Combinational Logic

Prof. Usagi

Recap: Logic Design?

Log IcC d eSig N https://www.britannica.com/technology/logic-design

COMPUTER TECHNOLOGY

WRITTEN BY: The Editors of Encyclopaedia Britannica
See Article History

Logic design, Basic organization of the circuitry of aII digital computers are
based on aftwo-valued logic system—1/0, on/off, yes/no (see binary code).JComputers perform

calculations using components called logic gates, which are made up of integrated circuits that

receive an input signal, process it, and change it into an output signal. The components of the
gates pass or block a clock pulse as it travels through them, and the output bits of the gates
control other gates or output the result. There are three basic kinds of logic gates, called “and,”

“or,” and “not.” By connecting logic gates together, a device can be constructed that can perform

basic arithmetic functions.

Logic circuits

| AND | EXCLUSIVE OR
inputs inputs
it output P output
inputs | | alb inputs | | alb

Recap: Analog v.s. digital signals

0.5?70.4?7 0.45?
0.445? 0.4445? or Anything within this wide
0.44444444444597? range is considered as “1"

Infinite possible values!

IEREE IR NBPY

sampling
cycle

Recap: Why are digital computers more popular now?

- Please identify how many of the following statements explains why digital
computers are now more popular than analog computers.

ﬁ The cost of building systems with the same functionality is lower by using
digital computers.

ﬂ Digital computers can express more values than analog computers.

@' Digital signals are less fragile to noise and defective/low-quality components.
ﬁ Digital data are easier to store.
A

B

C

Recap: The basic idea of a number system

- Each position represents a quantity; symbol in position means
how many of that quantity

- Decimal (base 10)

- Tensymbols: 0,1, 2,3,4,5,6,7,8,9 S+2+1
- More than 9: next position
- Each position is incremented by power of 10
- Binary (base 2)
- Two symbols: O, 1
1T+ 0+0+1

- More than 1: next position
- Each position is incremented by power of 2

Outline

- Two types of logics
- The theory behind combinational logics
- The building blocks of combinational logics

Types of circuits

Combinational v.s. sequential logic

- Combinational logic

- The output is a pure function of its current inputs

- The output doesn’t change regardless how many times the logic is
triggered — Idempotent

- Sequential logic
- The output depends on current inputs, previous inputs, their history

Theory behind each

- A Combinational logic is the implementation of a

Boolean Algebra function with only Boolean Variables as their
INputs

- A Sequential logic is the implementation of a
Finite-State Machine

1

Boolean Algebra

Boolean algebra (disambiguation)

- Boolean algebra — George Boole, 1815—1864
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT

- Extended to abstract algebra with set operations: intersect, union,
complement

- Switching algebra — Claude Shannon, 1916—2001

- Wrote his thesis demonstrating that electrical applications of Boolean
algebra could construct any logical numerical relationship

- Disposal of the abstract mathematical apparatus, casting switching
algebra as the two-element Boolean algebra.

- We now use switching algebra and boolean algebra interchangeably in EE,
but not doing that if you're interacting with a mathematician.

13

Basic Boolean Algebra Concepts

- {0, 1}: The only two possible values in inputs/outputs

- Basic operators
- AND (¢)—a-b
- returns 1 only if both aand b are 1s
- otherwise returns O
- OR(+)—a+b
- returns1ifaorbis
- returns O if none of them are 1s
- NOT (') — &'
- returns O ifais
- returns 1ifais O

14

Truth tables

- A table sets out the functional values of logical expressions on
each of their functional arguments, that is, for each
combination of values taken by their logical variables

AND OR NOT
A B A B A
O O 0 O O 0 O 1
O 1 0, O 1 1 O 1
1 O 0, 1 O 1 1 O
1 1 1 1 1 1 1 O

15

Derived Boolean operators

- NAND — (a + b)’

- NOR— (a + b)’

+ XOR—(a+b)e (@ +b)orab' +ab

+- XNOR—(a+Db’') « (&' + b) orab + a'b’

NAND NOR XOR XNOR
A B A B A B A B
O O 1 O O 1 O O 0 O O 1
O 1 1 O 1 0, O 1 1 O 1 0
1 O 1 1 O 0 1 O 1 1 O 0
1 1 o 1 1 0 1 1 0 1 1 1

18

Express Boolean Operators/
Functions in Circuit "Gates”

Boolean operators their circuit “gate” symbols

VOC

~ represents where we take a
compliment value on an input

~ represents where we take a
compliment value on an output

20

How to express y = e(ab+cd)

#inputs:5

outputs : 1

gates: 4

signalnets : 9
pins: 12

We can make everything NAND!

