
Midterm Review
Hung-Wei Tseng

von Neumann model &
Performance equation

!2

von Neumman Architecture

!3

Processor

Memory
Storage

Program
0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

• The simplest kind of performance
• Shorter execution time means better performance
• Usually measured in seconds

Processor
PC

120007a30: 0f00bb27 ldah gp,15(t12)
120007a34: 509cbd23 lda gp,-25520(gp)
120007a38: 00005d24 ldah t1,0(gp)
120007a3c: 0000bd24 ldah t4,0(gp)
120007a40: 2ca422a0 ldl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,-23508(t1)
120007a50: 0004ff47 clr v0
120007a54: 28a4e5b3 stl zero,-23512(t4)
120007a58: 20a421a4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
120007a60: 0204e147 mov t0,t1
120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

instruction memory

How long is it take to
execution each of these?

How many of these?

!4

Execution Time

clock

Instru ctions
Prog ram

Cycles
Instru ction × Seconds

Cycle

CPU Performance Equation

!5

Execu tionTime = Instru ctions
Prog ram × Cycles

Instru ction× Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execu tionTime

1
Frequ ency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle

• Assume that we have an application composed with a total of
5000000000 instructions, in which 20% of them are “Type-A”
instructions with an average CPI of 8 cycles, 20% of them are
“Type-B” instructions with an average CPI of 4 cycles and the rest
instructions are “Type-C” instructions with average CPI of 1 cycle. If
the processor runs at 3 GHz, how long is the execution time?
A. 3.67 sec
B. 5 sec
C. 6.67 sec
D. 15 sec
E. 45 sec

!6

Performance Equation (X)

average CPI
ET = IC × CPI × CT

ET = (5 × 109) × (20% × 8 + 20% × 4 + 60% × 1) × 1
3 × 10−9 sec = 5

• The relative performance between two machines, X and Y. Y is n
times faster than X

• The speedup of Y over X

!7

Speedup

n= Execu tionTimeX

Execu tionTimeY

Speedu p = Execu tionTimeX

Execu tionTimeY

• Consider the same program on the following two machines, X and Y. By
how much Y is faster than X?

A. 0.2
B. 0.25
C. 0.8
D. 1.25
E. No changes

!8

Speedup of Y over X

Clock Rate Instructions Percentage of
Type-A Insts.

CPI of Type-A
Insts.

Percentage of
Type-B Insts.

CPI of Type-B
Insts.

Percentage of
Type-C Insts.

CPI of Type-C
Insts.

Machine X 3 GHz 500000 20% 8 20% 4 60% 1

Machine Y 5 GHz 500000 20% 13 20% 4 60% 1

ETY = (5 × 106) × (20% × 13 + 20% × 4 + 60% × 1) × 1
5 × 10−9 sec = 4

Speedu p = Execu tionTimeX

Execu tionTimeY

= 5
4 = 1.25

What Affects Each Factor in
Performance Equation

!9

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

• Cycle Time (Seconds Per Cycle)
• Process Technology, microarchitecture, programmer

!10

Summary of CPU Performance Equation
Performance = 1

Execu tionTime

Execu tionTime = Instru ctions
Prog ram × Cycles

Instru ction × Seconds
Cycle

ET = IC × CPI × CT

• By adding the “sort” in the following code snippet, what the programmer
changes in the performance equation to achieve better performance?

A. CPI
B. IC
C. CT
D. IC & CPI

!11

Programmer’s impact

 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

— we increased IC, suppose to make the
performance worse

Demo — programmer & performance

!12

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

Programmers can also set the cycle time

!13

https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

• How many instructions are there in “Hello, world!”

!14

Programming languages

Instruction count LOC Ranking

C 600k 6 1

C++ 3M 6 2

Java ~210M 8 5

Perl 10M 4 3

Python ~30M 1 4

Recap: How my “C code” becomes a “program”

!15

Source Code

Compiler
(e.g., gcc)

Program
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Linker

Objects, Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507Ins

tru
cti
on
s

One Time Cost!

Recap: How my “Java code” becomes a “program”

!16

Compiler
(e.g., javac)

Jave Bytecode (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Source Code

Java Virtual
Machine (e.g., java)

Other (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507Ins

tru
cti
on
s

One Time Cost!Everytime when we run it!

Recap: How my “Python code” becomes a “program”

!17

Interpreter
(e.g., python)

Source Code

Program
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

0f00bb27 
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800  
00000008
00c30000  
00000008

Da
ta

cafebabe
00000033 
001d0a00
06000f09 
00100011
0800120a 
00130014
07001507Ins

tru
cti
on
s

Everytime when we run
it!

