Performance Evaluation

CPU Performance Equation

1
P r'iror -
€ fO mance Execution Time
; '] Cycles
Execution Time = Listructions % — ‘ X Seconds
Program Instruction Cvcle
ET = IC X CPIX CT /
1

1GHz = 10°Hz = —sec per cycle = 1 ns per cycle :
10° Frequency(i.e.,clock rate)

6

Execution Time

- The simplest kind of performance
- Shorter execution time means better performance
- Usually measured in seconds

clock

instruction memory

120007a30: 0f00bb27 1ldah gp,15(t12)
120007a34: 509cbhd23 1da gp,—25520(gp)

120007a38: 00005d24 1dah t1,0(gp)
Processor 120007a3c: 0000bd24 1ldah t4,0(gp)

120007a40: 2cak22a@ 1dl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: ©0003d24 1dah t@,0(gp)
InStrl/tCtiOI’lS 120007a4c: 2ca4e2b3 stl zero,—-23508(t1)
2 —>120007a50: 0004ff47 clr voO
HOW many Of these y 120007a54: 28a4e5b3 stl zero,-23512(t4)
Program 120007a58: 20a42la4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
P 120007a60: 0204el47 mov t0, tl
How Iong Is it take to 120007a64: 0304Ff47 clr t2
o 120007a68: 0500e0c3 b 120007280
execution each of these?] eves bt]
Cycles > Seconds
Instruction Cycle

Speedup

- The relative performance between two machines, Xand Y. X is n
times fasterthan Y

Execution Timey

n = ; :
Execution Timey

- The speedup of X over Y

Execution Timey

Speedup =

Execution Timey

10

What Affects Each Factor In
Performance Equation

Use “performance counters” to figure out!

- Modern processors provides performance counters
- Instruction counts

- cache accesses/misses

- branch instructions/mis-predictions

- How to get their values?

- You may use “perf stat” in linux

- You may use Instruments —> Time Profiler on a Mac

- Intel's vtune — only works on Windows w/ intel processors
- You can also create your own functions to obtain counter values

20

Programmers can also set the cycle time

https://software.intel.com/sites/default/files/comment/1/16807/how-to-change-frequency-on-linux-pub.ixt

Subject: setting CPU speed on runring linux system

If the 0S8 is Linux, yoa can manually control the CPU speed by reading and writing some virtual files in the "/proc"

l.] Is the system capable cf soitware CPU speed control?
If the "directory" /sys/devices/system/cpu/cpul/cpufreq exists, spead is controllable.
-- If it does not exist, ycu mav reed -0 go to tre BIOS and turr on EIST and ary other C and F state control and vi:

2.) what speed is the box set to row?
Do the follcwing:

$ cc /sys/devices/systam/cpu

3 cet ./cpul/cpuireg/cpuinfo_max_freg
3193000

$ cét ./cpul/cpuireqg/couinio_min_freq
159¢€000

3.] what speeds car 1 set to?

Do

$ cat /sys/devices/systen/cpu/cpul/cpafreq/scalirg_ava:ilable frequencies

It will l:st highest settakle to lowest; example from ny NHM "Smackover”™ DX58S0 HEDT bcard, 1 see:

3192000 3292000 3059000 2926000 2793000 2GGO000 2527000 2394000 2261000 212800C 1935000 1862000 1729000 1596C0

You can chocse from among those numbers tc set the "high water' mark and "low water" mark for spead. If you set "h

4.) Show ne how to set all to higkest settable speed!
Use the following little sh/ksh/bésh script:
cc /sys/devices/system/cpu # a virtual directory made visible by device drivers
newSpaedTep="awk '{print $1}' ./cpuld/cpufreq/scaling available frequencies’
newspzedLcw=$nevspeedTop # make them the same in this example
for ¢ in ./cpu(0-9]* ; dc
echo SnewSpeedTop >§./c}/cpufreq/scaling max freq
echo snewspeedLow >$<c}/cpuireq/scaling_min_freq
done

VY NV VL uvwmw

.] How do I returr to the default - i.e. allow machine to vary from highest to lowest?
dit line # 3 of tke scr:ipt above, and re-run it. Change the line:
$ newsSpeedLcw=$SnewtpeedTop # make them the same in this example

[3 PP .

o O Y

https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

Revisited the demo with compiler optimizations!

