Virtual memory & memory
hierarchy

Hung-Wel Tseng

Recap: What happens when we access data

- Processor sends load request to L1-$
Processor . if read hit — return data
Core - if write hit — set dirty and update in the block
* if miss
- Select a victim block

- If the target “set” is not full — select an empty/invalidated block
as the victim block

- If the target “set is full — select a victim block using some policy

. : . : o

return blo cklf thLRL-J JI(S pLeIferir(e.d “d.t:) ?);:!,Olt ;czr:\poral locality!

. e victim block is "dirty vali

OxDEADBE - Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

return block If write-back or fetching causes any miss, repeat the same
OXDEADBE process

Registers

Recap: causes of $ misses

- Compulsory miss

- Cold start miss. First-time access to a block

. Capacity miss

- The working set size of an application is bigger than cache size
. Conflict miss

- Required data block replaced by block(s) mapping to the same set

- Similar collision in hash — if the conflict miss doesn’t go away even
though you made the cache fully-associative — it's a capacity miss

Recap: optimizations

. Software

- Data layout — capacity miss, conflict miss, compulsory miss

- Blocking — capacity miss, conflict miss

. Loop fission — conflict miss — when $ has limited way associativity

- Loop fusion — capacity miss — when $ has enough way associativity
- Loop interchange — conflict/capacity miss

- Hardware
- Prefetch — compulsory miss

Cache Optimizations

When we handle a miss

miss restart
astart p
write back :cssu[?
t chunk etc fetcH 4th
write back retuln block® writk Jquest ik
OxXDEADBE 2nd thunk fetch 3rd
chyink
fetch 2nd
chjunk
fetch 1st
unk
l

assume the bus between L1/L2 only allows a quarter of the cache block go through it

Early Restart and Critical Word First

if the requesting data (offset

within a block is already received) "eStart

!
...
° .'
!
MISS .,
*
.

miss astart /
write back :cssu[?
t chunk etc fetcH 4th
write back retufn block® writk back quest chiink
OxXOEADBE 2nd thunk fetcl 3rd
chyink
: writek fetch 2nd
& 3rdc cljunk
s fetch 1st
unk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

Early Restart and Critical Word First

- Don't wait for full block to be loaded before restarting CPU

- Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

- Most useful with large blocks

. Spatial locality is a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

8

Can we avoid the overhead of writes?

if the requesting data (offset

within a block is already received) "eStart

mise— @ .,
xstart -

Write

retuln block® fetc 4th
write back oxBEADBE quest o] ohfink
X) etclf 3r
Write Back chiink
fetch 2nd
Overhead T

fetbh 1st
unk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

Write buffer!

if the requesting data (offset

within a block is already received) restart

miSS'OOO
: t
writd issue
write ba buff} fetch fetcH 4th
retufn block squest chiink
OXODEADBE fetcH 3rd
chynk
Write fdtch blog¢k -
Buffer :
t

assume the bus between L1/L2 only allows a quarter of the cache block go through it

10

Can we avoid the “double penalty”?

- Every write to lower memory will first write to a small SRAM buffer.

- store does not incur data hazards, but the pipeline has to stall if the
write misses

- The write buffer will continue writing data to lower-level memory

- The processor/higher-level memory can response as soon as the data
IS written to write buffer.

- Write merge

- Since application has locality, it's highly possible the evicted data have
neighboring addresses. Write buffer delays the writes and allows these
neighboring data to be grouped together.

1

Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache Miss penalty/Bandwidth
@ Ciritical word first and early restart Miss penalty
® Prefetching Mmiss rate (compulsory)
® Write buffer Miss penalty
A. O

oo
S

Mmoo
A WODN

14

Summary of optimizations

. Software

- Data layout — capacity miss, conflict miss, compulsory miss

- Blocking — capacity miss, conflict miss

. Loop fission — conflict miss — when $ has limited way associativity

- Loop fusion — capacity miss — when $ has enough way associativity
- Loop interchange — conflict/capacity miss

- Hardware

- Prefetch — compulsory miss

- Write buffer — miss penalty

- Bank/pipeline — miss penalty

- Critical word first and early restart — miss panelty

15

Recap: Virtual memory

Let’s dig into this code

#define _GNU_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <sched.h>
#include <sys/syscall.h>
#include <time.h>

double a;

int main(int argc, char xargv[]1)
{
int 1, number_of_total _processes=4;
number_of_total_processes = atoi(argvl[1l]);
// Create processes
for(i = 0; i< number_of_total_processes-1 && fork(); i++);
// Generate rand see
srand((int)time(NULL)+(int)getpid());
a = rand();
fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a is %1f and address of a is %p\n”,getpid(), a, &a);
sleep(10);
fprintf(stderr, "\nProcess %d 1s using CPU: %d. Value of a i1s %lf and address of a is %p\n”,getpid(), cpu, a,
&a);
return 0;

¥

17

Consider the following code ...

