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Recap: Logic Design?
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https://www.britannica.com/technology/logic-design
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Recap: Analog v.s. digital signals
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Infinite possible values!1

0

0.5? 0.4? 0.45? 
0.445? 0.4445? or 

0.4444444444459?
Anything within this wide 
range is considered as “1”



• Please identify how many of the following statements explains  why digital 
computers are now more popular than analog computers. 
! The cost of building systems with the same functionality is lower by using 

digital computers. 
" Digital computers can express more values than analog computers. 
# Digital signals are less fragile to noise and defective/low-quality components. 
$ Digital data are easier to store. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Recap: Why are digital computers more popular now?



• Each position represents a quantity; symbol in position means 
how many of that quantity 
• Decimal (base 10) 

• Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
• More than 9: next position 
• Each position is incremented by power of 10 

• Binary (base 2) 
• Two symbols: 0, 1 
• More than 1: next position 
• Each position is incremented by power of 2
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Recap: The basic idea of a number system
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• Two types of logics 
• The theory behind combinational logics 
• The building blocks of combinational logics
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Outline



Types of circuits
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• Combinational logic 
• The output is a pure function of its current inputs 
• The output doesn’t change regardless how many times the logic is 

triggered — Idempotent 
• Sequential logic 

• The output depends on current inputs, previous inputs, their history
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Combinational v.s. sequential logic



• A Combinational logic is the implementation of a
Boolean Algebra function with only Boolean Variables as their 
inputs  

• A Sequential logic is the implementation of a
Finite-State Machine
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Theory behind each



Boolean Algebra
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• Boolean algebra — George Boole, 1815—1864 
• Introduced binary variables 
• Introduced the three fundamental logic operations: AND, OR, and NOT 
• Extended to abstract algebra with set operations: intersect, union, 

complement 
• Switching algebra — Claude Shannon, 1916—2001 

• Wrote his thesis demonstrating that electrical applications of Boolean 
algebra could construct any logical numerical relationship 

• Disposal of the abstract mathematical apparatus, casting switching 
algebra as the two-element Boolean algebra. 

• We now use switching algebra and boolean algebra interchangeably in EE, 
but not doing that if you’re interacting with a mathematician.
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Boolean algebra (disambiguation)



• {0, 1}: The only two possible values in inputs/outputs 
• Basic operators 

• AND (•) — a • b 
• returns 1 only if both a and b are 1s 
• otherwise returns 0 

• OR (+) — a + b 
• returns 1 if a or b is 1  
• returns 0 if none of them are 1s 

• NOT (‘) — a’ 
• returns 0 if a is 1 
• returns 1 if a is 0
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Basic Boolean Algebra Concepts



• A table sets out the functional values of logical expressions on 
each of their functional arguments, that is, for each 
combination of values taken by their logical variables
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Truth tables

Input OutputA B
0 0 0
0 1 0
1 0 0
1 1 1

AND
Input OutputA B

0 0 0
0 1 1
1 0 1
1 1 1

OR
Input OutputA

0 1
0 1
1 0
1 0

NOT



• NAND —  (a • b)’ 
• NOR — (a + b)’ 
• XOR — (a + b) • (a’ + b’) or ab’ + a’b 
• XNOR — (a + b’) • (a’ + b) or ab + a’b’
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Derived Boolean operators

Input OutputA B
0 0 1
0 1 1
1 0 1
1 1 0

NAND
Input OutputA B

0 0 1
0 1 0
1 0 0
1 1 0

NOR
Input OutputA B

0 0 0
0 1 1
1 0 1
1 1 0

XOR
Input OutputA B

0 0 1
0 1 0
1 0 0
1 1 1

XNOR



Express Boolean Operators/
Functions in Circuit “Gates”
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Boolean operators their circuit “gate” symbols 
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AND

OR

NOT

NAND

NOR

XOR

NXOR
represents where we take a 
compliment value on an input 
represents where we take a 
compliment value on an output 



How to express y = e(ab+cd)
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ye

AND

OR

NOT

NAND

NOR

XOR

NXOR

a
b
c
d

# gates : 4
# signal nets : 9
# pins: 12

# inputs : 5
# outputs : 1



We can make everything NAND!