• gcc has different optimization levels.
• -O0 — no optimizations
• -O3 — typically the best-performing optimization

!18

Revisited the demo with compiler optimizations!

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

A B

• Compiler can reduce the instruction count, change CPI
— with “limited scope”

• Compiler CANNOT help improving “crummy” source code

!19

Demo revisited — compiler optimization

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

Compiler can never add this — only the programmer can!

• CISC (Complex Instruction Set Computing)
• Examples: x86, Motorola 68K
• Provide many powerful/complex instructions

• Many: more than 1503 instructions since 2016
• Powerful/complex: an instruction can perform both ALU and memory operations
• Each instruction takes more cycles to execute

• RISC (Reduced Instruction Set Computer)
• Examples: ARMv8, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

• Each instruction only performs simple tasks
• Easy to decode
• Each instruction takes less cycles to execute

!20

How many operations: CISC v.s. RISC

• Using the same language, the same source code, regarding the compiled program on
x86 and RISC-V, how many of the following statements is/are “generally” correct?
က: The RISC-V version would contain more instructions than its x86 version
က< The RISC-V version tends to incur fewer memory accesses than its x86 version
က> The RISC-V version needs a processor with higher clock rate than its x86 version if the

CPI of both versions are similar
က@ The RISC-V version needs a processor with lower CPI than its x86 version if the x86

processor runs at the same clock rate
A. 0
B. 1
C. 2
D. 3
E. 4

!21

RISC-V v.s. x86

Amdahl’s Law — and It’s
Implication in the Multicore Era

!22

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl’s Law

!23

Speedu penh anced(f, s) = 1
(1 − f) + f

s

f — The fraction of time in the original program
s — The speedup we can achieve on f

Speedu penh anced = Execu tionTimebaseline

Execu tionTimeenh anced

Amdahl’s Law

!24

Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedu penh anced = Execu tionTimebaseline

Execu tionTimeenh anced
= 1

(1 − f) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedu penh anced(f, s) = 1
(1 − f) + f

s

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

!25

Practicing Amdahl’s Law

Speedu penh anced(95 % ,100) = 1
(1 − 95%) + 95 %

100
= 16.81 ×

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:  
 
 
 
 
 

• If optimization #1 and optimization #2 are not dis-joint: 

Amdahl’s Law on Multiple Optimizations

Speedu penh anced(fOpt1, fOpt2, sOpt1, sOpt2) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedu penh anced(fOnlyOpt1, fOnlyOpt2, fBoth Opt1Opt2, sOnlyOpt1, sOnlyOpt2, sBoth Opt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2
= 1

(1 − fOnlyOpt1 − fOnlyOpt2 − fBoth Opt1Opt2) + + f_Both Opt1Opt2
s_Both Opt1Opt2 + f_OnlyOpt1

s_OnlyOpt1 + f_OnlyOpt2
s_OnlyOpt2

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

!27

Practicing Amdahl’s Law (2)

Speedu penh anced(95 % ,5 % ,100,2) = 1
(1 − 95% − 5%) + 95 %

100 + 5 %
2

= 28.98 ×

• The maximum speedup is bounded by

!28

Amdahl’s Law Corollary #1

Speedu pmax(f, ∞) = 1
(1 − f) + f

∞

Speedu pmax(f, ∞) = 1
(1 − f)

• With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

!29

Speedup further!

Speedu pmax(16 % , ∞) = 1
(1 − 16%) = 1.19

2x is not possible

• If we can pick just one thing to work on/optimize

!30

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedu pmax(f1, ∞) = 1
(1 − f1)

Speedu pmax(f2, ∞) = 1
(1 − f2)

Speedu pmax(f3, ∞) = 1
(1 − f3)

Speedu pmax(f4, ∞) = 1
(1 − f4)

The biggest fx would lead
to the largest Speedupmax!

• When f is small, optimizations will have little effect.
• Common == most time consuming not necessarily the most
frequent

• The uncommon case doesn’t make much difference
• The common case can change based on inputs, compiler
options, optimizations you’ve applied, etc.

!31

Corollary #2 — make the common case fast!

• With optimization, the common becomes
uncommon.

• An uncommon case will (hopefully) become the
new common case.

• Now you have a new target for optimization.
• — You have to revisit “Amdahl’s Law” every time
you applied some optimization

!32

If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media CPU

Storage
Media CPU

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,
Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

• If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

• Assume the original execution time is T. The new execution
time

!33

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedu p = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT
(1) consider overhead
(2) bound to slowdown

• Symmetric multicore processor with n cores (if we assume the
processor performance scales perfectly)

!34

Amdahl’s Law on Multicore Architectures

Speedu pparallel(fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n

• Single-core performance still matters — it will eventually dominate the
performance

• Finding more “parallelizable” parts is also important
• If we can build a processor with unlimited parallelism — the complexity
doesn’t matter as long as the algorithm can utilize all parallelism —
that’s why bitonic sort works!

