Verilog

Prof. Usagi

Turn a design into Verilog

Verilog

- Verilog is a Hardware Description Language (HDL)
- Used to describe & model the operation of digital circuits.

- Specify simulation procedure for the circuit and check its response —
simulation requires a logic simulator.

- Synthesis: transformation of the HDL description into a physical
Implementation (transistors, gates)
- When a human does this, it is called logic design.
- When a machine does this, it is called synthesis.

- In this class, we use Verilog to implement and verify your processor.
- C/Java like syntax

Data types in Verilog

- Bit vector is the only data type in Verilog

- A bit can be one of the following

- O:logic zero

- 1. logic one

- X:unknown logic value, don't care

- Z: high impedance, floating

- Bit vectors expressed in multiple ways

- A-bit binary: 4'b11_10 (_is just for readability)
.+ 16-bithex: 16 'h0Q34T

.+ 32-bitdecimal: 32'd270

Arithmetic

Operators

Bitwise

Relational

%

%k

addition
substraction
multiplication

division

Don'tuses

power

Concatenation

Conditional

! not

& and

<<

>>

{} (e.9.,{1b"110'O} is 2b™"10) {{}} (e.9.,{4{1b'0O}} is 40°0)

condition ? value_if true : value if false

not
and
or
XOr
XNor
shift left

shift right

equal (doesn't work if there is X, z)

greater than
less than
greater or equal

less or equal

not equal

really equal

Wire and Reg

- wire is used to denote a hardware net — “continuously assigned” values and
do not store

- single wire
wire my_wire;
- array of wires
wire[/:0] my_wire;
- reg is used for procedural assignments — values that store information until
the next value assignment is made.

- again, can either have a single reg or an array
reg[/:0] result; // 8-bit reg

- reg is not necessarily a hardware register
. you may consider it as a variable in C

Revisit the 4-bit adder

Half adder

Input Output Out= A'B + AB'
B Out Cout Cout= AB

module HA(1nput a,
input b,

output cout, Outout .
output out); |~HPHERORE

assign out = (~a & b)|(a & ~b);
assign cout a&b;
endmodule

Input ports

Full adder

Out = A'BCin' + AB'Cin’' + A'B'Cin + ABCin
Cout= ABCin' + A'BCin + AB'Cin + ABCin

Input Output
A B Cin Out Cout

01010 0 0 module FA(1nput a,
O 1 O 1 0, input b,
1100111 0 input cin,
1 1 0 0 1 output cout,
- output out);
0 | O 1 0 assign out = (~a&b&~cin) | (a&~b&~cin) | (~a&~b&cin) | (a&b&cin);
O | 1 0] 1 assign cout = (a&b&~cin)|(~a&b&cin) | (a&~b&cin) | (a&b&cin);;
110 0 1 endmodule
11 1 1 1

The Adder

module FA(input a,

A3B3 A2B- A1B1 AoBo input b,

input cin,

output cout,

output out);
assign out = (~a&b&~cin) | (a&~b&~cin) | (~a&~b&cin) | (a&b&cin);
Half assign cout = (a&b&~cin) | (~a&b&cin) | (a&~b&cin) | (a&b&cin);;

Adder endmodule

module HA! input a,
input b,
output ccut,
00 output ott);
assign-out = (~a & b)|(a & ~b);
assign cout = a&b;
enpdmoduleé

module adder(input[3:0] A,
input[3:01 B,
output(3:0] O,
output cout): clearer and less buggy code.

wire [2:0] carries:

HA haO(.a(Al
FA fal(.a(Al
FA fa2(.a(Al
FA fa3(.a(Al

endmodule

WNPEPOS

1)

Connecting ports by name vyields

, .b.B[O]), Lout(O[@]), |.cout(carries[0O]));

, .b(B[1]), .cin(carries[©@]), .out(O[1]), .cout(carries[1]));
, .b(B[2]), .cin(carries[1]), .out(0O[2]1), .cout(carries[2]));
, .b(B[3]), .cin(carries[2]), .out(O[2]), .cout(cout);

10

Always block — combinational logic

- Executes when the condition in the sensitivity list occurs

module FA(1nput a,

input b,

input cin,

output cout,

output out);
always@(a or b or cin)
begin // the following block changes outputs when a, b or cin changes
assign out = (~a&b&~cin) | (a&~b&~cin) | (~a&~b&cin) | (a&b&cin);
assign cout = (a&b&~cin)|(~a&b&cin) | (a&~b&cin) | (a&b&cin);;
end
endmodule

1

Always block — sequential logic
- Executes when the condition in the sensitivity list occurs

always@(posedge clk)// the following block only triggered by a positive clock
begin

end

12

Blocking and non-blocking

- Inside an always block, = is a blocking assignment

- assignment happens immediately and affect the subsequent statements in the always block
- <=Is a hon-blocking assignment

- All the assignments happens at the end of the block
- Assignment rules:

- The left hand side, LHS, must be a reg.

- The right hand side, RHS, may be a wire, a reg, a constant, or expressions with operators using one or more
wires, regs, and constants.

Initially,a=2,b=3

reg al3:01; reg al3:01];
reg b[3:0]; reg b[3:01];
reg c[3:01; reg cl[3:01];
always @(posedge clock) always @(x*)
begin begin

a <= b: a = b;

c <= a; C = a,

end end

Afterwards: a = 3 and c = 2 Afterwards: a = 3 and ¢ = 3

13

“Always blocks" permit more advanced sequential idioms

module mux4(input a,b,c,d,
input [1:0] sel,
output out);

reg out,
always ©(*x)
begin

1f (sel == 2!

out = a;
else 1f (sel

out = b
else 1f (sel

out = cC
else 1f (sel

out = d
else

out = 1'bx;
end

endmodule

S —

do

2'dl)
2'd2)

2'd3)

module mux4(input a,b,c,d,
input [1:0] sel,
output out);

reg out;
always @(*)
begin
case (sel)
2'd0 : out = a;
2'dl : out = b;
2'd2 : out = c;
2'd3 : out = d;
default : out = 1'bx;
endcase
end
endmodule
0 — B —

14 Courtesy of Arvind http://csg.csail.mit.edu/6.375/

Initial block

- Executes only once in beginning of the code
1nitial
begin

end

15

Testing the adder!

“timescale 1ns/1ns // Add this to the top of your file to set time scale
module testbench();

reg [3:0] A, B;

reg CO;

wire [3:0] S;

wire C&;

adder uut (.B(B), .A(A), .sum(S), .cout(C4)); // instantiate adder

initial
begin
4'd0; B = 4'do; CO = 1'bO;
#5@ A = 4'd3; B = 4'd4; // walt 50 ns before next assignment
#50 A = 4'b0001; B = 4'b001O; // don't use #n outside of testbenches

end

endmodule

16

Parameterize your module

module adder #(parameter WIDTH=32) (
input[WIDTH-1:0]1 A,
input[WIDTH-1:0] B,
output[WIDTH-1:0] O,
output cout):

endmodule

17

Coding guides

- When modeling sequential logic, use nonblocking assignments.
- When modeling latches, use nonblocking assignments.

- When modeling combinational logic with an always block, use blocking
assignments.

- When modeling both sequential and combinational logic within the same
always block, use nonblocking assignments.

- Do not mix blocking and nonblocking assignments in the same always block.

- Do not make assignments to the same variable from more than one always
block.

. Use $strobe to display values that have been assigned using nonblocking
assignments.

- Do not make assignments using #0 delays.

http://www.sunburst-design.com/papers/CummingsSNUG2000SJ NBA.pdf
18

http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA.pdf