22

Original NAND

AND

OR

NOT

a
b

a
b

a

a
b

a

b

a



We can also make everything NOR!
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Original NAND

AND

OR

NOT

a
b

a
b

a

a
b

a

b

a



How to express y = e(ab+cd)
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ye

a
b
c
d



How to express y = e(ab+cd)
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e

a
b
c
d y



How gates are implemented?
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• nMOS 
• Turns on when G = 1 
• When it’s on, passes 0s, but not 1s 
• Connect S to ground (0) 
• Pulldown network 

• pMOS 
• Turns on when G = 0 
• When it’s on, passes 1s, but not 0s 
• Connect S to Vdd (1) 
• Pullup network
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Two type of CMOSs

G

S

D

G

S

D



NOT Gate (Inverter)
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Input NMOS
(passes 0 
when on 

G=1)

PMOS
(passes 1 
when on 

G=0)
Output

A
0 OFF ON 1
1 ON OFF 0

GND

Vdd

OutputA



AND Gate

29GND

Vdd

Output

A B

A

B GND

Vdd



OR Gate

30GND

Vdd

Output

A

B

A B

GND

Vdd



NAND Gate

31GND

Input NMOS1
(passes 0 when 

on G=1)

PMOS1
(passes 1 when 

on G=0)

NMOS2
(passes 0 when 

on G=1)

PMOS2
(passes 1 when 

on G=0)
OutputA B

0 0 OFF ON OFF ON 1
0 1 OFF ON ON OFF 1
1 0 ON OFF OFF ON 1
1 1 ON OFF ON OFF 0

Vdd

A

A

B

B

Output



• NAND and NOR are “universal gates” — you can build any 
circuit with everything NAND or NOR 

• Simplifies the design as you only need one type of gate 
• NAND only needs 4 transistors — gate delay is smaller than 

OR/AND that needs 6 transistors 
• NAND is slightly faster than NOR due to the physics nature
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Why use NAND?



How about total number of transistors?

33

4 gates, each 6 transistors : total 24 transistors

9 gates, each 4 transistors : total 36 transistors



However …
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e

a
b
c
d y

Inverter Inverter

Inverter Inverter

Now, only 5 gates and 4 transistors each — 20 transistors!



Can We Get the Boolean Equation 
from a Truth Table? 
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• Complement: variable with a bar over it or a ‘ — A’, B’, C’ 
• Literal: variable or its complement — A, A’, B, B’, C, C’ 
• Implicant: product of literals — ABC, AC, BC 
• Implicate: sum of literals — (A+B+C), (A+C), (B+C) 
• Minterm: AND that includes all input variables — ABC, A’BC, 

AB’C 
• Maxterm: OR that includes all input variables — (A+B+C), 

(A’+B+C), (A’+B’+C)
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Definitions of Boolean Function Expressions



Canonical form — Sum of “Minterms”
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Input OutputX Y
0 0 0
0 1 0
1 0 1
1 1 1

f(X,Y) = XY’ + XY 

Input OutputA B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR
f(A,B) = A’B’ + AB 

A minterm

Sum (OR) of “product” terms



Canonical form — Product of “Maxterms”
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Input Output
X Y
0 0 0
0 1 0
1 0 1
1 1 1

f(X,Y) = (X+Y) (X + Y’)

Input Output
A B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

f(A,B) = (A+B’) (A’+B)

A “maxterm

Product of maxterms



Let’s design a circuit!
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Binary addition
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3 + 2 = 5
0 0 1 1

+ 0 0 1 0
10

1 carry

10

3 + 3 = 6
0 0 1 1

+ 0 0 1 1
01

1

10

1

half adder — adder 
without a carry as an inputfull adder — adder with 

a carry as an input
Input Output

A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1



Half adder

43

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Out = A’B + AB’
Cout = AB

A

B

Cout

Out



• They can be used interchangeably 
• Depends on if the truth table has more 0s or 1s in the result 
• Neither forms give you the “optimized” equation. By optimized, 

we mean — minimize the number of operations
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sum-of-products/product-of-sums



Can we simplify these functions?
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Laws in Boolean Algebra
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OR AND

Associative laws (a+b)+c=a+(b+c) (a·b) ·c=a·(b·c)

Commutative laws a+b=b+a a·b=b·a

Distributive laws a+(b·c)=(a+b)·(a+c) a·(b+c)=a·b+a·c

Identity laws a+0=a a·1=a

Complement laws a+a’=1 a·a’=0

Duality: We swap all operators between (+,.) and interchange all elements between (0,1). For a 
theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the 
statement is also true.



Some more tools
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OR AND

DeMorgan’s Theorem (a + b)’ = a’b’ a’b’ = (a + b)’

Covering Theorem a(a+b) = a+ab = a ab + ab’ = (a+b)(a+b’) = a

Consensus Theorem ab+ac+b’c = ab+b’c (a+b)(a+c)(b’+c) = (a+b)(b’+c)

Uniting Theorem a (b + b’) = a (a+b)·(a+b’)=a

Shannon’s Expansion f(a,b,c) = a’b’ + bc + ab’c 
f(a,b,c) = a f(1, b, c) + a’ f(0,b,c)