. . #define _
- Consider the case when we run multiple #include
instances of the given program at the same time 7:"¢1u%°
. . . i }nclude
on modern machines, which pair of statements |sz}nciuge
lnc.Lude
correct? #include
#include

® The printed "address of a" is the same for every
running instances double a;

GNU_SOURCE
<unistd.h>
<stdio.h>
<stdlib.h>
<assert.h>
<sched.h>
<sys/syscall.h>
<time.h>

®@ The printed “address of a" is different for each int main(int argc, char kargv[1)

instance \

int 1, number_of_total_processes=4;
® All running instances will print the same value of ~ number_of_total_processes = atoi(argv[1]);

for(i

= @; 1< number_of_total processes-1 && fork(); i++);

a srand((int)time(NULL)+(int)getpid());

@ Some instances will print the same valueofa ¢

fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a 1is
and address of a 1s %p\n",getpid(), cpu, a, &a);

i ; : : sleep(10);
@ Each instance will prlntadlfferent value of a fprintf(stderr, "\nProcess %d i1s using CPU: %d. Value of a 1is
A. (1) &(3) %1f and address of a is %p\n”,getpid(), cpu, a, &a);
return 9;
= & (£ }

C. (1) &(5)

D. (2) &(3) If you still don’t know why — you nheed to take CS202
E.

(2) & (4)

20

If we expose memory directly to the processor ()

00c21800

What if my program

00000008

7y
c
0
ajd
Q
-
-
e
7y
=

Program

01f00bb27
509chd23
00005d24
0000bd24
2ca422a06
130020e4
00003d24
2ca4e2b3
00c2e8600
00000008
00c21000
00000008
00c21800
00000008
00c 30000
00000008

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008
00c2e8600
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0f00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24

2ca4e2b3

00c2e800
00000008
00c21000
00000008

Memory

00c30000 g
00000008

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008
00c2e800
00000008
00c21000
00000008

24

heeds more memory?

Instructions

If we expose memory directly to the processor (ll)

What if my program
runs on a machine

with a different
memory size?

0fe0bb27
509chd23
00005d24
0000bd24

2ca422a0
130020e4
00003d24
2ca4e2b3

Program

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0feobb27 00c2e800
509chd23 00000008
00005d24 00c21000
0000bd2.4 ',0000008
2ca422a0 00c21800
130020e4 00000008

If we expose memory directly to the processor (lil)

What if both programs
heed to use memory?

Instructions

0tfe0bb27
509chd23
00005d24
0000bd24

2ca422a0
130020e4
00003d24
2ca4e2b3

Program

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c 30000
00000008

0f00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
06006008

)
c
R
e
Q
-
-
e
)
=

Program

01f00bb27
509chd23
00005d24
0000bd24
2ca422a0d
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

If we can only use physical memory ...

- If there is no abstraction between the processor and memory, the processor/cache
needs to directly using main memory's byte address to read/write data. How many of
the following would be happening?

® The program’'s memory footprint, including instructions/data, cannot exceed the capacity
of the installed DRAM

@ There is no guarantee the compiled program can execute on another machine if both
machine have the same processor but different memory capacities

® Two programs cannot run simultaneously if they use the same memory addresses

@ One program can maliciously access data from other concurrently executing programs
A. O

OO W
w N -

m |
I

27

Virtual memory

3) S

, o
Core™i7 =

.0

data data

0x80008000

Instruction

~data indtruction
IX80008000 Ox0O

[\ J
\\'e
LR
Q)
L\

L\
L\ J
L\ J

Virtual Memory Space Virtual Memory Space

N
- 0f0bhb27 90c2f800
509rLu.’3 99000008
00005d24 39c30000 Program
0fe0bb27 00c2e800 0000bd2% 0B000S 0fe0bb27 00c2e800
509chd23 00000008

509chd23 00000008
00005024 00c2f000 £790bb27 06c218600 00005d24 00c21000
0000bd24 00000008 509chd23 00000008 0000bd24 90000008
2ca422a0 00c2f800 00005024 00c30000 2¢a422a0 00c2f800

130020e4 00000008
00003d24 00c30000 00003d24 00c30000
2ca4e2b3 A00AAAARK Memory

2cabe2b3 00000008

Program

N\

Instructions

Instructions !