!35

Corollary #3, Corollary #4 & Corollary #5
Speedu pparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedu pparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

“Fair” Comparisons

!36

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point
intensive

!37

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instru ctions × 10−12

ExectionTime

= IC × % of floating point instru ctions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instru ctions × 10−12

CPI × CT

• Quote only 32-bit performance results, not 64-bit results.
• Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

• Quietly employ assembly code and other low-level language constructs.
• Scale up the problem size with the number of processors, but omit any mention of this fact.
• Quote performance results projected to a full system.
• Compare your results against scalar, unoptimized code on Crays.
• When direct run time comparisons are required, compare with an old code on an obsolete system.
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
• Mutilate the algorithm used in the parallel implementation to match the architecture.
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

• If all else fails, show pretty pictures and animated videos, and don't talk about performance.
!38

12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

 39

 40

125 TFLOPS
Only @ 16-bit
floating point

They try to tell it’s the better AI hardware

!41

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

• There is no standard on how they inference
• What model?
• What dataset?

• That’s why Facebook is trying to promote an AI benchmark —
MLPerf

!42

What’s wrong with inferences per second?

!43

Choose the right metric — Latency
v.s. Throughput/Bandwidth

!44

• Latency — the amount of time to finish an operation
• access time
• response time

• Throughput — the amount of work can be done within a given
period of time
• bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)
• IOPs
• MFLOPs

!45

Latency v.s. Bandwidth/Throughput

RAID — Improving throughput

!46

RAID
ControllerAccess time: 10 ms

Bandwidth: 125 MB/sec

Aggregated Bandwidth: 500 MB/sec

• Compare (X) RAID consists of 4x H.D.D. where each has 10 ms
access time and 125 MB/sec bandwidth — aggregated bandwidth
at 500 MB/Sec (Y) a single SSD with 100 us access time and
550MB/Sec bandwidth. Both accept 4KB data as the smallest
request size. If we want to load a program with 100KB code size,
how much faster is Y over X at least?
A. 1x — no speedup
B. 1.1x
C. 4x
D. 4.4x
E. 100x

!47

The performance between RAID and SSD

ETHDDBestCase
= 10 ms

ETSSDworst
= 100KB

4K × 100 u s = 2.5 ms

• Increase bandwidth can hurt the response time of a single task
• If you want to transfer a 2 Peta-Byte video from UCSD
• 100 miles (161 km) from UCR
• Assume that you have a 100Gbps ethernet

• 2 Peta-byte over 167772 seconds = 1.94 Days
• 22.5TB in 30 minutes
• Bandwidth: 100 Gbps

!48

Latency and Bandwidth trade-off

Memory Gap Problem

!49

!50

Moore’s Law

(1) Moore, G. E. (1965), 'Cramming more components onto integrated circuits', Electronics 38 (8) .

(1)

Moore’s Law is the most
important driver for

historic CPU performance
gains

ICs are increasingly popular

ICs are well established
ICs are more reliable

ICs are small
ICs are easy to manufacture

and they’re getting smaller and
smaller!

Heat is a solvable issue

Designing ICs can be easy

ICs are widely applicable

Performance gap between Processor/Memory

!51

Performance of modern DRAM

!52

• Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What’s the average CPI (pick the most close one)?
A. 9
B. 17
C. 27
D. 35
E. 69

!53

The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles
Fetch Instructions Access Data

Alternatives?

!54

Fast, but expensive $$$

ProcessorProcessor
Memory Hierarchy

!55

DRAM

Storage

SRAM $

Processor
Core
Registers

larger

fastest

< 1ns

tens of ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?
A. 2
B. 4
C. 8
D. 16
E. 32

!56

How can memory hierarchy help in performance?

1 + (1 − 90%) × [100% × (52) + 30% × 52] = 7.76 cycles
Fetch Instructions Access Data

L1? L2? L3?

!57

Processor
Memory Hierarchy

!58

DRAM

Storage

SRAM $

Processor
Core
Registers

larger

fastest

< 1ns

tens of ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with
• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

!59

How can deeper memory hierarchy help in performance?

1 + (1 − 90%) × [10 + (1 − 60%) × 52 + 30% × (10 + (1 − 60%) × 52)] = 5 cycles

Fetch Instructions Access Data

Why adding small SRAMs would
work?

