
Performance Evaluation
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CPU Performance Equation
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Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execution Time

1
Frequency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle



• The simplest kind of performance 
• Shorter execution time means better performance 
• Usually measured in seconds

Processor
PC

120007a30:  0f00bb27  ldah  gp,15(t12)    
120007a34:  509cbd23  lda   gp,-25520(gp) 
120007a38:  00005d24  ldah  t1,0(gp) 
120007a3c:  0000bd24  ldah  t4,0(gp) 
120007a40:  2ca422a0  ldl   t0,-23508(t1) 
120007a44:  130020e4  beq   t0,120007a94 
120007a48:  00003d24  ldah  t0,0(gp) 
120007a4c:  2ca4e2b3  stl   zero,-23508(t1) 
120007a50:  0004ff47  clr   v0 
120007a54:  28a4e5b3  stl   zero,-23512(t4) 
120007a58:  20a421a4  ldq   t0,-23520(t0) 
120007a5c:  0e0020e4  beq   t0,120007a98 
120007a60:  0204e147  mov   t0,t1 
120007a64:  0304ff47  clr   t2 
120007a68:  0500e0c3  br    120007a80

instruction memory

How long is it take to 
execution each of these?

How many of these?
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Execution Time

clock

Instructions
Program

Cycles
Instruction × Seconds

Cycle



• The relative performance between two machines, X and Y. X is n 
times faster than Y

• The speedup of X over Y
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Speedup

n = Execution TimeY

Execution TimeX

Speedup = Execution TimeY

Execution TimeX



What Affects Each Factor in 
Performance Equation
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• Modern processors provides performance counters 
• instruction counts 
• cache accesses/misses 
• branch instructions/mis-predictions 

• How to get their values? 
• You may use “perf stat” in linux 
• You may use Instruments —> Time Profiler on a Mac 
• Intel’s vtune — only works on Windows w/ intel processors 
• You can also create your own functions to obtain counter values
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Use “performance counters” to figure out!



Programmers can also set the cycle time
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https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt


• gcc has different optimization levels.  
• -O0 — no optimizations 
• -O3 — typically the best-performing optimization
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Revisited the demo with compiler optimizations!

    for(i = 0; i < ARRAY_SIZE; i++) 
    { 
      for(j = 0; j < ARRAY_SIZE; j++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

    for(j = 0; j < ARRAY_SIZE; j++) 
    { 
      for(i = 0; i < ARRAY_SIZE; i++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

A B



• Compiler can reduce the instruction count, change CPI 
— with “limited scope” 

• Compiler CANNOT help improving “crummy” source code
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Demo revisited — compiler optimization

    if(option) 
        std::sort(data, data + arraySize); 

    for (unsigned c = 0; c < arraySize*1000; ++c) { 
            if (data[c%arraySize] >= INT_MAX/2) 
                sum ++; 
        } 
    }

Compiler can never add this — only the programmer can!



• Algorithm complexity provides a good estimate on the 
performance if — 
• Every instruction takes exactly the same amount of time 
• Every operation takes exactly the same amount of instructions
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How about “computational complexity”

These are unlikely to be true



• IC (Instruction Count) 
• ISA, Compiler, algorithm, programming language, programmer 

• CPI (Cycles Per Instruction) 
• Machine Implementation, microarchitecture, compiler, application, algorithm, 

programming language, programmer 
• Cycle Time (Seconds Per Cycle) 

• Process Technology, microarchitecture, programmer
!36

Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT



Instruction Set Architecture (ISA) 
& Performance
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• Operations 
• Arithmetic/Logical, memory access, control-flow (e.g., branch, 

function calls) 
• Operands 

• Types of operands — register, constant, memory addresses 
• Sizes of operands — byte, 16-bit, 32-bit, 64-bit 

• Memory space 
• The size of memory that programs can use 
• The addressing of each memory locations 
• The modes to represent those addresses
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Recap: ISA — the interface b/w processor/software



Popular ISAs
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The abstracted “RISC-V” machine
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CPU
Program Counter

0x0000000000000004
Registers

X0 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 

X10 
X11 
X12 
X13 
X14 
X15 
X16 
X17 
X18 
X19 
X20 
X21 
X22 
X23 
X24 
X25 
X26 
X27 
X28 
X29 
X30 
X31

Memory

64-bit
64-bit

264 Bytes

ALU

add  
sub  
mul  
div  
 
 
 
 
 
 
and  
andi  
ori  
xori  
 
 
 
 
beq  
blt  
hal

0x0000000000000000 
0x0000000000000008 
0x0000000000000010 
0x0000000000000018 
0x0000000000000020 
0x0000000000000028 
0x0000000000000030 
0x0000000000000038

