
Combinational Logic
Prof. Usagi

Recap: Logic Design?

2

https://www.britannica.com/technology/logic-design

sampling
cycle

Recap: Analog v.s. digital signals

3

Infinite possible values!1

0

0.5? 0.4? 0.45?
0.445? 0.4445? or

0.4444444444459?
Anything within this wide
range is considered as “1”

• Please identify how many of the following statements explains why digital
computers are now more popular than analog computers.
! The cost of building systems with the same functionality is lower by using

digital computers.
" Digital computers can express more values than analog computers.
Digital signals are less fragile to noise and defective/low-quality components.
$ Digital data are easier to store.
A. 0
B. 1
C. 2
D. 3
E. 4

4

Recap: Why are digital computers more popular now?

• Each position represents a quantity; symbol in position means
how many of that quantity
• Decimal (base 10)

• Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
• More than 9: next position
• Each position is incremented by power of 10

• Binary (base 2)
• Two symbols: 0, 1
• More than 1: next position
• Each position is incremented by power of 2

5

Recap: The basic idea of a number system

100101102

123
× × ×

+ + =300
+20
+1
=321

20212223

1001
× × ××

+ + =1 23
+1 20
=1 8
+1 1
=9

+ ×
×

×
×

• Two types of logics
• The theory behind combinational logics
• The building blocks of combinational logics

6

Outline

Types of circuits

7

• Combinational logic
• The output is a pure function of its current inputs
• The output doesn’t change regardless how many times the logic is

triggered — Idempotent
• Sequential logic

• The output depends on current inputs, previous inputs, their history

8

Combinational v.s. sequential logic

• A Combinational logic is the implementation of a
Boolean Algebra function with only Boolean Variables as their
inputs

• A Sequential logic is the implementation of a
Finite-State Machine

11

Theory behind each

Boolean Algebra

12

• Boolean algebra — George Boole, 1815—1864
• Introduced binary variables
• Introduced the three fundamental logic operations: AND, OR, and NOT
• Extended to abstract algebra with set operations: intersect, union,

complement
• Switching algebra — Claude Shannon, 1916—2001

• Wrote his thesis demonstrating that electrical applications of Boolean
algebra could construct any logical numerical relationship

• Disposal of the abstract mathematical apparatus, casting switching
algebra as the two-element Boolean algebra.

• We now use switching algebra and boolean algebra interchangeably in EE,
but not doing that if you’re interacting with a mathematician.

13

Boolean algebra (disambiguation)

• {0, 1}: The only two possible values in inputs/outputs
• Basic operators

• AND (•) — a • b
• returns 1 only if both a and b are 1s
• otherwise returns 0

• OR (+) — a + b
• returns 1 if a or b is 1
• returns 0 if none of them are 1s

• NOT (‘) — a’
• returns 0 if a is 1
• returns 1 if a is 0

14

Basic Boolean Algebra Concepts

• A table sets out the functional values of logical expressions on
each of their functional arguments, that is, for each
combination of values taken by their logical variables

15

Truth tables

Input OutputA B
0 0 0
0 1 0
1 0 0
1 1 1

AND
Input OutputA B

0 0 0
0 1 1
1 0 1
1 1 1

OR
Input OutputA

0 1
0 1
1 0
1 0

NOT

• NAND — (a • b)’
• NOR — (a + b)’
• XOR — (a + b) • (a’ + b’) or ab’ + a’b
• XNOR — (a + b’) • (a’ + b) or ab + a’b’

18

Derived Boolean operators

Input OutputA B
0 0 1
0 1 1
1 0 1
1 1 0

NAND
Input OutputA B

0 0 1
0 1 0
1 0 0
1 1 0

NOR
Input OutputA B

0 0 0
0 1 1
1 0 1
1 1 0

XOR
Input OutputA B

0 0 1
0 1 0
1 0 0
1 1 1

XNOR

Express Boolean Operators/
Functions in Circuit “Gates”

19

Boolean operators their circuit “gate” symbols

20

AND

OR

NOT

NAND

NOR

XOR

NXOR
represents where we take a
compliment value on an input
represents where we take a
compliment value on an output

How to express y = e(ab+cd)

21

ye

AND

OR

NOT

NAND

NOR

XOR

NXOR

a
b
c
d

gates : 4
signal nets : 9
pins: 12

inputs : 5
outputs : 1

We can make everything NAND!

22

Original NAND

AND

OR

NOT

a
b

a
b

a

a
b

a

b

a

We can also make everything NOR!

23

Original NAND

AND

OR

NOT

a
b

a
b

a

a
b

a

b

a

How to express y = e(ab+cd)

24

ye

a
b
c
d

How to express y = e(ab+cd)

25

e

a
b
c
d y

How gates are implemented?

