
Dark Silicon & Modern Computer
Architecture

Hung-Wei Tseng

• Power is the direct contributor of “heat”
• Packaging of the chip
• Heat dissipation cost

• Energy = P * ET
• The electricity bill and battery life is related to energy!
• Lower power does not necessary means better battery life if the

processor slow down the application too much

!2

Power v.s. Energy

• The power consumption due to leakage — transistors do not
turn all the way off during no operation

• Becomes the dominant factor in the most advanced process
technologies.

• N: number of transistors
• V: voltage
• Vt: threshold voltage where

transistor conducts (begins to switch)

!3

Static/Leakage Power

Pleakage ∼ N × V × e−Vt

• Given a scaling factor S

!4

Dennardian Broken
Parameter Relation Classical Scaling Leakage Limited

Power Budget 1 1
Chip Size 1 1

Vdd (Supply Voltage) 1/S 1
Vt (Threshold Voltage) 1/S 1/S 1

tex (oxide thickness) 1/S 1/S
W, L (transistor

dimensions)
1/S 1/S

Cgate (gate capacitance) WL/tox 1/S 1/S
Isat (saturation current) WVdd/tox 1/S 1

F (device frequency) Isat/(CgateVdd) S S
D (Device/Area) 1/(WL) S2 S2

p (device power) IsatVdd 1/S2 1
P (chip power) Dp 1 S2

U (utilization) 1/P 1 1/S2

Dark Silicon and the End of Multicore
Scaling

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger
University of Washington, University of Wisconsin—Madison, University of Texas at Austin,

Microsoft Research

!5

Power consumption to light on all transistors

!6

Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Chip
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

=49W =50W =100W!

Dennardian Scaling Dennardian Broken

On ~
50W

Off ~
0W

Dark!

• If we are able to cram more transistors within the same chip area (Moore’s law continues),
but the power consumption per transistor remains the same. Right now, if we power the
chip with the same power consumption but put more transistors in the same area because
the technology allows us to. How many of the following statements are true?
က: The power consumption per chip will increase
က< The power density of the chip will increase
က> Given the same power budget, we may not able to power on all chip area if we maintain the

same clock rate
က@ Given the same power budget, we may have to lower the clock rate of circuits to power on all

chip area
A. 0
B. 1
C. 2
D. 3
E. 4

!7

What happens if power doesn’t scale with process technologies?

Clock rate improvement is limited nowadays

!8

Solutions/trends in dark silicon era

!9

Aggressive dynamic frequency
scailing

!10

More cores per chip, slower per core

!11

• You may use cat /proc/cpuinfo to see all the details of your
processors

• You may add “| grep MHz” to see the frequencies of your cores
• Only very few of them are on the boosted frequency

!12

Demo

Slower, but more

!13

Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power

Reduction
Rakesh Kumar, Keith Farkas, Norm P. Jouppi, Partha Ranganathan, Dean M. Tullsen.

University of California, San Diego and HP Labs

!14

• You fit about 5 EV5 cores within the same area of an EV6
• If you build a quad-core EV6, you can use the same area to

• build 20-core EV5
• 3EV6+5EV5

!15

Areas of different processor generations

4EV6 v.s. 20 EV5 v.s. 3EV6+5EV5

!17

ARM’s big.LITTLE architecture

!18

4EV6 v.s. 20 EV5 v.s. 3EV6+5EV5

!19

Xeon Phi

!20

!21

An Overview of Kepler GK110 and GK210 Architecture
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations include 15 SMX units and six 64‐bit memory controllers.
Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

x The new SMX processor architecture

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

x Hardware support throughout the design to enable new programming model capabilities

x GK210 expands upon GK110’s on-chip resources, doubling the available register file and shared

memory capacities per SMX.

SMX (Streaming
Multiprocessor)

Thread
scheduler

GPU
global

memory

High-
bandwidth

memory
controllers

The rise of GPU

!22

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most
powerful multiprocessor we’ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

Each of these performs
the same operation, but
each of these is also a

“thread” A total of 16*12 = 192 cores!