0xFFFFFFFFFFFFFFC0 
0xFFFFFFFFFFFFFFC8 
0xFFFFFFFFFFFFFFD0 
0xFFFFFFFFFFFFFFD8 
0xFFFFFFFFFFFFFFE0  
0xFFFFFFFFFFFFFFE8  
0xFFFFFFFFFFFFFFF0 
0xFFFFFFFFFFFFFFF8

lw  
ld  
sw  
sd  

FP Registers
F0 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 

F10 
F11 
F12 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 
F21 
F22 
F23 
F24 
F25 
F26 
F27 
F28 
F29 
F30 
F31

64-bit



Subset of RISC-V instructions
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Category Instruction Usage Meaning
Arithmetic add add  x1, x2, x3 x1 = x2 + x3

addi addi x1,x2, 20 x1 = x2 + 20
sub sub  x1, x2, x3 x1 = x2 - x3

Logical and and  x1, x2, x3 x1 = x2 & x3
or or   x1, x2, x3 x1 = x2 | x3
andi andi x1, x2, 20 x1 = x2 & 20
sll sll  x1, x2, 10 x1 = x2 * 2^10
srl srl  x1, x2, 10 x1 = x2 / 2^10

Data Transfer ld ld   x1, 8(x2) x1 = mem[x2+8]
sd sd   x1, 8(x2) mem[x2+8] = x1

Branch beq beq  x1, x2, 25 if(x1 == x2), PC = PC + 100
bne bne  x1, x2, 25 if(x1 != x2), PC = PC + 100

Jump jal jal  25 $ra = PC + 4, PC = 100

jr jr   $ra PC = $ra

The only type of instructions can access memory



Popular ISAs
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Complex Instruction Set 
Computers (CISC) Reduced Instruction Set Computers (RISC)



• CISC (Complex Instruction Set Computing) 
• Examples: x86, Motorola 68K 
• Provide many powerful/complex instructions 

• Many: more than 1503 instructions since 2016 
• Powerful/complex: an instruction can perform both ALU and memory operations 
• Each instruction takes more cycles to execute 

• RISC (Reduced Instruction Set Computer)  
• Examples: ARMv8, RISC-V, MIPS (the first RISC instruction, invented by the 

authors of our textbook) 
• Each instruction only performs simple tasks 
• Easy to decode 
• Each instruction takes less cycles to execute
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How many operations: CISC v.s. RISC



The abstracted x86 machine
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CPU
Registers

RAX 
RBX 
RCX 
RDX 
RSP 
RBP 
RSI 
RDI 
R8 
R9 

R10 
R11 
R12 
R13 
R14 
R15 
RIP 

FLAGS 
CS 
SS 
DS 
ES 
FS 
GS

Memory

64-bit

64-bit

264 Bytes

ALU

ADD  
SUB  
IMUL  
 
 
 
 
 
 
 
AND  
OR  
XOR  
 
 
 
 
 
JMP  
JE  
CALL  
RET

0x0000000000000000 
0x0000000000000008 
0x0000000000000010 
0x0000000000000018 
0x0000000000000020 
0x0000000000000028 
0x0000000000000030 
0x0000000000000038

0xFFFFFFFFFFFFFFC0 
0xFFFFFFFFFFFFFFC8 
0xFFFFFFFFFFFFFFD0 
0xFFFFFFFFFFFFFFD8 
0xFFFFFFFFFFFFFFE0  
0xFFFFFFFFFFFFFFE8  
0xFFFFFFFFFFFFFFF0 
0xFFFFFFFFFFFFFFF8

MOV



RISC-V v.s. x86
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RISC-V x86
ISA type Reduced Instruction Set 

Computers (RISC)
Complex Instruction Set 

Computers (CISC)
instruction width 32 bits 1 ~ 17 bytes

code size larger smaller
registers 32 16

addressing modes reg+offset
base+offset 
base+index 

scaled+index 
scaled+index+offset

hardware simple complex



• Programming languages allow user to define their own data 
types 

• In C, programmers can use struct to define new data 
structure
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User-defined data structure

struct student { 
    int id; 
    double *homework; 
    int participation; 
    double midterm; 
    double average; 
};
How many bytes each “struct node” will occupy?



• Almost every popular ISA architecture uses “byte-addressing” 
to access memory locations 

• Instructions generally work faster when the given memory 
address is aligned 
• Aligned — if an instruction accesses an object of size n at address 
X, the access is aligned if X mod n = 0. 

• Some architecture/processor does not support aligned access at all 
• Therefore, compilers only allocate objects on “aligned” address
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Memory addressing/alignment



Amdahl’s Law — and It’s 
Implication in the Multicore Era
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H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.



