
Basic Pipelined Processor
Hung-Wei Tseng



• Pipelining 
• Pipeline Hazards 
• Structural Hazards 
• Control Hazards

!2

Outline



• Instruction Fetch (IF) — fetch the instruction from memory 
• Instruction Decode (ID) 

• Decode the instruction for the desired operation and operands 
• Reading source register values 

• Execution (EX) 
• ALU instructions: Perform ALU operations 
• Conditional Branch: Determine the branch outcome (taken/not taken) 
• Memory instructions: Determine the effective address for data memory access 

• Data Memory Access (MEM) — Read/write memory 
• Write Back (WB) — Present ALU result/read value in the target register 
• Update PC 

• If the branch is taken — set to the branch target address 
• Otherwise — advance to the next instruction — current PC + 4

!3

Tasks in RISC-V ISA



Simple implementation w/o branch

!4

add x1, x2, x3 
 
ld  x4, 0(x5) 
 
sub x6, x7, x8 
 
sub x9,x10,x11 
 
sd  x1, 0(x12)

t

IF ID EX WB

IF ID EX MEM WB

IF ID EX WB

IF ID



Pipelining

!5



Pipelining

!6



• Different parts of the processor works on different instructions 
simultaneously 

• A clock signal controls and synchronize the beginning and the 
end of each part of the work 

• A pipeline register between different parts of the processor to 
keep intermediate results necessary for the upcoming work

!7

Pipelining



Pipelining

!8



Pipelining

!9

add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9,x10,x11 
sd  x1, 0(x12) 
xor x13,x14,x15 
and x16,x17,x18 
add x19,x20,x21 
sub x22,x23,x24 
ld  x25, 4(x26) 
sd  x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM WB

EX MEM WB
ID EX MEM

t

After this point, 
we are completing an 
instruction each cycle!

Cycles
In stru ctio n = 1



Pipeline hazards

!13



• Structural hazards — resource conflicts cannot support 
simultaneous execution of instructions in the pipeline 

• Control hazards — the PC can be changed by an instruction in 
the pipeline 

• Data hazards — an instruction depending on a the result that’s 
not yet generated or propagated when the instruction needs 
that

!14

Three pipeline hazards



Structural Hazards

!16



• The same register cannot be read/written at the same cycle 
• Solution: insert no-ops (e.g, add x0,x0,x0) between them 
• Drawback 

• If the number of pipeline stages changes, the code won’t work 
• Slow

!17

Dealing with the conflicts between ID/WB

add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
add x0, x0, x0 
sub x9, x1, x10 
sd  x11, 0(x12)

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM
IF ID EX MEM

WB
WB

IF ID EX MEM WB



• The same register cannot be read/written at the same cycle 
• Solution: stall the later instruction, allowing the write to present 

the change in the register and the later can get the desired 
value 

• Drawback: slow

!18

Dealing with the conflicts between ID/WB

add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9, x1, x10 
sd  x11, 0(x12)

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID ID EX MEM

IF IF ID EX MEM
WB

WB



• The same register cannot be read/written at the same cycle 
• Better solution: write early, read late 

• Writes occur at the clock edge and complete long enough before 
the end of the clock cycle. 

• This leaves enough time for outputs to settle for reads 
• The revised register file is the default one from now!

!19

Dealing with the conflicts between ID/WB

add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9, x1, x10 
sd  x11, 0(x12)

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB



• Stall can address the issue — but slow 
• Improve the pipeline unit design to allow parallel execution

!21

Structural Hazards



Control Hazards

!22



Dynamic Branch Prediction

!26



A basic dynamic branch predictor

!28

PC

4
MU
X

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC    target PC St
ate



• Local predictor — every branch instruction has its own state 
• 2-bit — each state is described using 2 bits 
• Change the state based on actual outcome 
• If we guess right — no penalty 
• If we guess wrong — flush (clear pipeline 

registers) for mis-predicted instructions 
that are currently in IF and ID stages and 
reset the PC

!29

2-bit local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC    target PC St
ate

Strong
Not Taken

00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken



• Why the sorting the array speed up the code despite the increased 
instruction count?

!32

Demo revisited

    if(option) 
        std::sort(data, data + arraySize); 

    for (unsigned i = 0; i < 100000; ++i) { 
        int threshold = std::rand(); 
        for (unsigned i = 0; i < arraySize; ++i) { 
            if (data[i] >= threshold) 
                sum ++; 
        } 
    }


