I Memory | SPD | Graphics | Bench I About |
—Processor CPU ICad1es | Mainboard | Memory | SPD I Graphics | Bench | About |
Name AMD Ryzen 7 2700X AMDQO LT
Code Name | Pinnacle Ridge  MaxTDP | 105 W €53 Name | Intel Core i7 9700K '
Package Socket AM4 (1331) y Code Name | Coffee Lake Max TDP | 95.0 W | (intel)'
Technology | 12 nm Core Voltage . 136V 7 Package | Socket 1151 LGA . CORE'i7
13 ltage | 0.737V Sl
Specification AMD Ryzen 7 2700X Eight-Core Processor Technology Lo Core Voltage '
Family F Model 8 Stepping 2 Specification | Intel® Core™ i7-9700K CPU @ 3.60GHz (ES)
Ext. Family 17 Ext. Model 8 Revision | PiR-B2 Family 6 Model E Stepping C
Instructions | MMX(+), SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4A Ext. Family 6 Ext. Model SE Revision PO
x86-64, AMD-V, AES, AVX, AVX2, FMA3, SHA Instructions |MMX, SSE, SSE2, SSE3, SSSE3, SSE4. 1, SSE4.2, EM&4T, VT-x,
S, AVX, AVX2, FMA3, TSX
—Clocks (Core #0) Cache
Core Speed | 4290.73 MHz LiData | 8 x 32 KBytes ~Clocks (Core %0)
Multiplier x 43.0 LiInst. | 8 x 64 KBytes Core Speed | 4798.85MHz LiData | 8x32KBytes | 8-way
Bus Speed 99,78 MHz Level 2 = 8 x 512 KBytes Multiplier | x 48.0 (8-49) L1Inst. | 8 x 32KBytes 8-way
Rated FSB Level3 | 2x 8192 KBytes BusSpeed |  99.98 MHz Level 2 | 8x256KBytes | 4-way
Rated FSB | Level 3 12 MBytes 12-way
Selection |Processor #1 v Cores | 8 Threads | 16 ,
o Selection |Socket #1 || Cores | 8 Threads @ 8
CPU-Z ver186.0x64 __Tods || Vaidate | Close
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Memory Hierarchy

fastest Processor
Processor
<1ns
Core
Registers
afewn SRAM S

DRAM

tens of n

tens of ns

 —

8" Jarger

Storage




How can deeper memory hierarchy help in performance?

- Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPl is just 1.

Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

- it's 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
Instructions.

- the 2nd-level at latency of b5ns and can capture 60% of the desired data/instructions
What's the average CPI (pick the most close one)?

A. 2
1+ (1 =90%) x [10 + (1 — 60%) x 52 B0% x (10 + (1 — 60%) x 520 = 5 cycle.
g 186 Fetch Instructions Access Data
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Why adding small SRAMs would
work?




Locality

- Spatial locality — application tends to visit nearby stuffs in the
memory

- Code — the current instruction, and then PC + 4
- Data — the current element in an array, then the next

- Temporal locality — application revisit the same thing again and again

- Code — loops, frequently invoked functions
- Data — the same data can be read/write many times

Most of time, your program is just visiting a
very small amount of data/instructions within
a given window
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Architecting the Cache



0x0000
0x1000

0x2000
0x3000
0x4000
0x5000

0x6000
0x7000

0x8000

AAAA BBBB CCcccC | bbDD EEEE FFFF GGGG | HHHH CCCC | bDDD EEEE FFFF GGGG | HHHH AAAA BBBB CCCC | DDDD EEEE FFFF GGGG | HHHH | AAAA BBBB | CCCC | DDDD EEEE FFFF GGGG | HHHH
AAAA BBBB CCccc | bDDD EEEE FFFF GGGG | HHHH AAAA BBBB | CCCC | DDDD EEEE FFFF GGGG | HHHH AAAA BBBB CCCC | DDDD EEEE FFFF GGGG | HHHH | AAAA BBBB | CCCC | DDDD EEEE FFFF GGGG | HHHH
. ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. ° ° ° ° ° ° ° ° ° ° ° ° ° . ° ° ° ° ° ° ° . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° °
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ° °
° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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"esssem Load/store only access a “word"” each time
oad Ox000R

OXFFF
OX1FFF
OX2FFF
OX3FFF
OX4FFF
OX5FFF
OX6FFF
OX7FFF
OX8FFF



Registers

0x0000
0x1000

0x2000
0x3000
0x4000
0x5000

0x6000
0x7000

0x8000

oad Ox000n

"nueeey To capture "spatial” locality, $ fetch a "block”
Core

“Logically” partition

memory space into
‘ “"blocks”