Virtual memory

- An abstraction of memory space available for programs/
software/programmer

- Programs execute using virtual memory address

- The operating system and hardware work together to handle
the mapping between virtual memory addresses and real/
physical memory addresses

- Virtual memory organizes memory locations into “pages”

29

Demand paglng

/'7;—-

(inter) :
- Core™ i7"

.

. . data
instruction

K -) , data

datla INgtruction O0x80008000
Ix80008000 vOx0
Page Table for Chrome Page Table for Apple Music

[\ J
\\'e
LR
Q)
L\

L\
L\ J
L\ J

N
- 0fobhb27 90c2f8600
509rku.’3 900000008
00005d24 39c30000 Program
0fe0bb27 00c2e800 0000bd2% 0B000S 0fe0bb27 00c2e800
509chd23 00000008

509chd23 00000008
00005024 00c2f000 £790bb27 06c218600 00005d24 00c21000
0000bd24 00000008 509chd23 00000008 0000bd24 90000008
2ca422a0 00c2f800 00005024 00c30000 2¢a422a0 00c2f800

130020e4 00000008
00003d24 00c30000 00003d24 00c30000
2ca4e2b3 A00AAAARK Memory

2cabe2b3 00000008

Program

N\

Instructions

Instructions !

Processor The virtual memory abstraction

Core

Registers

oad Ox0009

Page #1
0x100 9 OXIFFF
AAA BBB | CCC | DDD Eeee | FFFF GGG | HHH | AAA BBB | CCC | DDD eeee | FrFF GGG | HHH | AAA BBB | CCC | DDD eeee | FFEF GGG | HHH | AAA BBB | CCC | DDD Eeee | FFFF GGG | HHH

OX200 A B C D G H A B C D G H A B C D G H A B Cc D G H OX2FFF

O0x300 OX3FFF

0x400 OXAFFF
0x500 OX5FFF

0x600 OXBFFF
0x700 OX7FFF
0x800 OX8FFF

Virtual Memory Space

Demo revisited

Process A's

Process A Page Table
&a = Ox601090
#define _GNU_SOURCE \
#i1nclude <unistd.h>
#include <stdio.h> F)

#include <stdlib.h> rC)(:(BSSS; E;

#include <assert.h>
#include <sched.h>
#include <sys/syscall.h>
#include <time.h>

Process B's
Page Table

double a;
int main(int argc, char xargv[])
{
int 1, number_of_total_processes=4;
number_of_total_processes = atoi(argv[1]);
for(i = ©; i< number_of_total processes-1 && fork(); i++);
srand((int)time(NULL)+(int)getpid());
fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a is %1f and address of a is %p\n”,getpid(), cpu, a, &a);
sleep(10);
fprintf(stderr, "\nProcess %d 1s using CPU: %d. Value of a i1s %lf and address of a is %p\n”,getpid(), cpu, a, &a);
return 0;
¥

32

Address translation

+ Processor receives virtual addresses
from the running code, main memory
uses physical memory addresses

- Virtual address space is organized
iInto “pages”

- The system references the page
table to translate addresses

- Each process has its own
page table

- The page table
content is maintained
by OS

33

Virtual
address 9X @ @ @ @ B E E F

valid

Page
table ¥

Physical gx D E ADBEE F
address

Demand paging

- Treating physical main memory as a “cache” of virtual memory
- The block size is the “page size"
- The page table is the "tag array”

- It's a "fully-associate” cache — a virtual page can go anywhere
INn the physical main memory

34

Size of page table

- Assume that we have 64-bit virtual address space, each page

Is 4KB, each page table entry is 8 Bytes, what magnitude in
size Is the page table for a process?