- gcc has different optimization levels.
» -0O0 — no optimizations
- -03 —typically the best-performing optimization

for(1 = ©; 1 < ARRAY_SIZE; 1++)

{ for(3 = 0; 7 < ARRAY_SIZE; j++)
{ cliI[j] = al1ll3]+bl[11[]]1;

, }

for(y = 0; J < ARRAY_SIZE; j++)

{ for(i = ©; 1 < ARRAY_SIZE; i++)
{ c[11[3]1 = ali1[j1+b[11[3];

} }

33

Demo revisited — compiler optimization

- Compiler can reduce the instruction count, change CPI
— with “limited scope”

- Compiler CANNOT help improving “crummy” source code

for (unsigned ¢ = @; ¢ < arraySizex1000; ++c) {
1f (datalc%arraySizel] >= INT_MAX/2)
sum ++;

34

How about “computational complexity”

- Algorithm complexity provides a good estimate on the
performance if —

- Every instruction takes exactly the same amount of time
- Every operation takes exactly the same amount of instructions

These are unlikely to be true

35

Summary of CPU Performance Equation

1
Performance =
f Execution Time
: : Instructi Cycles [y d
Execution Time = 222X « ¢ 2N
Program Instruction Cycle

ET=I1CXCPIXCT

- |C (Instruction Count)
- ISA, Compiler, algorithm, programming language, programmer
- CPI (Cycles Per Instruction)

- Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

- Cycle Time (Seconds Per Cycle)
- Process Technology, microarchitecture, programmer

36

Instruction Set Architecture (ISA)
& Performance

Recap: ISA — the interface b/w processor/software

- Operations

- Arithmetic/Logical, memory access, control-flow (e.g., branch,
function calls)

- Operands
- Types of operands — register, constant, memory addresses

- Sizes of operands — byte, 16-bit, 32-bit, 64-bit
- Memory space

- The size of memory that programs can use

- The addressing of each memory locations

- The modes to represent those addresses

38

Qualcomm

snapdragon

SWweRvY Ccore.

39

The abstracted "RISC-V" machine
e e CPU W@S@r@n& >

: FP Registers Registers Program Counter : 0x0000000000000008

: FO X0 ; 0x0000000000000010

: F1 X1 0x0000000000000004 : 0x0000000000000018

: F2 X2 : 0x0000000000000020

' F3 X3 : 0x0000000000000028

: F4 X4 ’ ‘ : 0x0000000000000030

I F5 X5 add ; 0x0000000000000038

: F6 X6 sub . :

: F7 X7

: F8 X8 mul

: F9 X9 dilv

:F10 X10 :

PF11 X11

:F12 X12 ; : : ;

:F13 X13 : 264 Bytes
LF14 X14 5 : : ’

:F15 X15 1w

1F16 X16

‘F17 X17 1d nd

‘F18 X18 Sw ,

:F19 X19 sd andi

-F20 X20 J . ori

:F21 X21 * : xori

F22 X22 \ 5 :

: F23 X23 \ s ALU ; : :

1 F24 X24 ; :

LF25 X25 : === : OxFFFFFFFFFFFFFFCO_

1 F26 X26 ! : OXFFFFFFFFFFFFFFC8

:F27 X7 h beg OxFFFFFFFFFFFFFFDO T-d.]
128 X28 . blt ; OXFFFFFFFFFFFFFFD8 \
:F29 X29 ! : OxFFFFFFFFFFFFFFEQ \
:F30 X30 : hal : OxFFFFFFFFFFFFFFES :
:Fa X31 ' — : OxFFFFFFFFFFFFFFFO :
O T AT S S et et een e een e E OXFFFFFFFFTEFFTFTS ‘ A

Subset of RISC-V instructions

Category Instruction Usage Meaning
Arithmetic add add x1, x2, x3 X1 = X2 + x3

addi addi x1,x2, 20 X1 = x2 + 20

sub sub x1, x2, x3 X1 = X2 - X3
Logical and and x1, x2, x3 X1 = x2 & %3

or or x1, x2, x3 X1 = x2 | x3

andi andi x1, x2, 20 X1 = x2 & 20

sll sll x1, x2, 10 X1 = x2 *x 2710

srl srl x1, x2, 10 x1 = x2 / 2710
Data Transfer 8(x [x2+8]

sy hNe only ’M)[gzqijns {yuctions can access memory

Branch beq beq x1, x2, 25 if(x1 == x2), PC = PC + 100

bne bne x1, x2, 25 if(x1 !'= x2), PC = PC + 100
Jump jal jal 25 $ra = PC + 4, PC = 100

jr Jjr $ra PC = $ra

41

s’

Complex Instruction Set BIONIC
Comptters(CISC) educed Inst ON Sef ute (RISC)

Qualcomm

snapdragon

o~

s

SWeRv core.