AAAA

BBBB

CCcC

DDDD

EEEE

FFFF

GGGG

HHHH

AABB

CCDD

EEFF

GGHH

EEEE

FFFF

GGGG

HHHH

AAAA

BBBB

CcccC

DDDD

EEEE

FFFF

GGGG

HHH

FFFF

GGGG

HHHH

AAAA

BBBB

CCCC

DDDD

EEEE

FFFF

GGGG

HHHH

AAAA

BBBB

CCCC

DDDD

EEEE

FFFF

GGGG

HHHH

AAAA

BBBB

CCccC

DDDD

EEEE

FFFF

GGGG

HHHA AAAA

FFFF

GGGG

HHHH
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OXFFF
OX1FFF
OX2FFF
Ox3FFF
OX4FFF
OX5FFF
OX6FFF
OX7FFF
OX8FFF



Processor

Core

Registers

How to tell who is there?
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tag

® Ox0000
= 0x0001
N 0x0002
W Ox0003
O\ Ox0006
U9 Ox000B
O 0x000C
© Ox000D
IT OX000E
"1 OXO00F

0x000

O |F 0x0004
8 |O'I 0x0005

O |\ 0x0007
m |00 9x0008
m NO 6x0009
G |[> 9x000A

>
>
W
W
2
T
T
L
-




x—— Tell if the block here can be used

racEsS( How to tell wi 3 @ 4—Tell if the block here is modified
Or€ block Offsr so g 0123460 EaBn pon e
o tag
1|1 IIJIKKLLMMMNOOPP
ad © 1|0 QQRRSSTTUUMMWWXX
0|1 YYZZAABBCCBDEEFF
1]1 AABBCCDDEEGBFFHH
1|1 I1JIKKLLMMMNOOPP
load © |1 QQRRSSTTUUMMWWXX
0|1 YYZZAABBCCBEEFF
0x404 not found, 11 I1JIKKLLMMMNOOPP
go to lower-level memoryjijl QQRRSSTTUUMMWWXX
0|1 YYZZAABBCCBEEFF
The complexity of search the matching tag—|@|1 AABBCCDDEEGEF FHH
O(1n)— will be slow if our cache size grows!{=i= - JRELLUESED 008
1|1 QQRRSSTTUUMMWWXX
Can we seprch things faster? 1|0 QQRRSSTTUUMMWWXX
0|1 YYZZAABBCCBIDEEFF

—hash table! O(1)




DIrE block offset
tag

=9ISte In

oad Ox A

load Ox

0x40 not found,
go to lower-level mem

The biggest issue with hash is —
Collision!
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Hash-like structure — direct-mapped cache

CDEF

00PP

WWXX

EEFF

O0PP

WWXX

EEFF

O0PP

WWXX

EEFF

FFHH

00PP

WWXX

VD tag data
012345678
1(1 0x10 IIJJIKKLLM
1(0 OxA1 QQRRSSTTU
0|1 0x10 YYZZAABBC
1 Ox45 IIJJIKKLLM
0|1 Ox41 QQRRSSTTU
0|1 0x68 YYZZAABBC
0x29 IIJJIKKLLM
OxDE QQRRSSTTU
0|1 OxCB YYZZAABBC
0|1 Ox8A AABBCCDDE
1(1 Ox60 IIJJKKLLM
1(1 0x70 QQRRSSTTU
1(0 0x10 QQRRSSTTU
0|1 ox11 YYZZAABBC

WWXX

EEFF




Way-associative cache

memory address: OXx0
set block
index offset
memory address: @b@@@@l@@@@l@‘@l@@
VD tag data VD tag data
1|1  ox29 I11JIKKLLMMNNOOPP 1{1]  oxee AABBEEDDEEGGFFHH
OXDE QQRRSSTTUUVVWWXX 1|1  eox1e I11JJKKLLMMNNOOPP
BBCCDDEEFF QQRRESTTUUVVWWXX
0|1 oxsA AABECEDDEEGGFFHH e|1| eox1e YYZzAABBCCDDEEFF
1{1]  0x60 I11JJKKLLMMNNOOPP 1{1]  ex31 AABBEEDDEEGGFFHH
1{1|  ox70 QQRRSSTTUUVVWWXX 1{1|  ox45 I1JJKKLLMMNNOOPP
e|1| eox1e QQRRSSTTUUVVWWXX 0|1  ex4l QQRRSSTTUUVVWWXX
0|1 ex11 YYZZAABBCC 0|1 oxes YYZZAABBCCDDEEFF

hit?




C =ABS

. C: Capacity in data arrays

- A: Way-Associativity — how many blocks within a set
- N-way: N blocksinaset,A=N

- 1 for direct-mapped cache

.- B: Block Size (Cacheline)

- How many bytes in a block

- S: Number of Sets:

- A set contains blocks sharing the same index
- 1 for fully associate cache
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Corollary of C = ABS

set block
tag index offset

memory address: @b@@@@l@@@@@l@‘@l@@

- number of bits in block offset — Ig(B)

- number of bits in set index: Ig(S)

- tag bits: address_length - 1g(S) - Ig(B)

- address_length is 32 bits for 32-bit machine
- (address / block_size) % S = set index
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AMD Phenomli

- L1 data (D-L1) cache configuration of AMD Phenom |l

- Size 64KB, 2-way set associativity, 64B block
- Assume 64-bit memory address

Which of the following is correct?

