Karnaugh maps

Prof. Usagi

How many "OR"s?

 For the truth table shown on the right, what's the minimum number of "OR" gates we need?

```
A. 1 F(A,B,C) =

B. 2 A'B'C'+ A'B'C+ A'BC' + A'BC' + AB'C' + ABC'

C. 3 = A'B'(C'+C)+ A'B(C'+C)+ AC'(B'+B)

D. 4 = A'B' + A'B + AC'

E. 5 = A' + AC' = A'(1+C')+AC' Distributive Laws

= A' + A'C' + AC'

How Can+Aknow this!!!

= A' + C'
```

	Input	Output		
Α	В	C	Output	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

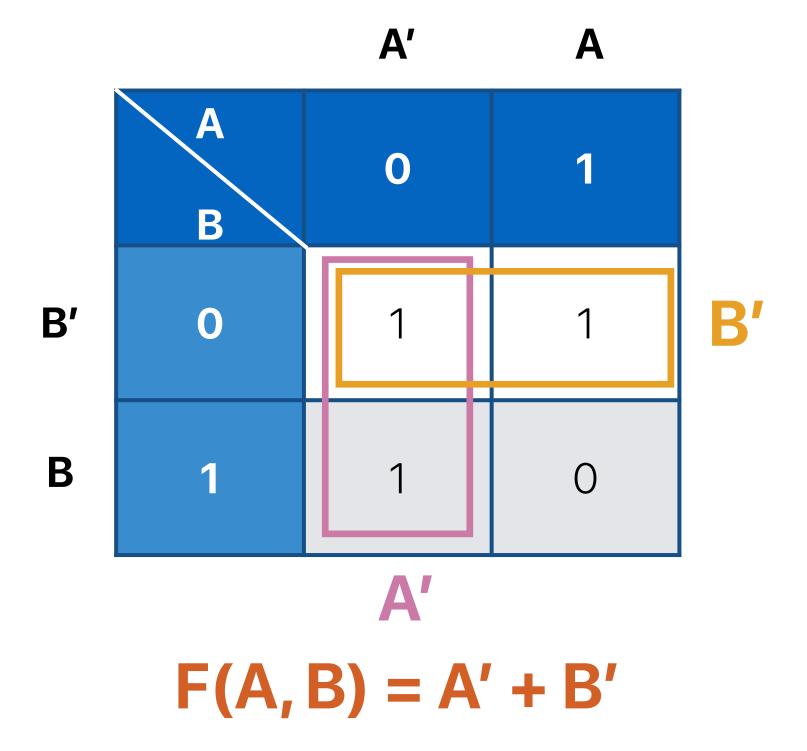
Karnaugh maps

Karnaugh maps

- Alternative to truth-tables to help visualize adjacencies
- Guide to applying the uniting theorem
- ON-set elements with only one variable changing value are adjacent unlike the linear truth-table

2-variable K-map example

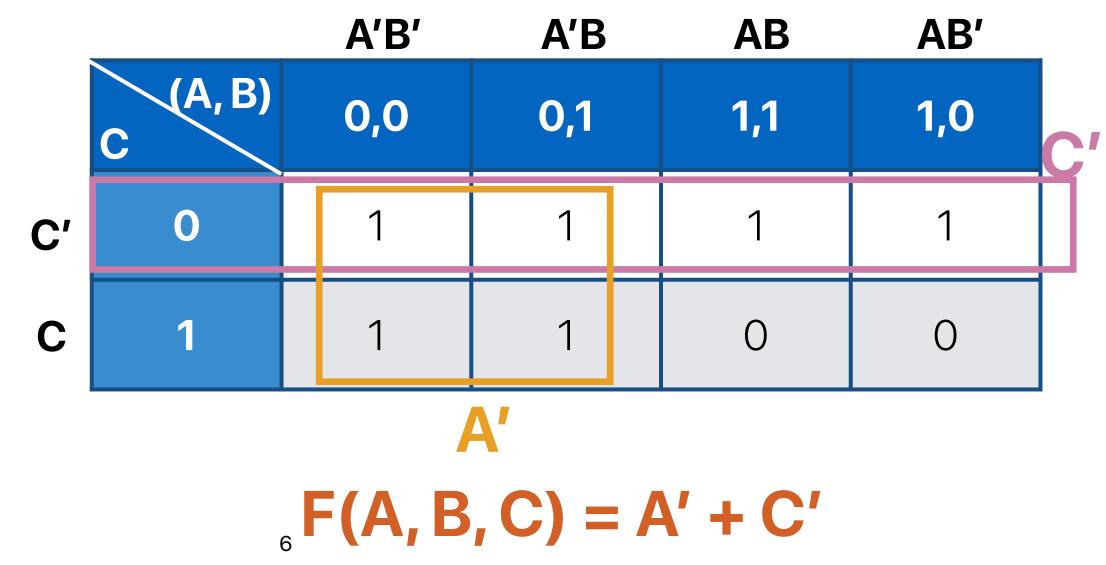
Inp	Output	
Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0



3-variable K-map?