Just let it dark

!23

NVIDIA’s Turing Architecture

!24

You can only use either type of these ALUs, but not all of them

The rise of ASICs

!25

• This is what we need in RISC-V in each iteration

!26

Say, we want to implement a[i] += a[i+1]*20

ld X1, 0(X0) 
ld X2, 8(X0)
add X3, X31, #20 
mul X2, X2, X3
add X1, X1, X2 
sd X1, 0(X0)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM

EX
ID

WB
MEM

EX
ID
IF

WB
MEM

EX
WB

MEM WB
IDIF EX MEM WB

This is what you need for these instructions

!27

Instruction
memory

PC

ALU

4

Read 
Address

Instruction 
[31:0]

Registers

Control

In
st

ru
ct

io
n 

[3
1:

21
]

Read 
Register 1

Read 
Register 2

Write 
Data

Read 
Data 1

Read 
Data 2

m
ux

0 
 
 

1

Instruction 
[9:5]

Instruction 
[20:16]

Instruction[4:0]

Sign-
extend

Instruction 
[31:0]

Adder

m
ux

0 
 
 

1

Adder
Shift 

Left 2

Data
memory

Address

Write 
Data

Read 
Data

m
ux

1 
 
 

0

Zero

m
ux

0 
 
 

1

Write 
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction 
[31:21]

MemoryWrite
ALUSrc

RegWrite

IF/ID EX/MEM MEM/WB

RegWrite

Instruction 
[4:0]

ID/EX
MEM/WB.RegisterRd

2 
3

MEM/WB.RegisterRd

m
ux

2 
1 
0

Forwarding

EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m 
u 
x

0

Hazard Detection

PCWrite

ID/EX.MemoryRead

IF/IDWrite

Specialize the circuit

!28

ALU

Registers

Control

In
st

ru
ct

io
n 

[3
1:

21
]

Read 
Register 1

Read 
Register 2

Write 
Data

Read 
Data 1

Read 
Data 2

m
ux

0 
 
 

1

Instruction 
[9:5]

Instruction 
[20:16]

Instruction[4:0]

Sign-
extend

Instruction 
[31:0]

m
ux

0 
 
 

1

Adder
Shift 

Left 2

Data
memory

Address

Write 
Data

Read 
Data

m
ux

1 
 
 

0

Zero

Write 
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction 
[31:21]

MemoryWrite
ALUSrc

RegWrite

EX/MEM MEM/WB

RegWrite

Instruction 
[4:0]

ID/EX
MEM/WB.RegisterRd

2 
3

MEM/WB.RegisterRd

m
ux

2 
1 
0

Forwarding

EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m 
u 
x

0

Hazard Detection

PCWrite

Instruction
memory

PC
4

Read 
Address

Instruction 
[31:0]

Adder

m
ux

0 
 
 

1

IF/ID

ID/EX.MemoryRead

IF/IDWrite

We don’t need
instruction fetch given
it’s a fixed function

Specialize the circuit

!29

ALU

Registers

Control

In
st

ru
ct

io
n 

[3
1:

21
]

Read 
Register 1

Read 
Register 2

Write 
Data

Read 
Data 1

Read 
Data 2

m
ux

0 
 
 

1

Instruction 
[9:5]

Instruction 
[20:16]

Instruction[4:0]

Sign-
extend

Instruction 
[31:0]

m
ux

0 
 
 

1

Adder
Shift 

Left 2

Data
memory

Address

Write 
Data

Read 
Data

m
ux

1 
 
 

0

Zero

Write 
Register

Reg2Loc

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp

Instruction 
[31:21]

MemoryWrite
ALUSrc

RegWrite

EX/MEM MEM/WB

RegWrite

Instruction 
[4:0]

ID/EX
MEM/WB.RegisterRd

2 
3

MEM/WB.RegisterRd

m
ux

2 
1 
0

Forwarding

EX/MEM.RegisterRd

ForwardA

ForwardB
ID/EXE.RegisterRnID/EXE.RegisterRm

EX/MEM.MemoryRead

m 
u 
x

0

Hazard Detection ID/EX.MemoryRead

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers,
complex control,
decode

Specialize the circuit

!30

ALU

Registers

Control

Read 
Register 1
Read 
Register 2

Write 
Data

Read 
Data 1
Read 
Data 2

Instruction[4:0]

m
ux

0 
 
 

1

Adder
Shift 

Left 2

Data
memory

Address

Write 
Data

Read 
Data

m
ux

1 
 
 

0

Zero

Write 
Register

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp
MemoryWrite

ALUSrc
RegWrite

EX/MEM MEM/WB

RegWrite

ID/EX
MEM/WB.RegisterRd

2 
3

m 
u 
x

0

Hazard Detection ID/EX.MemoryRead

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers,
complex control,
decode

We don’t need ALUs,
branches, hazard
detections…

Specialize the circuit

!31

ALU

Registers

Control

Read 
Register 1
Read 
Register 2

Write 
Data

Read 
Data 1
Read 
Data 2

Instruction[4:0]

m
ux

0 
 
 

1

Data
memory

Address

Write 
Data

Read 
Data

m
ux

1 
 
 

0

Zero

Write 
Register

Branch
MemoryRead

MemToReg

ALU
Ctrl.