Amdahl’s Law
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Speedupenhanced( f, s) = 1
(1 − f ) + f

s

f — The fraction of time in the original program 
s — The speedup we can achieve on f

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced



Amdahl’s Law
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Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f ) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced( f, s) = 1
(1 − f ) + f

s



• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:  
 
 
 
 
 

• If optimization #1 and optimization #2 are not dis-joint: 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Amdahl’s Law on Multiple Optimizations

Speedupenhanced( fOpt1, fOpt2, s) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedupenhanced( fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, s) = 1
(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + f_OnlyOpt1

s_OnlyOpt1 + f_OnlyOpt2
s_OnlyOpt2

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2



• The maximum speedup is bounded by
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Amdahl’s Law Corollary #1

Speedupmax( f, ∞) = 1
(1 − f ) + f

∞

Speedupmax( f, ∞) = 1
(1 − f )



• If we can pick just one thing to work on/optimize
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Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax( f1, ∞) = 1
(1 − f1)

Speedupmax( f2, ∞) = 1
(1 − f2)

Speedupmax( f3, ∞) = 1
(1 − f3)

Speedupmax( f4, ∞) = 1
(1 − f4)

The biggest fx would lead 
to the largest Speedupmax!



• When f is small, optimizations will have little effect. 
• Common == most time consuming not necessarily the most 

frequent 
• The uncommon case doesn’t make much difference 
• The common case can change based on inputs, compiler 

options, optimizations you’ve applied, etc.
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Corollary #2 — make the common case fast!



• Compile your program with -pg flag 
• Run the program 

• It will generate a gmon.out 
• gprof your_program gmon.out > your_program.prof 

• It will give you the profiled result in your_program.prof
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Identify the most time consuming part



• With optimization, the common becomes uncommon. 
• An uncommon case will (hopefully) become the new common 

case. 
• Now you have a new target for optimization.
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If we repeatedly optimizing our design based on Amdahl’s law...

Common case 

7x => 1.4x 
4x => 1.3x 

1.3x => 1.1x 

Total = 20/10 = 2x 



• If the program spend 90% in A, 10% in B. Assume that an 
optimization can accelerate A by 9x, by hurts B by 10x... 

• Assume the original execution time is T. The new execution 
time

!64

Don’t hurt non-common part too mach

Tnew= T  0.9 +
9 + T  0.1  10+ +

Tnew= 1.1T

Speedup= 1.1T
T  = 0.91



• Symmetric multicore processor with n cores (if we assume the 
processor performance scales perfectly)
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Amdahl’s Law on Multicore Architectures

Speedupparallel( fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n



• Single-core performance still matters — it will eventually dominate the 
performance 

• Finding more “parallelizable” parts is also important 
• If we can build a processor with unlimited parallelism — the complexity 

doesn’t matter as long as the algorithm can utilize all parallelism — 
that’s why bitonic sort works!
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Corollary #3, Corollary #4 & Corollary #5
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



“Fair” Comparisons
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Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the 
Computer, MITP, 1995
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• The ISA of the “competitor” 
• Clock rate, CPU architecture, cache size, how many cores 
• How big the RAM? 
• How fast the disk?
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What’s missing in this video clip?



TFLOPS (Tera FLoating-point Operations Per Second)
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• TFLOPS does not include instruction count!
• Cannot compare different ISA/compiler
• Different CPI of applications, for example, I/O bound or computation bound
• If new architecture has more IC but also lower CPI?

TFLOPS clock rate

XBOX One 6 1.75 GHz

PS4 Pro 4 1.6 GHz

GeForce GTX 1080 8.228 3.5 GHz
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TFLOPS (Tera FLoating-point Operations Per Second)



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point 
intensive
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Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions / 1012 
Execution Time

IC    % of floating point instructions

1012IC   CPI   CycleTime
= =

1012CPI
Clock Rate   % FP ins.



• Consider the following characteristics of flash-based SSDs and 
Optane-based SSDs.
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Latency v.s. throughput

Flash Optane

Latency ~ 100 us (read) 
~ 1 ms (write)

7 us (read) 
18 us (write)

Bandwidth 3.5 GB/sec (read) 
2.1 GB/sec (write)

1.35 GB/sec (read) 
290 MB/sec (write)



• Increase bandwidth can hurt the response time of a single task
• If you want to transfer a 2 Peta-Byte video from UCLA

• 125 miles (201.25 km) from UCSD 
• Assume that you have a 100Gbps ethernet 

• 2 Peta-byte over 167772 seconds = 1.94 Days 
• 22.5TB in 30 minutes 
• Bandwidth: 100 Gbps
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Latency and Bandwidth trade-off



 Toyota Prius  10Gb Ethernet

bandwidth 290GB/sec 100 Gb/s or  
12.5GB/sec

latency 4 hours 2 Peta-byte over 167772 
seconds = 1.94 Days

response 
time You see nothing in the first 4 hours You can start watching the movie as 

soon as you get a frame!

Or ...
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•125 miles (201.25 km) from 
UCSD 

•75 MPH on highway!
•50 MPG 
•Max load: 374 kg = 2,770 
hard drives (2TB per drive)