!60

• Spatial locality — application tends to visit nearby stuffs in the
memory
• Code — the current instruction, and then PC + 4
• Data — the current element in an array, then the next

• Temporal locality — application revisit the same thing again and again
• Code — loops, frequently invoked functions
• Data — the same data can be read/write many times

!61

Locality

Most of time, your program is just visiting a
very small amount of data/instructions within

a given window

Architecting the Cache

!62

!63

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core
Registers load 0x0009

AAAAAAAA

Load/store only access a “word” each time

AAAA BBBB

load 0x000A

!64

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core
Registers

To capture “spatial” locality, $ fetch a “block”
“Logically” partition
memory space into

“blocks”
SRAM $

AABB CCDD EEFF GGHH

AABB CCDD

load 0x0009load 0x000A

How to tell who is there?

!65

AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF

Processor
Core
Registers 0x000

0x
00
00

0x
00
01

0x
00
02

0x
00
03

0x
00
04

0x
00
05

0x
00
06

0x
00
07

0x
00
08

0x
00
09

0x
00
0A

0x
00
0B

0x
00
0C

0x
00
0D

0x
00
0E

0x
00
0F

0123456789ABCDEF
tag

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

data
How to tell who is there?

!66

AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF
AABBCCDDEEGGFFHH
IIJJKKLLMMNNOOPP
QQRRSSTTUUVVWWXX
QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF

0123456789ABCDEF
tag
0x000
0x001
0xF07
0x100
0x310
0x450
0x006
0x537
0x266
0x307
0x265
0x80A
0x620
0x630
0x705
0x216

Processor
Core
Registers

load 0x000A
GG

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

load 0x404A

0x404 not found,  
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offset
tag

Va
lid

 Bi
t Tell if the block here can be used

Dir
ty

Bit Tell if the block here is modified

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

Hash-like structure — direct-mapped cache

!67

0x00 AABBCCDDEEGGFFHH
0x10 IIJJKKLLMMNNOOPP
0xA1 QQRRSSTTUUVVWWXX
0x10 YYZZAABBCCDDEEFF
0x31 AABBCCDDEEGGFFHH
0x45 IIJJKKLLMMNNOOPP
0x41 QQRRSSTTUUVVWWXX
0x68 YYZZAABBCCDDEEFF
0x29 IIJJKKLLMMNNOOPP
0xDE QQRRSSTTUUVVWWXX
0xCB YYZZAABBCCDDEEFF
0x8A AABBCCDDEEGGFFHH
0x60 IIJJKKLLMMNNOOPP
0x70 QQRRSSTTUUVVWWXX
0x10 QQRRSSTTUUVVWWXX
0x11 YYZZAABBCCDDEEFF

datatag
0123456789ABCDEF

Processor
Core
Registers

load 0x000A

load 0x404A
0x40 not found,  

go to lower-level memory

The biggest issue with hash is —
Collision!

index
block offsettag

V D

1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Way-associative cache

!68

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatagdatatag

memory address: 0x0 8 2 4

memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D

• C: Capacity in data arrays
• A: Way-Associativity — how many blocks within a set
• N-way: N blocks in a set, A = N
• 1 for direct-mapped cache

• B: Block Size (Cacheline)
• How many bytes in a block

• S: Number of Sets:
• A set contains blocks sharing the same index
• 1 for fully associate cache

!69

C = ABS

• number of bits in block offset — lg(B)
• number of bits in set index: lg(S)
• tag bits: address_length - lg(S) - lg(B)
• address_length is 32 bits for 32-bit machine

• (address / block_size) % S = set index
!70

Corollary of C = ABS

memory address: 0b0000100000100100

block
offset

set
indextag

• L1 data (D-L1) cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block
• Assume 64-bit memory address

 Which of the following is correct?
A. Tag is 49 bits
B. Index is 8 bits
C. Offset is 7 bits
D. The cache has 1024 sets
E. None of the above

!71

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

• L1 data (D-L1) cache configuration of Core i7
• Size 32KB, 8-way set associativity, 64B block
• Assume 64-bit memory address
• Which of the following is NOT correct?
A. Tag is 52 bits
B. Index is 6 bits
C. Offset is 6 bits
D. The cache has 128 sets

C = ABS
32KB = 8 * 64 * S

S = 64
offset = lg(64) = 6 bits
index = lg(64) = 6 bits

tag = 64 - lg(64) - lg(64) = 52 bits
!72

intel Core i7

Put everything all together:
How cache interacts with CPU

!73

• Processor sends load request to L1-$
• if hit

• return data
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some

policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process
!74

What happens when we read data
Processor

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

• Processor sends load request to L1-$
• if hit

• return data — set DIRTY
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

• Present the write “ONLY” in L1 and set DIRTY
!75

What happens when we write data
Processor

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

Write & Set dirty
Write &Set dirty

• If the load/store instruction hits in L1 cache where the hit time is
usually the same as a CPU cycle
• The CPI of this instruction is the base CPI

• If the load/store instruction misses in L1, we need to access L2
• The CPI of this instruction needs to include the cycles of accessing L2

• If the load/store instruction misses in both L1 and L2, we need to
go to lower memory hierarchy (L3 or DRAM)
• The CPI of this instruction needs to include the cycles of accessing
L2, L3, DRAM

!76

Performance evaluation considering cache

• CPIAverage : the average CPI of a memory instruction

• If the problem is asking for average memory access time, transform
the CPI values into/from time by multiplying with CPU cycle time!