C = ABS
B. Indexis 8 bits 64KB=2*64*S
C. Offsetis 7 bits S =512
D. The cache has 1024 sets offset = 1g(64) = 6 bits
E. None of the above index =19(512) = 9 bits

tag = 64 - 1g(512) - 1g(64) = 49 bits
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intel Core 17

- L1 data (D-L1) cache configuration of Core i/
- Size 32KB, 8-way set associativity, 64B block

- Assume 64-bit memory address

- Which of the following is NOT correct?

A. Tagis 52 bits C = ABS
C. Offsetis 6 bits S=64
D. The cache has 128 sets offset = Ig(64) = 6 bits

index =1g(64) = 6 bits
tag = 64 -1g(64) - 1g(64) = 52 bits
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Put everything all together:
How cache interacts with CPU




What happens when we read data

- Processor sends load request to L1-$
Processor -+ if hit

Core e return data
o if miss
- Select a victim block

- If the target “set” is not full — select an empty/invalidated block
as the victim block

- If the target “set is full — select a victim block using some

. olic
write back return block "2’ . .
- LRU is preferred — to exploit temporal locality!
' OXDEADBE

= If the victim block is "dirty” & "valid"
- Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
return block and place in the victim block

ADBE. If write-back or fetching causes any miss, repeat the same
process

Registers

1d
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What happens when we write data

- Processor sends load request to L1-$

Processor - if hit
Core « return data —set DIRTY
. * if miss
Registers o
- Select a victim block
sd ' : Write & Set dirty - If the target "set” is not full — select an empty/invalidated block
- . as the victim block

- If the target "set is full — select a victim block using some policy
- LRU is preferred — to exploit temporal locality!

return blOc-klf the victim block is "dirty” & “valid”

OXDEADBE - Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

return block it write-back or fetching causes any miss, repeat the same

ADBE process
* Present the write "ONLY" in L1 and set DIRTY
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Performance evaluation considering cache

- |f the load/store instruction hits in L1 cache where the hit time is
usually the same as a CPU cycle

- The CPI of this instruction is the base CPI
- |f the load/store instruction misses in L1, we need to access L2
- The CPI of this instruction needs to include the cycles of accessing L2

- |f the load/store instruction misses in both L1 and L2, we need to
go to lower memory hierarchy (L3 or DRAM)

- The CPI of this instruction needs to include the cycles of accessing
L2, L3, DRAM
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How to evaluate cache performance

» CPlaverage : the average CPI of a memory instruction

C PIAverage= C Plbase + miSS_rateL’I *miSS_pena ItyL1

miss_penalty 1= CPlaccessing L2+Miss_rate 2*miss_penalty.»
miss_penalty 2= CPlaccessing L3+Miss_rate z3*miss_penalty 3

miss_penalty 3= CPlaccessing brRaM+MISS_ratepram™miss_penaltypram

- If the problem is asking for average memory access time, transform
the CPI values into/from time by multiplying with CPU cycle time!
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- Application: 80% ALU, 20% Loads

Cache & Performance

- Assume the 1-cycle L1 hit time allows the CPI to be 1
- L1 I-cache miss rate: 5%, hit time: 1 cycle

- L1 D-cache miss rate: 10%, hit time: 1 cycle

- L2 U-Cache miss rate: 20%, hit time: 10 cycles

- Main memory hit time: 100 cycles
- What's the average CPI?

CPIAverage= CPIbase + miss_rate*miss_penalty

= 1+
Fetch Instruction

00%*(5%*(10+20%*(1*100)))

20%*(10%*(1)*(10+20%*((1)*100)))

Access Data

4 )

CPU

T 1
tag index | offset tag index | offset
| |
1 cycle (no overhead) if hit | |-L1 $ D-L1$
5% miss ¢ T 10% miss
tag index 0 tag index 0
! !
tag index | B-1 tag index | B-1
I I
10 cycles if hit L2 $
20% miss tag index | 0
!
tag index B-1
100 cycles if hit DRAM
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Cache & Performance

~
- Application: 80% ALU, 20% Load/Store
- L1 I-cache miss rate: 5%, hit time: 1 cycle C P U
- L1 D-cache miss rate: 10%, hit time: 1 cycle, 20% dirty S y
- L2 U-Cache miss rate: 20%, hit time: 10 cycles, 10% dirty T T
- Main memory hit time: 100 cycles tag index | offset tag index | offset
- What's the average CPI? ' '
1 cycle (no overhead) if hit -L1 $ D-L1$
CP|Average= CPlbase + miss_rate*miss_penalty 5% miss 400/0 dirty 109/21 niss
— 1+1 Ooo/o*(so/o*(-l O+200/0*((1 +1 Oo/o)*1 OO))) tag index 0 victim tag index 0 tag index
+20%*(10%* (1420%)*(10+20%*((1+10%)*100))) ¢ l l
_ 3368 tag o dex B_.II victim tag iniex B-1 | tag index
10 cycles if hit L2 $
_ - |
victim tag index 0 200/0 miSS = l — -
! 10% dirty - — T
victim tag index B-1