ALUOp
MemoryWrite

ALUSrc
RegWrite

EX/MEM MEM/WB

RegWrite

ID/EX
MEM/WB.RegisterRd

We don’t need
instruction fetch given
it’s a fixed function

We don’t need these
many registers,
complex control,
decode

We don’t need big
ALUs, branches,
hazard detections…

Rearranging the datapath

!32

Multiplier

Register

Write 
Data Data

memory

Address

Data
memory

Address

Read 
Data

Data
memory

Address Read 
Data Register

Adder

8
20

Adder

ld X1, 0(X0) 
ld X2, 8(X0)
add X3, X31, #20 
mul X2, X2, X3
add X1, X1, X2 
sd X1, 0(X0)

The pipeline for a[i] += a[i+1]*20

!33

Multiplier

Register

Write 
Data Data

memory

Address

Data
memory

Address

Read 
Data

Data
memory

Address Read 
Data Register

Adder

8
20

Adder

a[0] += a[1]*20a[1] += a[2]*20a[2] += a[3]*20a[3] += a[4]*20Each stage can still
be as fast as the

pipelined
processor

But each stage is
now working on

what the original 6
instructions would

do

A Cloud-Scale Acceleration Architecture
Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael

Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd
Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,

Doug Burger
Microsoft

!34

Configurable cloud

!37

TOR TOR

L1

Hardware acceleration plane

Traditional software (CPU) server
plane

SQL
Deep neural

networks

Web search
ranking GFT Offload

Web search
ranking

FPGA acceleration board

2-socket CPU server

Network switch (top of rack, cluster)

NIC – FPGA link

FPGA – switch link

L2

TOR

Interconnected FPGAs form a
separate plane of computation

Can be managed and used
independently from the CPU

TOR

L1

TOR

• Foundation for all accelerators
• Includes PCIe, Networking and DDR IP
• Common, well tested platform for development

• Lightweight Transport Layer
• Reliable FPGA-to-FPGA Networking
• Ack/Nack protocol, retransmit buffers
• Optimized for lossless network
• Minimized resource usage

!38

Gen2 shell

x8	PCIe

DMA	
Engine

Config	  
Flash	

DDR3 
Ctrl.

JTAG
Temp.

Shell

I2C

4

4	GB	
DDR3

72

8

SEU

40G	
MAC

Server	NIC Top-of-Rack	Switch

8

Clock

256

4

x8	PCIe

40G	
MAC

512

Bypass	Ctrl

256 256 256 256

Network	Switch

Role

Router

Lightweight	Transport	Layer

Role

4

• Local: Great service acceleration
• Infrastructure: Fastest cloud network
• Remote: Reconfigurable app fabric (DNNs)

!39

Use cases

• Tail Latency == 1 in X servers being slow
• Why is this bad? – Each user request

now needs several servers – Changes of
experience tail is much higher

• If 99% of the server’s response time is
10ms, but 1% of them take 1 second to
response

• If the user only needs one, the mean is OK
• If the user needs 100 partitions from 100

servers, 63% of the requests takes more
than 1 seconds.

!40

Tail latencies

• Lower & more consistent 99.9th tail latency
• In production for years

!41

5 day bed-level latency

99.9% software latency

99.9% FPGA latency
average FPGA query load average software load

Day 1 Day 2 Day 3 Day 4 Day 5

1.0

2.0

3.0

4.0

5.0

6.0

7.0

N
or

m
al

iz
ed

 L
oa

d
&

 L
at

en
cy

Q
ue

ry
 L

at
en

cy
 9

9.
9t

h

(n
or

m
al

iz
ed

 t
o

lo
w

es
t

la
te

nc
y)

0.0

0.6

1.2

1.8

2.3

2.9

3.5

Query Load
(normalized to lowest throughput)

0 1.5 3 4.5 6

Software
Local FPGA

Even at 2× query load,
accelerated ranking has
lower latency than
software at any load