!77

How to evaluate cache performance

CPIAverage= CPIbase + miss_rateL1*miss_penaltyL1

miss_penaltyL1= CPIaccessing_L2+miss_rateL2*miss_penaltyL2

miss_penaltyL2= CPIaccessing_L3+miss_rateL3*miss_penaltyL3

miss_penaltyL3= CPIaccessing_DRAM+miss_rateDRAM*miss_penaltyDRAM

• Application: 80% ALU, 20% Loads
• Assume the 1-cycle L1 hit time allows the CPI to be 1
• L1 I-cache miss rate: 5%, hit time: 1 cycle
• L1 D-cache miss rate: 10%, hit time: 1 cycle
• L2 U-Cache miss rate: 20%, hit time: 10 cycles
• Main memory hit time: 100 cycles
• What’s the average CPI?

!78

Cache & Performance
CPU

D-L1 $

L2 $

tag index 0

~

tag index B-1

I-L1 $

tag index offset tag index offset

5% miss

DRAM

20% miss

1 cycle (no overhead) if hit

10 cycles if hit

100 cycles if hit

10% miss
tag index 0

~

tag index B-1

tag index 0

~

tag index B-1

CPIAverage=

1 + 100%*(5%*(10+20%*(1*100)))

+ 20%*(10%*(1)*(10+20%*((1)*100)))

CPIbase + miss_rate*miss_penalty

=

= 3.1

Fetch Instructions
Access Data

• Application: 80% ALU, 20% Load/Store
• L1 I-cache miss rate: 5%, hit time: 1 cycle
• L1 D-cache miss rate: 10%, hit time: 1 cycle, 20% dirty
• L2 U-Cache miss rate: 20%, hit time: 10 cycles, 10% dirty
• Main memory hit time: 100 cycles
• What’s the average CPI?

!79

Cache & Performance

CPIAverage=

1+100%*(5%*(10+20%*((1+10%)*100)))

+20%*(10%* (1+20%)*(10+20%*((1+10%)*100)))

CPIbase + miss_rate*miss_penalty

=

= 3.368

CPU

D-L1 $

L2 $

tag index 0

~

tag index B-1

I-L1 $

tag index offset tag index offset

5% miss

DRAM

20% miss

1 cycle (no overhead) if hit

10 cycles if hit

100 cycles if hit

victim tag index 0

~

victim tag index B-1

10% miss20% dirty
tag index 0

~

tag index B-1

10% dirty
victim tag index 0

~

victim tag index B-1

tag index 0

~

tag index B-1

Cause of cache misses

!80

• Compulsory miss
• Cold start miss. First-time access to a block

• Capacity miss
• The working set size of an application is bigger than cache size

• Conflict miss
• Required data replaced by block(s) mapping to the same set
• Similar collision in hash

!81

3Cs of misses

Simulate the cache!

!82

• Figure out the memory access patterns
• Address sequences from your code
• The behavior/locality of the variables/arrays

• Partition the address
• Use C=ABS
• Find out tag, index

• Check your current cache content
• Hit: for the same index, if you can find the same tag there.
• Otherwise, miss
• Compulsory misses: you never accessed the same (tag,index) pair before
• Conflict misses: the tag appeared in the same index before
• Replace the least recently used block with the requesting block

!83

Tips for cache simulation

• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a
block size of 16 bytes, and the application repeatedly reading the following
memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,
0b1100010000

!84

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index
• lg(16) = 4 : 4 bits are used for the byte offset
• The tag is 48 - (4 + 4) = 40 bits
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S
• S=256/(16*1) = 16

tag index

Simulate a direct-mapped cache

!85

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

compulsory miss
hit!

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

compulsory miss

compulsory miss
hit!

hit!

hit!
conflict miss

hit!

0b10
0b100b110b10

1
1

• Consider a 2-way cache with 256 bytes total capacity, a block
size of 16 bytes, and the application repeatedly reading the
following memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000,
0b1000010100, 0b1100010000

!86

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (3 + 4) = 25 bits
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

• C = A B S• S=256/(16*2) = 8

tag index

Simulate a 2-way cache

!87

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

compulsory miss
hit!