100 cycles if hit DRAM
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Cause of cache misses



3Cs of misses

- Compulsory miss

- Cold start miss. First-time access to a block

. Capacity miss

- The working set size of an application is bigger than cache size

. Conflict miss

- Required data replaced by block(s) mapping to the same set
- Similar collision in hash
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Simulate the cache!



Tips for cache simulation

- Figure out the memory access patterns
- Address sequences from your code
- The behavior/locality of the variables/arrays

- Partition the address
- Use C=ABS
- Find out tag, index

- Check your current cache content
- Hit: for the same index, if you can find the same tag there.

- Otherwise, miss
- Compulsory misses: you never accessed the same (tag,index) pair before
- Conflict misses: the tag appeared in the same index before
- Replace the least recently used block with the requesting block
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Simulate a direct-mapped cache

- Consider a direct mapped (1-way) cache with 256 bytes total capacity, a

block size of 16 bytes, and the application repeatedly reading the following
memory addresses:

- 0b1000000000, Ob1000001000, Ob1000010000, Ob1000010100,

0b1100010000
e C=ABS

o S5=256/(16*1) =16

e Ig(16) = 4 : 4 bits are used for the index

e Ig(16) =4 : 4 bits are used for the byte offset

e lhetagisd48-(4 +4) =40 bits

e Forexample: Ob1000 0000 00O 0OOO OO0 00O 1000 0000
L so"\\
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00O NO O & W N -0

_ ) - Ny =
abD w2000

Simulate a direct-mapped cache

Tag

Data

0b10

oblo

OO0 OO0 000|000 |IFIK
[OCRECRICEICEICEECERICEICEICEICEICEICEICEICEICEICEl o)

tag

0b10
0b10
0b10
0b10
0b1l1l
0b10
0b10
0b10
0b10
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0000
0000
0001
0001
0001
0000
0000
0001
0001

0000
1000
0000
0100
0000
0000
1000
0000
0100

compulsory miss
hit!
compulsory miss
hit!
compulsory miss
hit!
hit!
conflict miss
hit!



Simulate a 2-way cache

- Consider a 2-way cache with 256 bytes total capacity, a block

size of 16 bytes, and the application repeatedly reading the
following memory addresses:

- 0b1000000000, 0b1000001000, 0b1000010000,

Ob1000010100, Ob1100010000

C=ABS
S=256/(16*2) =8

8 = 273 : 3 bits are used for the index
16 = 2™4 . 4 bits are used for the byte offset
Thetagis 32 - (3 +4) = 25 bits

For example: 0b1000 0000 0000 0000 0000 V00O 0001 0000

&
-§

tag >
&
86 O
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Simulate a 2-way cache

Tag

Data

Tag

Data

0b10

0b10

0b11l

oo ||
oo o e |o|®|0

®ooloo o |o|<
®©ooloo|o|o|®|0

87

0

0b10
0b10
0b10
obll
0b10
0b10
0b10
0b10

0000
0000
0001
0001
0001
0000
0000
0001
0001

P0QQ compulsory miss

1000 hit!
9000 compulsory miss
0100 hit!
000 compulsory miss
0000 hit!
1000 hit!
9141%1% hit

0100 hit!



AMD Phenomli

- D-L1 Cache configuration of AMD Phenom |l

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 32-bit address.

int al[16384], b[16384], c[16384];
/* C = 0x10000, a = 0x20000, b = Ox30000 x/
for(i = 0; 1 < 512; i++) {

c[i] = ali] + bl[i];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 06.25%
o) C =ABS
B. 56.25% 64KB=2*64*S
C. 66.67% S =512
D 68 75% offset = 1g(64) = 6 bits
index =1g(512) = 9 bits
E. 100%

tag = 64 - 1g(512) - Ig(64) = 49 bits
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AMD Phenom Il  100% miss rate!

Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 48-bit address.

int al[16384], b[16384], c[16384]; C =ABS
/* ¢ = Ox10000, a = 0x20000, b = 0x30000 x/ 64KB =2" 64" S
for(i = 0; 1 < 512; 1i++) S =512

c[i] = a[i] + b[i]l: /*load al[il, load b[il, store c[il*/ oftset =1g(64) = 6 bits
index =1g(512) = 9 bits

tag = the rest bits

address in hex tag ““fndex.  offset tag index hit? miss?
load al@] 0x20000 Ob10 0000 0000 0VOO 0000 Ox4 %) compulsory miss
load b[0@] Ox30000 Obll 0000 0000 0000 0000 Ox6 0 compulsory miss
store c[O] 0x10000 Ob01l 0000 0000 00O 0000 Ox?2 %) compulsory miss, evict
load al1ll Ox20004 Pbl0 0000 0000 0VOO 0100 OXx4 0 conflict miss, evict Oxé6
load b[1] Ox30004 Pbll 0000 00O 0VOO 0100 Ox6 0 conflict miss, evict 0x2
store c[1] 0x10004 Pb01l 0000 0000 0VOO 0100 0x2 0 conflict miss, evict Ox4
load al[15] OX.ZGGBC 0b10 é@@@ 0000 0011 1100 | @.xlp 0 miss, evict Ox6
load b[15] 0x3003C Obll 0000 0000 0011 1100 Ox6 5 miss, evict 0Ox2
store c[15] Ox1003C PbO1l 0000 00O 0011 1100 Ox2 0 miss, evict Ox4&
load al[16] 0x20040 Pb10 0000 0000 0100 0000 Ox4 1 compulsory miss
load b[16] Ox30040 Pbll 0000 0000 0100 0000 Ox6 1 compulsory miss
store c[16] 0x10040 Pb01l 0000 0000 0100 0000 0x2 1 compulsory miss, evict
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AMD Phenomli

- D-L1 Cache configuration of AMD Phenom |l

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 32-bit address.

int al[16384], b[16384], c[16384];
/* C = 0x10000, a = 0x20000, b = Ox30000 x/
for(i = 0; 1 < 512; i++) {

c[i] = ali] + bl[i];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 06.25%
o C =ABS
B. 56.25% 64KB=2*64*S
C. 66.67% S =512
D. 6875% offset = 1g(64) = 6 bits

index =1g(512) = 9 bits
E. 100% tag = 64 - 1g(512) - Ig(64) = 49 bits
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Matrix transpose

double A[16384], B[16384];
int N=128;
for(i = 0; i < N; i++)
for(j = 0; jJ < N; j++)
B[i*N+j] = A[j*N+i];
// assume load A[j*N+i] and then store B[i*N+j]
// &A[0] is 0x20000, &B[O] is 0x40000

What'’s the access sequence of A[] looks like?
A[O], A[128], A[256], ..., A[127*128], A[1], A[129]..., A[127*128+1], ...

What'’s the access sequence of BJ[] looks like?
B[0], B[1], B[2], ......
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Improving 3Cs



Improvement of 3Cs

. 3Csand A, B, C of caches

- Compulsory miss

- Increase B: increase miss penalty (more data must be fetched from lower
hierarchy)

- Capacity miss

- Increase C: increase cost, access time, power
. Conflict miss

- Increase A: increase access time and power

- Or modify the memory access pattern of your program!
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Programming and memory
performance




Memory addressing/alignment

- Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

- Instructions generally work faster when the given memory
address is alignhed

- Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

- Some architecture/processor does not support aligned access at all
- Therefore, compilers only allocate objects on "aligned” address
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Theresultof sizeof(struct student)

- Consider the following data structure:
struct student {

int 1d;

double xhomework:
int participation;
double midterm;
double average;

average

midterm

participation

homework

Py .
What's the output of -
printf(“%lu\n",sizeof(struct student))?
A. 20
B. 28
C. 32
D. 36
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Loop interchange/fission/fusion



Demo — programmer & performance

for(i = 0; 1 < ARRAY_SIZE; i++)
{
for(j = ©; j < ARRAY_SIZE; j++)
{
c[1i1[3j] = al1]1[jl+b[1]1[3];

for(j = ©; j < ARRAY_SIZE; j++)
{
for(i = ©; 1 < ARRAY_SIZE; i++)
{
c[i]1[j] = ali1l[j1+b[11[j];

; }
; }
O(n 2) Complexity O(n 2)
Same Instruction Count? Same
Same Clock Rate Same

Better CPI Worse
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AMD Phenomli

- D-L1 Cache configuration of AMD Phenom |l

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 32-bit address.

int al[16384], b[16384], c[16384];
/* C = 0x10000, a = 0x20000, b = Ox30000 x/
for(i = 0; 1 < 512; i++) {

c[i] = ali] + bl[i];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 6.25%

o) C =ABS
B. 56.25% i
C. 66.67% S 1o
D. 68.75% offset = Ig(64) = 6 bits

index =1g(512) = 9 bits
E. 100% tag =64 - 1g(512) - Ig(64) = 49 bits
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What if the code look like this?

- D-L1 Cache configuration of AMD Phenom |l

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 32-bit address.

int al[16384], b[16384], c[16384];
/* C = 0x10000, a = 0x20000, b = Ox30000 x/
for(i = ©0; 1 < 512; i++)
c[i] = alil; //load a and then store to c
for(i = @; i < 512; i++)
c[i] += bl[i]; //load b, load c, add, and then store to c

What's the data cache miss rate for this code?