Original

We can also make everything NOR!
Original NAND

o 9

O

How to express y = e(ab+cd)

D

How to express y = e(ab+cd)

D

D

D

'OC

D

D

D

How gates are implemented?

Two type of CMOSs
S
- NMOS

- Turnsonwhen G =1 Ce
- When it's on, passes 0s, but not 1s

- Connect S to ground (O)

- Pulldown network

- pPMOS S
- Turnsonwhen G =0

- When it's on, passes 1s, but not Os
- Connect Sto Vdd (1)

- Pullup network

G |

JDe

27

NOT Gate (Invertvedr)

|nput NMOS PMOS

(passes 0 (passes1 Output
whenon whenon

A G=1) G=0)
0O | OFF [ON 1
1 ON | OFF | ©

GND

28

Output

Vad

\ AND Gate
Vda
A ‘L _:‘ B |
o
® ¢ —
— ®
)
| I
L
B " GND

Output

\Vdd
’ OR Gate
)
— Vdd
|_}_
I
® Output
|_
B I

GND
GND 30

Vad

NAND Gate

31

Output

0|O0| OFF | ON | OFF | ON 1
O|1| OFF | ON | ON | OFF L
1/0| ON | OFF | OFF | ON 1
1/17] ON | OFF | ON | OFF | ©

Why use NAND?

- NAND and NOR are "universal gates” — you can build any
circuit with everything NAND or NOR

- Simplifies the design as you only need one type of gate

- NAND only needs 4 transistors — gate delay is smaller than
OR/AND that needs 6 transistors

- NAND is slightly faster than NOR due to the physics nature

32

How about total number of transistors?

a
®_ 4 gates, each 6 transistors : total 24 transistors

: B

:,:D-{D)ID“ 9 gates, each 4 transistors : total 36 transistors
ZD'D D D
D O v) N

33

However ...

Now, only 5 gates and 4 transistors each — 20 transistors!

d
D—
e

N

34

D

Can We Get the Boolean Equation
from a Truth Table?

Definitions of Boolean Function Expressions

- Complement: variable with a baroveritora’'— A, B, C’

- Literal: variable or its complement— A, A, B, B’ C, C’

- Implicant: product of literals — ABC, AC, BC

- Implicate: sum of literals — (A+B+C), (A+C), (B+C)

- Minterm: AND that includes all input variables — ABC, A'BC,
AB'C

- Maxterm: OR that includes all input variables — (A+B+C),
(A'+B+C), (A'+B'+C)

38

Canonical form — Sum of "Minterms"”

Input
L Output
X

v A minterm
O O 0
0 1 0 f(X.Y) = XY' + XY «—Sum (OR) of "product” terms
XNOR

f(A,B) = A'B' + AB

Canonical form — Product of "Maxterms”

“"maxterm

f(X.,Y) =(X+‘4) X + Y') «— Product of maxterms

Let’s design a circuit!

Binary addition

3+2=5 3+3=06
1. carry
0011
+0010
0101
full adder — adqler with
ololoflo] o acarry as an input Input Output
O]l 110 1 0) A B Out Cout
11o0flofl 1] o olo|lo]| o
111]lof 0] 1 S =
8 ? : (1) ‘1’ 1o 1] o
1] 0 0 | 1 1j1/0] 1
1] 1 1| 1 0

Half adder

Input Output Out= A'B + AB'
B Out Cout Cout= AB
A+—
Out
B+

Cout

43

sum-of-products/product-of-sums

- They can be used interchangeably
- Depends on if the truth table has more Os or 1s in the result

- Neither forms give you the “optimized” equation. By optimized,
we mean — minimize the number of operations

46

Can we simplify these functions?

Laws in Boolean Algebra

Associative laws (a+b)+c=a+(b+c) (a-b) -c=a-(b-c)
Commutative laws a+b=b+a a-b=b-a
Distributive laws a+(b-c)=(a+b)-(a+c) a-(b+c)=a-b+a-c
Identity laws a+0=a a-1=a

Complement laws a+a' =1 a-a'=0

Duality: We swap all operators between (+,.) and interchange all elements between (0,1). For a
theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the
statement is also true.

10

Some more tools

DeMorgan's Theorem (a+b) =ab ab' =(@+b)
Covering Theorem a(a+b) = a+ab =3 ab + ab' = (a+b)(a+b') = a

Consensus Theorem ab+ac+b'c = ab+b'c (a+b)(a+c)(b'+c) = (a+b)(b'+c)

Uniting Theorem alb+b)=a (a+b)-(a+b')=a

f(a,b,c) =a'b’ + bc + ab’c
f(a,b,c) =af(1,b,c)+a f(O,b,c)

Shannon's Expansion

1