How many operations: CISC v.s. RISC

- CISC (Complex Instruction Set Computing)
- Examples: x86, Motorola 68K

- Provide many powerful/complex instructions
- Many: more than 1503 instructions since 2016

- Powerful/complex: an instruction can perform both ALU and memory operations
- Each instruction takes more cycles to execute

- RISC (Reduced Instruction Set Computer)

- Examples: ARMvS, RISC-V, MIPS (the first RISC instruction, invented by the
authors of our textbook)

- Each instruction only performs simple tasks
- Easy to decode

- Each instruction takes less cycles to execute

43

The abstracted x86 machine

-
-~
- -

Registers
RAX
RBX
RCX
RDX —
RSP ADD
RBP
ko SUB
RDI IMUL
R8
R9
R10
R11
R12
R13
R14 *.
R15 NI
: RIP
S W:\els] — AND
: CS TT1OR_
SS XOR
DS
£o - MOV
kS \ 5
GS ' >ALU
4 5 § —
04-bit ',' IMP
' JE
CALL
' RET
' \—— ..

-

0x0000000000000000

Memory
‘§

0x0000000000000008

0x0000000000000010

0x0000000000000018

0x0000000000000020

0x0000000000000028

0x0000000000000030

0x0000000000000038

OXFFFFFFFFFFFFFFCO
OXFFFFFFFFFFFFFFCS
OXFFFFFFFFFFFFFFDO
OXFFFFFFFFFFFFFFDS
OXFFFFFFFFFFFFFFEQ
OXFFFFFFFFFFFFFFES

OXFFFFFFFFFFFFFFFQ]

OXFFFFFFFFFFFFREFS

-

n.»

264 Bytes

RISC-V v.s.x86

RISC-V x86
ISA type Reduced Instruction Set Complex Instruction Set
Computers (RISC) Computers (CISC)
instruction width 32 bits 1~ 17 bytes
code size larger smaller
reqgisters 32 16
base+offset
addressing modes reg+offset base+index

scaled+index
scaled+index+offset

hardware simple complex

45

User-defined data structure

- Programming languages allow user to define their own data

types
- In C, programmers can use struct to define new data

structure

struct student {
int 1id;
double *xhomework;
int participation:
double midterm;
double average;

r;

How many bytes each "struct node"” will occupy?

48

Memory addressing/alignment

- Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

- Instructions generally work faster when the given memory
address is alignhed

- Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

- Some architecture/processor does not support aligned access at all
- Therefore, compilers only allocate objects on "aligned” address

51

Amdahl's Law—and It's
Implication in the Multicore Era

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl’'s Law

1
(- +%

Spe edupenhanced(f’ 5) =

f— The fraction of time in the original program
S — The speedup we can achieve on f

Execution Timey,, ;...

Speedup ,papced =

Execution Tlmeenhanced_

NV

53

Amdahl’'s Law

1
Sp eedup enhanced(f’ S) —

(1—f)+1

ExeCUtion Timebaseline — 1

ExeCUtion Timeenhanced — (1 ‘f) + f/S <

Execution Timey, ... 1

Speedu = =
P Penhanced Execution Time,,}, . 0 (1—f)+ f
\)

54

Amdahl’'s Law on Multiple Optimizations

We can apply Amdahl’s law for multiple optimizations

These optimizations must be dis-joint!
If optimization #1 and optimization #2 are dis-joint:

fopt fopt2 1-fopt1-fopte

1
f_Optl f_Opr2
(1 - fOPﬂ - fOsz) | s_Optl | s_Opt2

If optimization #1 and optimization #2 are not dis-joint:

Sp eedup enhanced(f Optl 9f Opt2» 5) —

fOnIyOpt1 fOnIyOpt2 fBothOpt10pt2 1 'fOnIyOpt1 'fOnIyOptZ'fBothOpH Opt2

1

Sp eedup enhanced(f OnlyOptl>» f OnlyOpt2» f BothOpt1 Opt2» S) — f_OnlyOprl | f_OnlyOpt2

56 (1 _fOnlyOptl _fOnlyOptZ _fBothOpﬂOptZ) + s_OnlyOpr1 + s_OnlyOpt2

Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f,) =

59

Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

1
(1 Ifl)
T-7 The biggest f, would lead
l to the largest Speedup max!
(1 I]%)

(1= f4)

Speedup,. . (fi,0) =
Speedup,, . (f,, 00) =
Speedup,, . (f3,00) =
Speedup,. . (f,,0) =

60

Corollary #2 — make the common case fast!