• Software defined networking
• Generic Flow Table (GFT) rule based packet rewriting
• 10x latency reduction vs software, CPU load now <1 core
• 25Gb/s throughput at 25μs latency – the fastest cloud network

• Capable of 40 Gb line rate encrypt and decrypt
• On Haswell, AES GCM-128 costs 1.26 cycles/byte[1] (5+ 2.4Ghz cores to sustain

40Gb/s)
• CBC and other algorithms are more expensive
• AES CBC-128-SHA1 is 11μs in FPGA vs 4μs on CPU (1500B packet)
• Higher latency, but significant CPU savings

!42

Accelerated networking

GFT
TableFPGA

40G
CryptoFlow Action

Decap,	DNAT,	Rewrite,	Meter1.2.3.1->1.3.4.1,	62362->80

GFT 40G

40G  
NIC

VMs

• Economics: consolidation
• Most accelerators have more

throughput than a single host requires
• Share excess capacity, use fewer

instances
• Frees up FPGAs for other use services

• DNN accelerator
• Sustains 2.5x busy clients in

microbenchmark, before queuing
delay drives latency up

!43

Shared DNN

FPG
A

20%

FPG
A

20%

FPG
A

20% 20%

20%
20%

SW SW SW SW SW SW

FPG
A

FPG
A

H
ar

dw
ar

e
La

te
nc

y

N
or

m
al

iz
ed

 t
o

Lo
ca

l F
PG

A

0.0

1.3

2.5

3.8

5.0

Oversubscription:
Remote Clients / # FPGAs

1.0 1.4 1.8 2.1 2.5

99%
95%
Avg

• Local, infrastructure and remote acceleration
• Gen1 showed significant gains even for complex services (~2x for Bing)
• Needs to have clear benefit for majority of servers: infrastructure

• Economics must work
• What works at small scale doesn’t always work at hyperscale and vice versa
• Little tolerance for superfluous costs
• Minimized complexity and risk in deployment and maintenance

• Must be flexible
• Support simple, local accelerators and complex, shared accelerators at the

same time
• Rapid deployment of new protocols, algorithms and services across the cloud

!47

Summary: What makes a configurable cloud?

In-Datacenter Performance Analysis of a
Tensor Processing Unit

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M.
Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H.
Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na- garajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D.
Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal- ter, W. Wang, E. Wilcox, and D. H. Yoon

Google Inc.

!48

What TPU looks like

!50

TPU Floorplan

!51

TPU Block diagram

!52

Experimental setup

!54

Performance/Rooflines

!55

Tail latency

!56

What NVIDIA says

!57

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

 58

• Fallacy: NN inference applications in data centers value throughput as much as
response time.

• Fallacy: The K80 GPU architecture is a good match to NN inference — GPU is
throughput oriented

• Pitfall: For NN hardware, Inferences Per Second (IPS) is an inaccurate summary
performance metric — it’s simply the inverse of the complexity of the typical inference
in the application (e.g., the number, size, and type of NN layers)

• Fallacy: The K80 GPU results would be much better if Boost mode were enabled —
Boost mode increased the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by 1.3X. The net gain in
performance/Watt is 1.1X, and thus Boost mode would have a minor impact on LSTM1

• Fallacy: CPU and GPU results would be comparable to the TPU if we used them more
efficiently or compared to newer versions.

!59

Fallacies & Pitfalls

• Pitfall: Architects have neglected important NN tasks.
• CNNs constitute only about 5% of the representative NN workload for Google. More

attention should be paid to MLPs and LSTMs. Repeating history, it’s similar to when
many architects concentrated on floating- point performance when most mainstream
workloads turned out to be dominated by integer operations.

• Pitfall: Performance counters added as an afterthought for NN hardware.
• Fallacy: After two years of software tuning, the only path left to increase TPU

performance is hardware upgrades.
• Pitfall: Being ignorant of architecture history when designing a domain-specific

architecture
• Systolic arrays
• Decoupled-access/execute
• CISC instructions

!60

Fallacies & Pitfalls

Final words

!61

• Computer architecture is more important than you can ever imagine
• Being a “programmer” is easy. You need to know architecture a lot to be a

“performance programmer”
• Branch prediction
• Cache

• Multicore era — to get your multithreaded program correct and perform well,
you need to take care of coherence and consistency

• We’re now in the “dark silicon era”
• Single-core isn’t getting any faster
• Multi-core doesn’t scale anymore
• We will see more and more ASICs
• You need to write more “system-level” programs to use these new ASICs.

!62

Conclusion