- Reduce to 2-variable K-map 1 dimension will represent two variables
- Adjacent points should differ by only 1 bit
 - So we only change one variable in the neighboring column
 - 00, 01, 11, 10 such numbering scheme is so-called **Gray-code**

	Input		Output
Α	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0



4-variable K-map

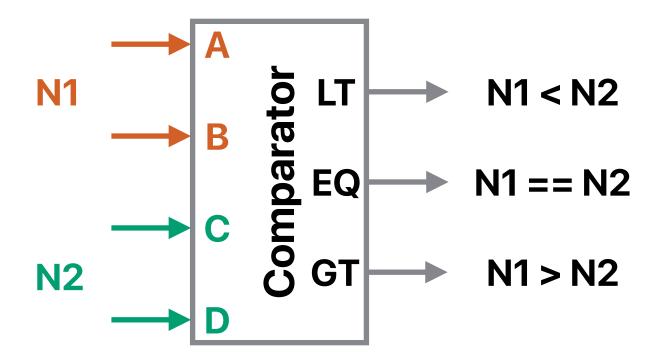
- Reduce to 2-variable K-map both dimensions will represent two variables
- Adjacent points should differ by only 1 bit
 - So we only change one variable in the neighboring column
 - Use Gray-coding 00, 01, 11, 10

		A'B'	A'B	AB	AB'			
	\'B'(00	01	11	10			
C'D'	00	1	0	0	0			
C'D	01	1	0	0	0			
CD	11	0	0	0	0			
CD'	10	1	0	0	1			
B'CD'								

F(A, B, C) = A'B'C' + B'CD'

Design Example: 2bit comparator

Two-bit comparator



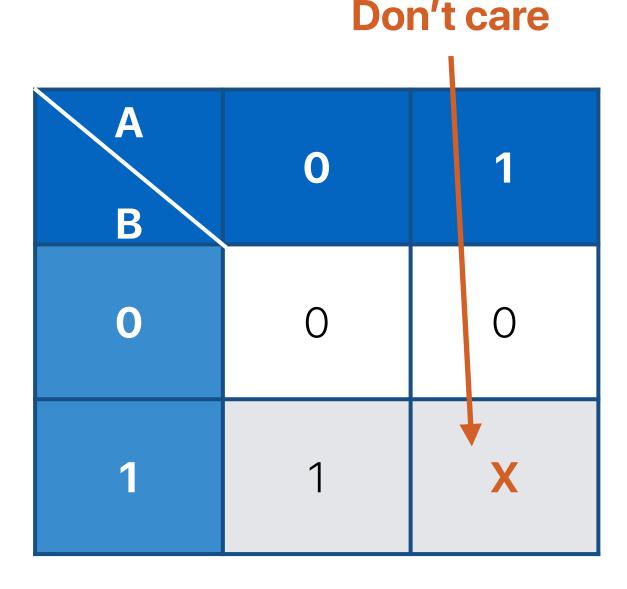
We'll need a 4-variable Karnaugh map for each of the 3 output functions

	Inp	out		0	utpu	ut
A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Don't cares!

Incompletely Specified Functions

- Situations where the output of a function can be either 0 or 1 for a particular combination of inputs
- This is specified by a don't care in the truth table
- This happens when
 - The input does not occur. e.g. Decimal numbers 0... 9 use 4 bits, so (1,1,1,1) does not occur.
 - The input may happen but we don't care about the output. E.g. The output driving a seven segment display – we don't care about illegal inputs (greater than 9)



K-Map with "Don't Care"s

You can treat "X" as either 0 or 1

— depending on which is more advantageous

If we treat the "X" as 0?

F(A,B,C)=A'B'+A'C+AC'

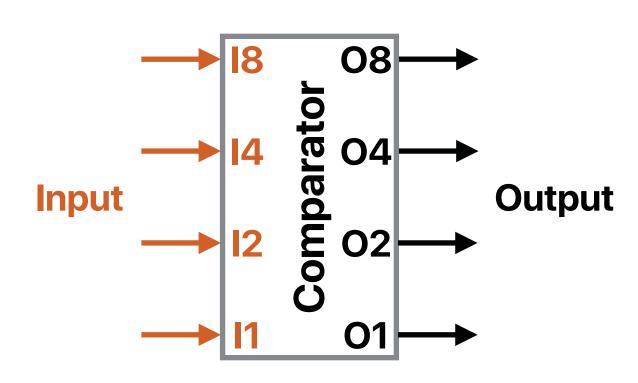
If we treat the "X" as 1?

$$F(A,B,C) = C' + A'C$$

Design examples — BCD + 1

BCD+1 — Binary coded decimal + 1

- $\cdot 0x0 1$
- 0x1 2
- 0x2 3
- 0x3 4
- $\cdot 0x4 5$
- $\cdot 0x5 6$
- $\cdot 0x6 7$
- $\cdot 0x7 8$
- $\cdot 0x8 9$
- $\cdot 0x9 0$
- OxA OxF Don't care



Input				Out	tput		
18	14	12	11	08	04	02	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

K-maps

	Inp	out		Output			
18	14	12	11	08	04	02	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