0
1
2
3
4
5
6
7

compulsory miss

compulsory miss
hit!

hit!

hit!
hit

hit!

0b10
0b10

1
1

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b111

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
 c[i] = a[i] + b[i]; 
 //load a, b, and then store to c 
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

!88

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

AMD Phenom II

!89

int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) 
 c[i] = a[i] + b[i]; /*load a[i], load b[i], store c[i]*/ 

• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 48-bit address.

address in hex address in binary tag index hit? miss?
load a[0] 0x20000 0b10 0000 0000 0000 0000 0x4 0 compulsory miss
load b[0] 0x30000 0b11 0000 0000 0000 0000 0x6 0 compulsory miss
store c[0] 0x10000 0b01 0000 0000 0000 0000 0x2 0 compulsory miss, evict

0x4load a[1] 0x20004 0b10 0000 0000 0000 0100 0x4 0 conflict miss, evict 0x6
load b[1] 0x30004 0b11 0000 0000 0000 0100 0x6 0 conflict miss, evict 0x2
store c[1] 0x10004 0b01 0000 0000 0000 0100 0x2 0 conflict miss, evict 0x4

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = the rest bits

tag index offset

load a[15] 0x2003C 0b10 0000 0000 0011 1100 0x4 0 miss, evict 0x6
load b[15] 0x3003C 0b11 0000 0000 0011 1100 0x6 0 miss, evict 0x2
store c[15] 0x1003C 0b01 0000 0000 0011 1100 0x2 0 miss, evict 0x4
load a[16] 0x20040 0b10 0000 0000 0100 0000 0x4 1 compulsory miss
load b[16] 0x30040 0b11 0000 0000 0100 0000 0x6 1 compulsory miss
store c[16] 0x10040 0b01 0000 0000 0100 0000 0x2 1 compulsory miss, evict

0x4

100% miss rate!

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
 c[i] = a[i] + b[i]; 
 //load a, b, and then store to c 
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

!90

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

!91

Matrix transpose

What’s the access sequence of B[] looks like?

What’s the access sequence of A[] looks like?
A[0], A[128], A[256], ..., A[127*128], A[1], A[129]..., A[127*128+1], ...

B[0], B[1], B[2],

double A[16384], B[16384];
int N=128;  
for(i = 0; i < N; i++)  
 for(j = 0; j < N; j++)  
 B[i*N+j] = A[j*N+i];  
// assume load A[j*N+i] and then store B[i*N+j]  
// &A[0] is 0x20000, &B[0] is 0x40000

Improving 3Cs

!92

• 3Cs and A, B, C of caches
• Compulsory miss

• Increase B: increase miss penalty (more data must be fetched from lower
hierarchy)

• Capacity miss
• Increase C: increase cost, access time, power

• Conflict miss
• Increase A: increase access time and power

• Or modify the memory access pattern of your program!

!93

Improvement of 3Cs

Programming and memory
performance

!94

• Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

• Instructions generally work faster when the given memory
address is aligned
• Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

• Some architecture/processor does not support aligned access at all
• Therefore, compilers only allocate objects on “aligned” address

!95

Memory addressing/alignment

• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))?

A. 20
B. 28
C. 32
D. 36
E. 40

!96

The result of sizeof(struct student)
struct student { 
 int id; 
 double *homework; 
 int participation; 
 double midterm; 
 double average; 
};

64-bit

id

average

homework

participation

midterm

Loop interchange/fission/fusion

!97

Demo — programmer & performance

!98

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
 c[i] = a[i] + b[i]; 
 //load a, b, and then store to c 
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

!99

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,
write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) 
 c[i] = a[i]; //load a and then store to c 
for(i = 0; i < 512; i++) 
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

!100

What if the code look like this?

Loop Fusion

!101

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {  
 a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];
 }

2 misses per access to a & c vs. one miss per access

Blocking

!102

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

Case study: Matrix Multiplication

!103

Algorithm class tells you it’s O(n3)
If n=512, it takes about 1 sec

How long is it take when n=1024?

• If each dimension of your matrix is 1024
• Each row takes 1024*8 bytes = 8KB
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
• You can only hold at most 4 rows/columns of each matrix!
• You need the same row when j increase!