A. 6.25%

B. 56.25%
C. 66.67%
D. 68.75%
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Loop Fusion

/* Before x/

for (1 = 0; 1 < N; 1 = 1+1)
for (j = 0; j < N; j = j+1)
ali1[j] = 1/bl[i1[3] * c[1i1[3];
for (1 = 0; 1 < N; 1 = i+1)
for (j = 0; jJ < N; j = j+1)
dfil[3]1 = alil[j] + c[i1[j];
/*x After *x/

for (1 = 0; 1 < N; 1 = 1i+1)
for (j = 0; j < N: j = j+1)

1/bl[1107] * c[11[37];
ali1][3] + c[1l1[j];

2 misses per access to a & ¢ vs. one miss per access
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Blocking



Case study: Matrix Multiplication

for(i = 0 1 < ARRAY_SIZE; i++) { Algorithm class tells you it's O(n3)

for(jJ = ©; 7 < ARRAY_SIZE; j++) {
for(k = ©0; k < ARRAY_SIZE; k++) { .
| CLiI) 4= ALK, If Nn=512, it takes about 1 sec

! How long is it take when n=10247?
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Matrix Multiplication

Very likely a miss if
for(i = 0; 1 < ARRAY _SIZE; 1++) { array is |arge
for(j = 0; j < ARRAY_SIZE; j++) { .
for(k = 0; k < ARRAY_SIZE; k++) {
cli][j] += al1]llklxb[k]1[3];
Iy
s
s

C a b

- If each dimension of your matrix is 1024
- Each row takes 1024*8 bytes = 8KB
- The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
- You can only hold at most 4 rows/columns of each matrix!

- You need the same row when j increase!
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Block algorithm for matrix multiplication

. Discover the cache miss rate

- valgrind --tool=cachegrind cmd
- cachegrind is a tool profiling the cache performance

- Performance counter
- Intel® Performance Counter Monitor http://www.intel.com/software/pcm/
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Block algorithm for matrix multiplication

for(i = 0; 1 < ARRAY_SIZE; 1i++) {
for(j = @; j < ARRAY_SIZE; j++) {
for(k = 0; k < ARRAY_SIZE; k++) {

c[11[j] += alillkIxb[k1[j1;

for(i = ©: i < ARRAY_SIZE: i+=(ARRAY_SIZE/n)) {
for(j = ©: j < ARRAY_SIZE: j+=(ARRAY_SIZE/n)) {
for(k = ©: k < ARRAY_SIZE: k+=(ARRAY_SIZE/n)) {
for(ii = 1; 11 < 1+(ARRAY_SIZE/n); 1i++)
for(jj = j: jj < j+(ARRAY_SIZE/n): jj++)

for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
c[iil[jj]1 += aliillkklxb[kk1[jjl1;

4
. "
\ Y
‘ b
. a '
+ [ ]
b ]

You oﬁly need to hold these
sub-nvatrices in your cache



<
K

for(jj

Matrix Transpose

ARRAY_SIZE; 1+=(ARRAY_SIZE/n)) {

ARRAY SIZE: j+=(ARRAY_SIZE/n)) {

< ARRAY_SIZE: k+=(ARRAY_SIZE/n)) {
i: ii < i+(ARRAY_SIZE/n): ii++)

= §: jj < j+(ARRAY_SIZE/n): jj++)

for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)

cl[i1][jj] += aliillkk]xb[kkI[j]];

107

// Transpose matrix b into b_t

for(i = @; 1 < ARRAY_SIZE: i+=(ARRAY_SIZE/n)) {
for(j = @; j < ARRAY_SIZE: j+=(ARRAY_SIZE/n)) {
b_t[i]l[j] += b[j1[i];
¥
¥
for(i = 0; 1 < ARRAY_SIZE; 1i+=(ARRAY_SIZE/n)) {
for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
for(ii = i; 1i < 1+(ARRAY_SIZE/n); 1i++)
for(j3j3 = 3; 33 < J+(ARRAY_SIZE/n); Jj++)
for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
// Compute on b_t
cliil[jj] += aliillkkIxb_t[jjI[kk];
¥
¥
s



Prefetching



Characteristic of memory accesses

for(i = 0;1 < 1000000; 1i++) {
D[1] = rand();
}
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8] D[9D[10]

CPU — AT AT T 7 T

1g — L .
mIsSS mISS

12$ 4 ! >

L2 access L2 access time

for D[O] - D[7] for D[8] - D[15]
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Prefetching

for(i = 0;1 < 1000000; 1++) {
D[1] = rand();
// prefetch D[i+8] if 1 % 8 == 0
}
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8] D[9]D[10]i"] D12l D[13] D[14] DI15] DI16]
I I I I I | | I I I I
CPU — LI L I N
prefetch pfgfeter prefetch
g | U J ! L,
$ VL‘ T T time
MmIss Mmiss Mmiss
L2 $ i | ) >
L2 access L2 access L2 access time
for D[0] - D[7]  for D[8] - D[15] for D[16] - D[23]