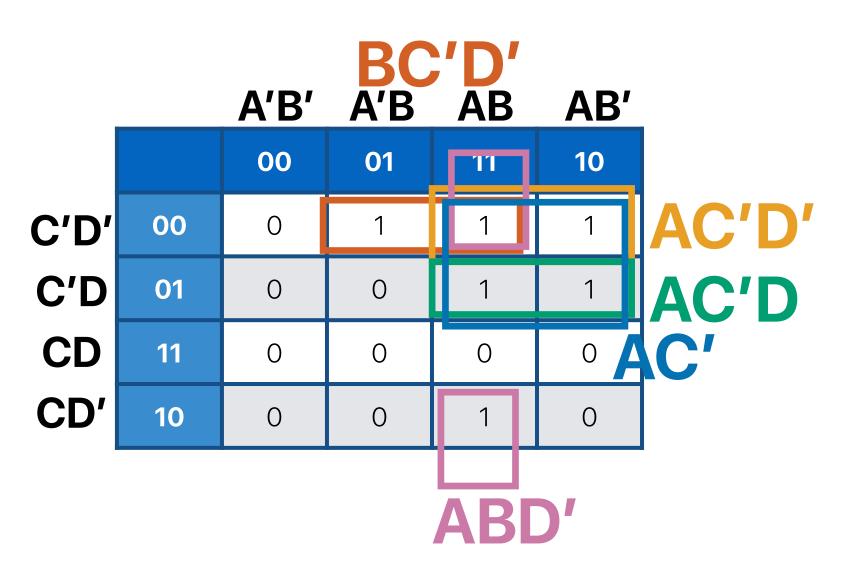
08		18′14′	18′14	1814	1814′
		00	01	11	10
12′11′	00	0	0	X	1
12′11	01	0	0	X	0
1211	11	0	1	X	Χ
1211′	10	0	0	X	X

02		18′14′	18′14	1814	1814′
		00	01	11	10
12′11′	00	0	0	X	0
12′11	01	1	1	X	0
1211	11	0	0	X	Χ
1211′	10	1	1	X	X

04		18′14'	18'14	1814	1814′
		00	01	11	10
I2′I1′	00	0	1	X	0
I2′I1	01	0	1	X	0
1211	11	1	0	X	X
1211′	10	0	1	X	X

01		18′14′	18′14	1814	1814′
		00	01	11	10
12′11′	00	1	1	X	1
12′11	01	0	0	X	0
1211	11	0	0	X	Χ
1211′	10	1	1	X	X

Examples to illustrate terms



5 prime implicants: BC'D', AC'D', AC'D, AC', ABD'

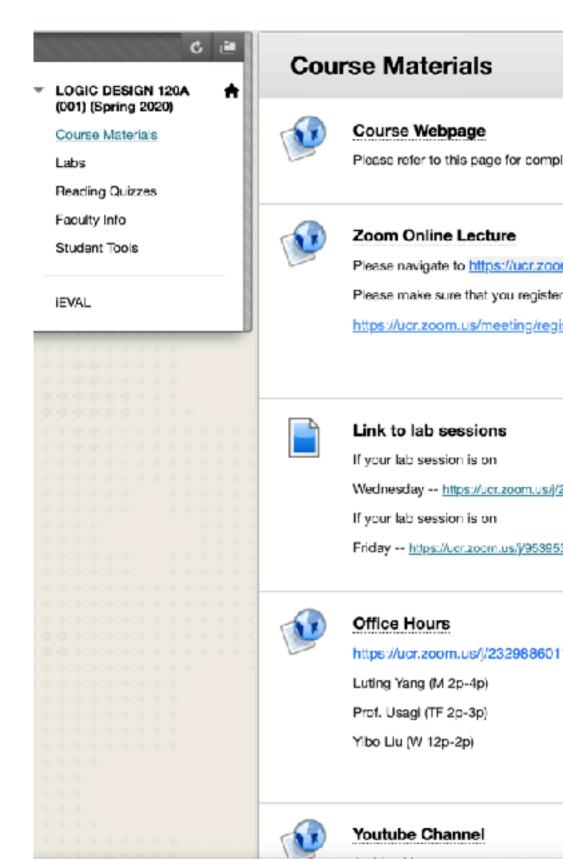
minimum cover: BC'D' + AC' + ABD'

Quine-McCluskey Algorithm

- Step 1: choose an element of the ON-set
- Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - onsider top/bottom row, left/right column, and corner adjacencies
 - this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
- Step 3: revisit the 1s in the K-map
 - if covered by single prime implicant, it is essential, and participates in final cover
 - 1s covered by essential prime implicant do not need to be revisited
- Step 4: if there remain 1s not covered by essential prime implicants
 - select the smallest number of prime implicants that cover the remaining 1s

Announcement

- Please also register yourself to the following two
 - Please register to your corresponding lab sessions
 - The link is under iLearn > course materials
 - Please register to office hours
 - The link is also under iLearn > course materials
- Reading quiz 2 will be up tonight
 - Under iLearn > reading quizzes
- Lab 1 due 4/7
 - Submit through iLearn > Labs



Electrical Computer Science Engineering 120A