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

!104

Matrix Multiplication

c a b

Very likely a miss if
array is large

• Discover the cache miss rate
• valgrind --tool=cachegrind cmd

• cachegrind is a tool profiling the cache performance
• Performance counter

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

!105

Block algorithm for matrix multiplication

http://www.intel.com/software/pcm/

Block algorithm for matrix multiplication

!106

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

c a b

You only need to hold these
sub-matrices in your cache

Matrix Transpose

!107

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

Prefetching

!108

Characteristic of memory accesses

!109

D[0]

CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {  
 D[i] = rand();  
}

time

time

timeL2 access 
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access 
for D[8] - D[15]

D[9]D[10]

Prefetching

!110

D[0]

CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {  
 D[i] = rand();  
 // prefetch D[i+8] if i % 8 == 0  
}

time

time

timeL2 access  
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss

L2 access  
for D[8] - D[15]

prefetch

miss

L2 access  
for D[16] - D[23]

D[11] D[12] D[13] D[14] D[15] D[16]

prefetch

• Identify the access pattern and proactively fetch data/
instruction before the application asks for the data/instruction
• Trigger the cache miss earlier to eliminate the miss when the
application needs the data/instruction

• Hardware prefetch
• The processor can keep track the distance between misses. If there
is a pattern, fetch miss_data_address+distance for a miss

• Software prefetch
• Load data into X0
• Using prefetch instructions

!111

Prefetching

• x86 provide prefetch instructions
• As a programmer, you may insert _mm_prefetch in x86
programs to perform software prefetch for your code

• gcc also has a flag “-fprefetch-loop-arrays” to automatically
insert software prefetch instructions

!112

Demo

• How many of the following code snippet can “prefetching” effectively help improving
performance?

A. 0
B. 1
C. 2
D. 3
E. 4

!113

Where can prefetch work effectively?

(1)
while(node){  
 node = node->next;  
}

(2)
while(++i<100000)  
 a[i]=rand();  

(3)
while (root != NULL){
 if (key > root->data)
 root = root->right;

 else if (key < root->data)
 root = root->left;
 else
 return true;
}

(4)
 for (i = 0; i < 65536; i++) {
 mix_i = ((i * 167) + 13) & 65536;
 results[mix_i]++;
 }  

— where the next pointing to is hard to predict

— where the next node is also hard to predict

— the stride to the next element is hard to predict…

Advanced Hardware Techniques in
Improving Memory Performance

!114

Without banks

!115

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

Multibanks & non-blocking caches

!116

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

!117

Pipelined access and multi-banked caches

Bank #1
Bank #2

Bank #3
Bank #4

Request #1
Request #2

Request #3
Request #4

Baseline

Multi-
banked

Memory
Request #1

Memory
Request #2

Memory
Request #3

Memory

• Assume each bank in the $ takes 10 ns to serve a request, and
the $ can take the next request 1 ns after assigning a request to
a bank — if we have 4 banks and we want to serve 4 requests,
what’s the speedup over non-banked, non-pipelined $? — pick
the closest one
A. 1x — no speedup
B. 2x
C. 3x
D. 4x
E. 5x

!118

Pipelined access and multi-banked caches

ETbaseline = 4 × 10 ns = 40 ns

ETbanked = 10 ns + 3 × 1 ns = 13 ns

Speedu p = Execu tionTimebaseline

Execu tionTimebanked

= 40
13 = 3.08 ×

• Don’t wait for full block to be loaded before restarting CPU
• Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

• Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• Most useful with large blocks
• Spatial locality a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

!119

Early Restart and Critical Word First

Midterm Logistics

!120

• No cheat sheet allowed
• No cheating allowed
• We will have some problems require you to write
• You may bring a calculator
• You should bring pen/pencil/eraser
• My last office hour before midterm — this Wednesday @ 1pm-2pm — friday is

cancelled.

!121

For midterm

• Multiple choices * 10 — like your clicker/reading quizzes multiple choices
questions

• Short answer question * 5
• Each answer MUST be less than 30 words
• Writing more than 30 words is equivalent to writing 0 words

• Homework style free-answer questions * 3
• You need to clearly write down the original form of the applied equation/formula
• You need to replace each term accordingly with numbers
• You will have some credits for right equations even though the final number
isn’t correct

• You will receive 0 credits if we only see the numbers

!122

Format of the midterm

Sample Midterm

!123

• Why does an Intel Core i7 @ 3.5 GHz usually perform better than an Intel
Core i5 @ 3.5 GHz or AMD FX-8350@4GHz?

A. Because the instruction count of the program are different
B. Because the clock rate of AMD FX is higher
C. Because the CPI of Core i7 is better
D. Because the clock rate of AMD FX is higher and CPI of Core i7 is better
E. None of the above

!124

Identify the performance bottleneck

Sysbench 2014 from http://www.anandtech.com/

http://www.anandtech.com

• Regarding Amdahl’s Law on multicore architectures, how many of the following statements
is/are correct?
က: If we have unlimited parallelism, the performance of each parallel piece does not matter as long

as the performance slowdown in each piece is bounded
က< With unlimited amount of parallel hardware units, single-core performance does not matter

anymore
က> With unlimited amount of parallel hardware units, the maximum speedup will be bounded by

the fraction of parallel parts
က@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange

overhead is minor
A. 0
B. 1
C. 2
D. 3
E. 4

!125

Amdahl’s Law on Multicore Architectures

• Performance equation consists of the following three factors
က: IC
က< CPI
က> CT

 How many can a programmer affect?
A. 0
B. 1
C. 2
D. 3

!126

How programmer affects performance?