10



Prefetching

- |dentify the access pattern and proactively fetch data/
Instruction before the application asks for the data/instruction

- Trigger the cache miss earlier to eliminate the miss when the
application needs the data/instruction

- Hardware prefetch

- The processor can keep track the distance between misses. If there
IS a pattern, fetch miss_data_address+distance for a miss

. Software prefetch

- Load data into X0
- Using prefetch instructions

11



Demo

. X806 provide prefetch instructions

- As a programmer, you may insert mm prefetch inx86
programs to perform software prefetch for your code

- gcc also has a flag “-fprefetch-loop-arrays” to automatically
Insert software prefetch instructions
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Where can prefetch work effectively?

- How many of the following code snippet can “prefetching” effectively help improving
performance?

(1) i
while (++i<100000)

while(node) { a[i]=rand();
node = node->next;
} — where the next pointing to is hard to predict

— - (3) (4)
while (root != NULL) { for (i = 0; 1 < 65536; i++) {
if (key > root->data) mix_i = ((i * 167) + 13) & 65536;
root = root->right; results[mix_i]++;
}
else if (key < root-—>data) — the stride to the next element is hard to predict...
root = root->left; — —
else

return true;

}
— where the next node is also hard to predict

T — ——

moOowx»
AwN —|o
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Advanced Hardware Techniques In
Improving Memory Performance



Without banks

return block

return block
fetch block OxDEAEBE

fetch block
OxDEADBE OxDEAEBE

OxDEADBE

| |
D
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Multibanks & non-blocking caches

$

o ,
. o DE ADBE fetch block

eturn block

fetch block OxDEAEBE

OxDEADBE OxXDEAEBE

RAM RAM RAM RAM
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Pipelined access and multi-banked caches

Request #1 Request #2 Request #3

Baseline

Request #1 Bank #1

_— Request #2 Bank #2
banked Request #3 Bank #3
Request #4 Bank #4




Pipelined access and multi-banked caches

- Assume each bank in the $ takes 10 ns to serve a request, and
the $ can take the next request 1 ns after assigning a request to
a bank — if we have 4 banks and we want to serve 4 requests,
what's the speedup over non-banked, non-pipelined $? — pick
the closest one

A. 1x—no speedup ETpasetine = 4 X 10 ns = 40 ns

B 2X ETbanked — 10 ns 4+ 3 X 1 ns = 13 ns
B Execution Timey ;..
Sp eedup ~ Execution Timey keq
D. 4x — 20 _ 3.08 X

13

E. bx
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Early Restart and Critical Word First

- Don't wait for full block to be loaded before restarting CPU

- Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

- Most useful with large blocks

. Spatial locality a problem; often we want the next sequential
word soon, so not always a benefit (early restart).
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Midterm Logistics



For midterm

- No cheat sheet allowed

 No cheating allowed
- We will have some problems require you to write

- You may bring a calculator

* You should bring pen/pencil/eraser
- My last office hour before midterm — this Wednesday @ 1pm-2pm — friday is
cancelled.
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Format of the midterm

- Multiple choices * 10 — like your clicker/reading quizzes multiple choices
questions
- Short answer question * 5

- Each answer MUST be less than 30 words
- Writing more than 30 words is equivalent to writing O words

- Homework style free-answer questions * 3
- You need to clearly write down the original form of the applied equation/formula
- You need to replace each term accordingly with numbers

- You will have some credits for right equations even though the final number
Isn't correct

- You will receive O credits if we only see the numbers
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Sample Midterm



ldentify the performance bottleneck

- Why does an Intel Core i/ @ 3.5 GHz usually perform better than an Intel
Coreib @ 3.5 GHz or AMD FX-8350@4GHz?

Intel Core i7 4770K (84W)

4C/8T, 2.5 GHz, IMB L2, 8MB L3 2382

Intel Core 15 4630K (88W)

4C/4T, 3.5 GHz, IMB L2, EMB L3 2234 SySbenCh 2014 from http://WWW.anandteCh.Com/

AMD FX-g320 (125W)
4M/8T, 1.0 GHz. 8M3 1L2,8MB L3

Because the instruction count of the program are different
Because the clock rate of AMD FXis higher
. Because the CPI| of Core i/ is better

Because the clock rate of AMD FXis higher and CPI of Core i/ is better
None of the above

moOow>
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Amdahl’'s Law on Multicore Architectures

- Regarding Amdahl’s Law on multicore architectures, how many of the following statements
Is/are correct?

® If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, single-core performance does not matter
anymore

® With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

moOoOwxz
AwN = O
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How programmer affects performance?