A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB— 240 Bytes
D. PE 0 B

64 es
E. EB— 260 Bytes " x 8 Bytes = 2°5 Bytes = 32 PB

If you still don’t know why — you nheed to take CS202

37

Do we really need a large table?

BX0000000000000000

code

static data

Dynamic allocated
data:malloc ()

Your program probably
hever uses this huge area!

—1

Local variables,
arguments

NS Virtualmemory 38

If you still don't know why — you need to take CS202

Do we really need a large table?

BX0000000000000000

Dynamic allocated
data:malloc ()

Local variables,
arguments

OXFFFFFFFFFFFFFFFF

L
=

<
—_ = =a == = Q

\—L—s-s_n_s_._._k_._,

- |= |]O |O |©O |O | |= |=

39

_L_L_L_L_L_L_L_L!

\

/
<
L
a

_ = === === =

Address translation in x86-64

63:48(16 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
‘ SignExt L4 index L3 index L2 index L1 index page offset \

X386

Processor
CR3 Reg. \ 512 entri /4

512 entries

512 entries

physical page # page offset

40

Address translation in x86-64

63:48(16 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
‘ SignExt L4 index L3 index L2 index L1 index page offset \

X386

Processor
CR3 Reg. \ 512 entri /4

512 entries

512 entries

May have 10 memory accesses for a “MOV" instruction!
— 5 for instruction fetch and 5 for data access

physical page # page offset

43

When we have virtual memory...

- |f an x86 processor supports virtual memory through the basic
format of the page table as shown in the previous slide, how
many memory accesses can a mov instruction that access
data memory once incur?

O0Owr
0.0 N O) BN AN \ O

Al
—
O

44

Avoiding the address translation
overhead

TLB: Translation Look-aside Buffer

. TLB — a small SRAM stores
Core frequently used page table
Registers entries

ld/sd Ox000OBEEF .+ Good — A lot faster than having
everything going to the DRAM

- Bad — Still on the critical path

Processor

1d/sd

write back |Ifetch block

46

TLB + Virtual cache

- L1 $ accepts virtual address — you
don't need to translate Processor

- Good — you can access both TLB and Core
L1-$ at the same time and physical Registers
address is only needed if L1-$ missed d/sd OX2900BEE

hit
- Bad — it doesn't work in practice

» Many applications have the same virtual YOU rea"y need
address but should be pointing different "phySicaI address” to

physical addresses

. An application can have “aliasing virtual jUdge if that's what

addresses” pointing to the same

physical address yOU want

47

Virtually indexed, physically tagged cache

- Can we find physical address
directly in the virtual address

— Not everything — but the
page offset isn't changing!

- Can we indexing the cache
using the “partial physical Page
address"? table -

— Yes — Just make set set block

iIndex + block set to be . ! tag index offset
exactly the page offset Physical ox D E'A'D B

address

Vitual ©x 0 @ 0 @ BIE'EF

address set block
index offset

valid

48

Virtually indexed, physmally tagged cache

memory address: Ox09
set block

virtual page #index offset

memory address: 0bh0000100000100100
VD tag data

11 0x00 AABBEGEDDEEGGFFHH

V virtual page hysical page # 11| ex1e 117 IKKL LMMNNOOPP
1 0x29 Ox45 QQRRESTTUUVVWWXX
1 OxDE Ox68 YYZZAABBCCDDEEFF
1 0x16 OxAl AABBEGEDDEEGGFFHH
0 Ox8A 0x98 I1JJKKLLMMNNOOPP

QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF

hit?* l

49

Virtually indexed, physically tagged cache

. |f page size is 4KB — . virtual page number |page offset
Virtual
address .set block
le(B) + [g(S) = [2(4096) = 12 z index offset
C =ABS
C=Ax2" Page
table *
ifA =1
set block
C =4KB ! tag index offset

Physical | o IGNENATONE

address page offset

50

Virtual indexed, physical tagged cache limits the cache size

- If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the operating system use 4K pages.

A. 32B blocks, 2-way [g(B) + [2(S) = [2(4096) = 12
B. 32B blocks, 4-way C = ABS
C. 64B blocks, 4-way - 12
ey - 32KB=A X2

A=3

Exactly how Core i7 configures
its own cache

51

Announcement

- Midterm next Monday

- Assignment #2 due tonight
. Office hour for Hung-Wei — back to MW 1p-2p

54

