
 LABORATORY # 5

In lab5, you will:
Practice the structure model.
Build a project with structure design, which is a 4-bit lookahead adder
Write a testbench to test your design.
Analysis the simulation result.

1. 4-bit lookahead adder

An N-bit adder adds two N-bit numbers plus a carry-in bit, resulting in an N-bit sum and a carry-out bit. A
block diagram of a 4-bit adder appears in Figure 1.

Figure L1. Block Diagram of 4-bit adder

Although we could design a 4-bit adder’s circuit using the combination logic design process, the resulting
circuit would be rather large. Let's assume that we are adding two n-bit numbers xn-1 .. x1 x0 and yn-1 .. y1 y0.
The result is zn-1 .. z1 z0. A single-bit full adders will add xi, yi and ci and get as result zi and ci+1. The equations
for these quantities are as follows

ci+1 = (xi & yi) | (xi & ci) | (yi & ci)

zi = (xi ^ yi ^ ci)

With simple boolean algebra, we can rewrite ci+1 as

ci+1 = (xi & yi) | ci(xi | yi) ;

2. Carry bits c
It takes N full-adder delays for the carry to propagate through the carry-ripple adder. To avoid this, we can
use a different design approach which targets speed.

Here the carry bits (cn .. c2 c1) are pre-calculated using a separate module and fed into each full-adder. The
full-adder inturn just calculates the result bits (zn-1 .. z1 z0)

Note, from the previous equation ci+1 can be rewritten as ci+1 = gi + pici where gi = (xi & yi) and pi = xi | yi.
As result c1 and c2 can be written as

c1 = g0 + p0c0

c2 = g1 + p1c1 = g1+ p1(g0 + p0c0) = g1 + p1g0 + p1p0c0

c3 = g2 + p2c2 = g2+ ?

c4 = g3 + p3c3 = g3+ ?

Likewise, derive the equations for c3 and c4. You will be needing these later.

3. Output bits z
At this point we have equations to compute all ci. Now, to compute zi we can use the equation

 zi = (xi ^ yi ^ ci)

where the ci's are as above.

Now connect four full-adders to create a 4-bit adder, as shown in Figure 2. The figure does not show all the
connections of the inputs and outputs to the full-adders, but you should be able to determine those
connections easily.

Figure 2. General structure of a 4-bit carrylookahead adder

4.Hardware implementation (not required)

Figure 3. Adder Structure and Basys Board implementation hint

Build a new project with behavior design:
1. Open Xilinx ISE “32-bit Project Navigator” and click File>New Project
3.. Enter a “Project name” and select a “Project location” for your project.
4.. Select “Schematic” as your “Top-level source type” and click next.
Your next window should look EXACTLY like this EXCEPT for Top-Level Source Type

5. Click “New Source,” select “verilog module,” enter a “File name”, delete the .sch file.

Write verilog module
6. Create and test a Full adder using structural verilog. In order to simplify your design we suggest
creating four components.
7. One component to implement the logic of a full adder (code given) and one for an N-bit register (code
given) . Another component to implement the logic of the carry unit (part of the code given). Finally,
create a 4 bit carrylookahead_st module that uses the components already created (set this as your top level
module if you are creating separate Verilog files for each module). The following are the interfaces of the
modules we suggest.

module carrylogic(
 output [3:0] cout ,
 input cin,
 input [3:0] x,
 input [3:0] y);
 // Computing all gx
 wire g0, g1, g2, g3 ;
 assign g0 = x[0] & y[0] ;
 assign g1 = x[1] & y[1] ;
 assign g2 = x[2] & y[2] ;
 assign g3 = x[3] & y[3] ;
 // Computing all px
 wire p0, p1, p2, p3 ;
 assign p0 = x[0] + y[0] ;
 assign p1 = x[1] + y[1] ;
 assign p2 = x[2] + y[2] ;
 assign p3 = x[3] + y[3] ;
 // Computing all carries , your code here
 assign cout[0] =
 assign cout[1] =
 assign cout[2] =
 assign cout[3] =
endmodule

module falogic(
 output r,
 input x,
 input y,
 input cin);

//your code here

endmodule

module carrylookahead_st(
 input clk ,
 input enable ,
 input cin,
 input [3:0] x,
 input [3:0] y,
 output cout,

 output [3:0] r);
 wire [3:0] c;
 wire [3:0] ir1 ;
 wire [4:0] ir2 ;
 // Compute Carries
 carrylogic cx1 (c, cin, x, y) ;
 // Compute output ir1
 falogic cx6 (ir1[0], x[0], y[0], cin) ;
 falogic cx7 (ir1[1], x[1], y[1], c[0]) ;
 falogic cx8 (ir1[2], x[2], y[2], c[1]) ;
 falogic cx9 (ir1[3], x[3], y[3], c[2]) ;
 // Register
 register_logic cx10 (clk, enable, {c[3],ir1}, ir2) ;
 // Results
 assign r = ir2[3:0] ;
 assign cout = ir2[4] ;
endmodule

8. Write a testbench to test the adder.

Deliverables:

Question1: Is it possible for two 4-bit numbers and a carry-in to result in a number too big to
represent using 4 sum bits and a carry-out bit?

Question2: Why our 4-bit lookahead adder has better delay performance than combination of 4 single
bit adder?

Question3: Please paste your verilog code and testbench code.

Question 4: Please paste your simulation waveform screenshot.

Please submit a .pdf file. Don’t compress to any other forms.Thank you.