26

• nMOS
• Turns on when G = 1
• When it’s on, passes 0s, but not 1s
• Connect S to ground (0)
• Pulldown network

• pMOS
• Turns on when G = 0
• When it’s on, passes 1s, but not 0s
• Connect S to Vdd (1)
• Pullup network

27

Two type of CMOSs

G

S

D

G

S

D

NOT Gate (Inverter)

28

Input NMOS
(passes 0
when on

G=1)

PMOS
(passes 1
when on

G=0)
Output

A
0 OFF ON 1
1 ON OFF 0

GND

Vdd

OutputA

AND Gate

29GND

Vdd

Output

A B

A

B GND

Vdd

OR Gate

30GND

Vdd

Output

A

B

A B

GND

Vdd

NAND Gate

31GND

Input NMOS1
(passes 0 when

on G=1)

PMOS1
(passes 1 when

on G=0)

NMOS2
(passes 0 when

on G=1)

PMOS2
(passes 1 when

on G=0)
OutputA B

0 0 OFF ON OFF ON 1
0 1 OFF ON ON OFF 1
1 0 ON OFF OFF ON 1
1 1 ON OFF ON OFF 0

Vdd

A

A

B

B

Output

• NAND and NOR are “universal gates” — you can build any
circuit with everything NAND or NOR

• Simplifies the design as you only need one type of gate
• NAND only needs 4 transistors — gate delay is smaller than

OR/AND that needs 6 transistors
• NAND is slightly faster than NOR due to the physics nature

32

Why use NAND?

How about total number of transistors?

33

4 gates, each 6 transistors : total 24 transistors

9 gates, each 4 transistors : total 36 transistors

However …

34

e

a
b
c
d y

Inverter Inverter

Inverter Inverter

Now, only 5 gates and 4 transistors each — 20 transistors!

Can We Get the Boolean Equation
from a Truth Table?

37

• Complement: variable with a bar over it or a ‘ — A’, B’, C’
• Literal: variable or its complement — A, A’, B, B’, C, C’
• Implicant: product of literals — ABC, AC, BC
• Implicate: sum of literals — (A+B+C), (A+C), (B+C)
• Minterm: AND that includes all input variables — ABC, A’BC,

AB’C
• Maxterm: OR that includes all input variables — (A+B+C),

(A’+B+C), (A’+B’+C)

38

Definitions of Boolean Function Expressions

Canonical form — Sum of “Minterms”

39

Input OutputX Y
0 0 0
0 1 0
1 0 1
1 1 1

f(X,Y) = XY’ + XY

Input OutputA B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR
f(A,B) = A’B’ + AB

A minterm

Sum (OR) of “product” terms

Canonical form — Product of “Maxterms”

10

Input Output
X Y
0 0 0
0 1 0
1 0 1
1 1 1

f(X,Y) = (X+Y) (X + Y’)

Input Output
A B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

f(A,B) = (A+B’) (A’+B)

A “maxterm

Product of maxterms

Let’s design a circuit!

41

Binary addition

42

3 + 2 = 5
0 0 1 1

+ 0 0 1 0
10

1 carry

10

3 + 3 = 6
0 0 1 1

+ 0 0 1 1
01

1

10

1

half adder — adder
without a carry as an inputfull adder — adder with

a carry as an input
Input Output

A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Half adder

43

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Out = A’B + AB’
Cout = AB

A

B

Cout

Out

• They can be used interchangeably
• Depends on if the truth table has more 0s or 1s in the result
• Neither forms give you the “optimized” equation. By optimized,

we mean — minimize the number of operations

46

sum-of-products/product-of-sums

Can we simplify these functions?

47

Laws in Boolean Algebra

10

OR AND

Associative laws (a+b)+c=a+(b+c) (a·b) ·c=a·(b·c)

Commutative laws a+b=b+a a·b=b·a

Distributive laws a+(b·c)=(a+b)·(a+c) a·(b+c)=a·b+a·c

Identity laws a+0=a a·1=a

Complement laws a+a’=1 a·a’=0

Duality: We swap all operators between (+,.) and interchange all elements between (0,1). For a
theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the
statement is also true.

Some more tools

11

OR AND

DeMorgan’s Theorem (a + b)’ = a’b’ a’b’ = (a + b)’

Covering Theorem a(a+b) = a+ab = a ab + ab’ = (a+b)(a+b’) = a

Consensus Theorem ab+ac+b’c = ab+b’c (a+b)(a+c)(b’+c) = (a+b)(b’+c)

Uniting Theorem a (b + b’) = a (a+b)·(a+b’)=a

Shannon’s Expansion f(a,b,c) = a’b’ + bc + ab’c
f(a,b,c) = a f(1, b, c) + a’ f(0,b,c)