- When f is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.

61

ldentify the most time consuming part

- Compile your program with -pg flag
- Run the program

- It will generate a gmon.out
- gprof your_program gmon.out > your_program.prof

- It will give you the profiled result in your_program.prof

62

If we repeatedly optimizing our design based on Amdahl’s law...

Common case

B B 7x=>1.4x
D B B 4x=>1.x
B B 1.3x=>1.1x
B B Total = 20/10 = 2x

- With optimization, the common becomes uncommon.

- An uncommon case will (hopefully) become the new common
case.

- Now you have a new target for optimization.

63

Don’'t hurt non-common part too mach

- If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution
time

Thew= Txg_g + Tx0.1x10
Tnew= 11T
T
Speedup= = 0.91

11T

64

Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
(1 —]gaamllelizable) | -

65

Corollary #3, Corollary #4 & Corollary #5

1

Sp €€dbtp parallel (]g?amllelizable’ OO) — f_parallelizable

(1 _ﬁparallelizable) T 00
1

(1 - ﬁyamllelizable)

Speedup,,,.iielfparatietizables) =

- Single-core performance still matters — it will eventually dominate the
performance

- Finding more “parallelizable” parts is also important

- If we can build a processor with unlimited parallelism — the complexity
doesn't matter as long as the algorithm can utilize all parallelism —
that's why bitonic sort works!

66

“"Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the

Computer, MITP, 1995
67

’ 8cx

Qualcommn
snapdragon

Extreme Multitasking Performance

e Dual 4K external monitors
» 1080p device display
« / applications

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

What's missing in this video clip?

- The ISA of the "competitor”

- Clock rate, CPU architecture, cache size, how many cores
- How big the RAM?

- How fast the disk?

69

TFLOPS (Tera FLoating-point Operations Per Second

Console Teraflops

Teraflops

. ® Suny
@ Nintendo
Xbox Ore X it Sega
6 e _
@ Wicrosoll
5
PS4 Piu
[
A
3
PS4
: =
Xbox One Xbox JneS
® @\ irtendo switcr
| &
1 G Wii LU
Xbox 360 PS3
Dreamcas P52 GaXboxtke ® '-’.V'ii @
0 - - - g1
1347 1088 1€Q3 2000 2001 2202 2003 2C04 2005 200€ 2007 2008 2009 20170 2011 2072 2013 2014 2C15 2016 2017 2018

70

TFLOPS (Tera FLoating-point Operations Per Second)

TFLOPS does not include instruction count!
Cannot compare different ISA/compiler
Different CPI of applications, for example, I/O bound or computation bound
If new architecture has more IC but also lower CPI?

TFLOPS clock rate

XBOX One 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 1080 8.228 3.5 GHz

71

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

.- Cannot compare different ISA/compiler

- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point

Intensive

of floating point instructions / 1012
TFLOPS = 9P

Execution Time
ICX % of floating point instructions ~ Clock RateX% FP ins.

ICX CPIXCycleTime X1012 CPIl X 1012

72

Latency v.s. throughput

- Consider the following characteristics of flash-based SSDs and
Optane-based SSDs.

~ 100 us (read) 7 us (read)

Latency ~ 1 ms (write) 18 us (write)
. 3.5 GB/sec (read) 1.35 GB/sec (read)
Bandwidth 2.1 GB/sec (write) 290 MB/sec (write)

73

Latency and Bandwidth trade-off

- Increase bandwidth can hurt the response time of a single task
- If you want to transfer a 2 Peta-Byte video from UCLA

+ 125 miles (201.25 km) from UCSD

- Assume that you have a 100Gbps ethernet
. 2 Peta-byte over 167772 seconds = 1.94 Days
- 22.5TB in 30 minutes
- Bandwidth: 100 Gbps

74

Or...

Toyota Prius

*125 miles (201.25 km) from
UCSD

*/5 MPH on highway!

50 MPG

*Max load: 374 kg = 2,770
hard drives (2TB per drive)

10Gb Ethernet

: 100 Gb/s or
bandwidth 290GB/sec 12 EGB/sec
2 Peta-byte over 167772
Iatency 4 hours seconds = 1.94 Days
response You can start watching the movie as

time

You see nothing in the first 4 hours

soon as you get a frame!

75