• How many of the following make(s) the performance of A better than
B?
က: IC
က< CPI
က> CT
A. 0
B. 1
C. 2
D. 3 !127

Demo — programmer & performance
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

A B

• How many of the following comparisons are fair?
က: Comparing the frame rates of Halo 5 on AMD RyZen 1600X and civilization on

Intel Core i7 7700X
က< Using bit torrent to compare the network throughput on two machines
က> Comparing the frame rates of Halo 5 using medium settings on AMD RyZen

1600X and low settings on Intel Core i7 7700X
က@ Using the peak floating point performance to judge the gaming performance of

machines using AMD RyZen 1600X and Intel Core i7 7700X
A. 0
B. 1
C. 2
D. 3
E. 4

!128

Fair comparison

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++) 
{  
 sum[i%10] += A[i]; 
}
A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

!129

Locality

• Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?
က: Increasing associativity can reduce conflict misses
က< Increasing associativity can reduce hit time
က> Increasing block size can increase the miss penalty
က@ Increasing block size can reduce compulsory misses
A. 0
B. 1
C. 2
D. 3
E. 4

!130

3Cs and A, B, C

• L1 data (D-L1) cache configuration of Core i7
• Size 32KB, 8-way set associativity, 64B block
• Assume 64-bit memory address
• Which of the following is NOT correct?
A. Tag is 52 bits
B. Index is 6 bits
C. Offset is 6 bits
D. The cache has 128 sets

!131

intel Core i7

• If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the system use 4K pages.
A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way

!132

Virtual indexed, physical tagged cache limits the cache size

• In a modern x86-64 processor supports virtual memory
through, how many memory accesses can an instruction incur?
A. 2
B. 4
C. 6
D. 8
E. More than 10

!133

When we have virtual memory…

• What is RISC? What is CISC? List two pros/cons for each
• What are the limitations of compiler optimizations? Can you list two?
• Please define Amdahl’s Law and explain each term in it
• Please define the CPU performance equation and explain each term.
• Can you list two things affecting each term in the performance
equation?

• What’s the difference between latency and throughput? When
should you use latency or throughput to judge performance?

• What’s “benchmark” suite? Why is it important?
• Why TFLOPS or inferences per second is not a good metrics?

!134

Sample short answer questions (< 30 words)

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions with
average CPI of 1 cycle. If the processor runs at 1GHz, how long is the
execution time? If hardware technology improves the processor clock rate to
2GHz, but making load/store CPI to be 12 cycles, how much is the speedup?

!135

Performance Equation/Speedup

• Assume that memory access takes 30% of execution time.
• Cache can speedup 80% of memory operation by a factor of 4
• L2 cache can speedup 50% of the remaining 20% by a factor of 2

• What’s the total speedup?

!136

Amdahl’s Law for multiple optimizations

• Consider the following cache configuration on RISC-V processor:

The application has 20% branches, 10% loads/stores, 70% integer instructions.
Assume that TLB miss rate is 2% and it requires 100 cycles to handle a TLB miss. Also assume
that the branch predictor has a hit rate of 87.5%, what’s the CPI of branch, L/S, and integer
instructions? What is the average CPI?

!137

Performance evaluation with cache
I-L1 D-L1 L2 DRAM

size 32K 32K 256K Big enough
block size 64 Bytes 64 Bytes 64 Bytes 4KB pages
associativity 2-way 2-way 8-way
access time 1 cycle (no penalty

if it’s a hit)
1 cycle (no penalty
if it’s a hit) 10 cycles 100 cycles

local
miss rate 2% 10%, 20% dirty 15% (i.e., 15% of L1 misses,

also miss in the L2), 30% dirty
Write policy N/A Write-back, write allocate
Replacement LRU replacement policy

• The processor has a 8KB, 256B blocked, 2-way L1 cache. Consider the
following code: 
for(i=0;i<256;i++) { 
 a[i] = b[i] + c[i];  
// load a[i] and load b[i], store to c[i] 
// &a[0] = 0x10000, &b[0] = 0x20000, &c[0] = 0x30000 
}

• What’s the total miss rate? How many of the misses are compulsory misses?
How many of the misses are conflict misses?

• How can you improve the cache performance of the above code through
changing hardware?

• How can you improve the performance without changing hardware?

!138

Cache simulation