- Performance equation consists of the following three factors
@ IC

® CPI
® CT

How many can a programmer affect?
A. O

B. 1
C. 2
D. 3
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Demo — programmer & performance

for(i = @0; 1 < ARRAY_SIZE; 1++) for(j = ©; j < ARRAY_SIZE; j++)

{ {
for(j = 0; J < ARRAY_SIZE; j++) for(1 = ©; 1 < ARRAY_SIZE; 1++)
{ {
cli]l3] = al1]l[j1+b[1]1[]]; cli]lj] = al11[j1+b[1]1[]]1;
ks ¥

} }

- How many of the following make(s) the performance of A better than
B
@ IC
@ CPI
® CT
A. O

B.
C.
D.

W N =
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Fair comparison

- How many of the following comparisons are fair?

® Comparing the frame rates of Halo 5 on AMD RyZen 1600X and civilization on
Intel Core i/ 7700X

@ Using bit torrent to compare the network throughput on two machines

® Comparing the frame rates of Halo 5 using medium settings on AMD RyZen
1600X and low settings on Intel Core i/ 7700X

@ Using the peak floating point performance to judge the gaming performance of
machines using AMD RyZen 1600X and Intel Core i/ 7700X

moOowx>
A WON—-O
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Locality

- Which description about locality of arrays sum and A in the following
code is the most accurate?

for(1 = 0: 1< 100000: 1++)
{

sum[1%10] += A[1];
}

Access of A has temporal locality, sum has spatial locality

Both A and sum have temporal locality, and sum also has spatial locality
. Access of A has spatial locality, sum has temporal locality
Both A and sum have spatial locality

Both A and sum have spatial locality, and sum also has temporal locality

mooOowere

129



3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?

MOOW>»EE0 06

WO DN-—-O0O

ncreasing associativity can reduce conflict misses
ncreasing associativity can reduce hit time
ncreasing block size can increase the miss penalty
ncreasing block size can reduce compulsory misses
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intel Core 17

- L1 data (D-L1) cache configuration of Core i/

- Size 32KB, 8-way set associativity, 64B block
- Assume 64-bit memory address
- Which of the following is NOT correct?

A. Tagis 52 bits

B. Index s 6 bits

C. Offsetis 6 bits

D. The cache has 128 sets
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Virtual indexed, physical tagged cache limits the cache size

- If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the system use 4K pages.

A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way
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When we have virtual memory...

- In a modern x86-64 processor supports virtual memory
through, how many memory accesses can an instruction incur?

A. 2

.4
. O
. 8

m O O W

More than 10
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Sample short answer questions (< 30 words)

- What is RISC? What is CISC? List two pros/cons for each

- What are the limitations of compiler optimizations? Can you list two?
- Please define Amdahl’s Law and explain each term in it

- Please define the CPU performance equation and explain each term.

- Can you list two things affecting each term in the performance
equation?

- What's the difference between latency and throughput? When
should you use latency or throughput to judge performance?

- What's "benchmark” suite? Why is it important?

- Why TFLOPS or inferences per second is not a good metrics?
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Performance Equation/Speedup

- Assume that we have an application composed with a total of 500000
iInstructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions with
average CPI of 1 cycle. If the processor runs at 1GHz, how long is the
execution time? If hardware technology improves the processor clock rate to
2GHz, but making load/store CPI to be 12 cycles, how much is the speedup?
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Amdahl’'s Law for multiple optimizations

- Assume that memory access takes 30% of execution time.

- Cache can speedup 80% of memory operation by a factor of 4
- L2 cache can speedup 50% of the remaining 20% by a factor of 2

- What's the total speedup?
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Performance evaluation with cache

- Consider the following cache configuration on RISC-V processor:

I-L1 D-L1 L2 DRAM
size 32K 32K 256K Big enough
block size 64 Bytes 64 Bytes 64 Bytes AKB pages
associativity P&V 2-way 8-way

. 1 cycle (no penalty 1 cycle (no penalty
access time fit's a hit) itisiahit 10 cycles 100 cycles
local Y 10%, 20% dirty 15% (i.e., 15% of L1 misses,

miss rate

also miss in the L2), 30% dirty

Write policy LY/ Write-back, write allocate

TE A ERE N EIE LRU replacement policy

The application has 20% branches, 10% loads/stores, 70% integer instructions.

Assume that TLB miss rate is 2% and it requires 100 cycles to handle a TLB miss. Also assume
that the branch predictor has a hit rate of 87.5%, what's the CPI of branch, L/S, and integer
instructions? What is the average CPI?
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Cache simulation

- The processor has a 8KB, 256B blocked, 2-way L1 cache. Consider the

following code:
for(i=0:1<256;:1i++) {
ali] = b[i] + cl[1];
// load al[i] and load b[i], store to cl[i]

// &al@] = 0x10000, &b[O] = 0x20000, &c[0] = Ox30000
¥

- What’s the total miss rate? How many of the misses are compulsory misses?
How many of the misses are conflict misses?

- How can you improve the cache performance of the above code through
changing hardware?

-+ How can you improve the performance without changing hardware?
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