
Midterm Review
Prof. Usagi

Recap: Logic Design?

2

https://www.britannica.com/technology/logic-design

sampling
cycle

Analog v.s. digital signals

3

Infinite possible values!
1

0.5? 0.4? 0.45?
0.445? 0.4445? or

0.4444444444459?

0

sampling
cycle

Analog v.s. digital signals

4

1

0

0.33

0.66

Recap: What’s 0.0004 in IEEE 754?

5

after x2 > 1?
0.0004 0.0008 0
0.0008 0.0016 0
0.0016 0.0032 0
0.0032 0.0064 0
0.0064 0.0128 0
0.0128 0.0256 0
0.0256 0.0512 0
0.0512 0.1024 0
0.1024 0.2048 0
0.2048 0.4096 0
0.4096 0.8192 0
0.8192 1.6384 1
0.6384 1.2768 1
0.2768 0.5536 0
0.5536 1.1072 1
0.1072 0.2144 0
0.2144 0.4288 0
0.4288 0.8576 0
0.8576 1.7152 1
0.7152 1.4304 1

after x2 > 1?
0.4304 0.8608 0
0.8608 1.7216 1
0.7216 1.4432 1
0.4432 0.8864 0
0.8864 1.7728 1
0.7728 1.5456 1
0.5456 1.0912 1
0.0912 0.1824 0
0.1824 0.3648 0
0.3648 0.7296 0
0.7296 1.4592 1
0.4592 0.9184 0
0.9184 1.8368 1
0.8368 1.6736 1
0.6736 1.3472 1
0.3472 0.6944 0
0.6944 1.3888 1
0.3888 0.7776 0
0.7776 1.5552 1
0.5552 1.1104 1

12

0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1

after x2 > 1?
0.1104 0.2208 0
0.2208 0.4416 0
0.4416 0.8832 0
0.8832 1.7664 1
0.7664 1.5328 1
0.5328 1.0656 1
0.0656 0.1312 0
0.1312 0.2624 0
0.2624 0.5248 0
0.5248 1.0496 1
0.0496 0.0992 0
0.0992 0.1984 0
0.1984 0.3968 0
0.3968 0.7936 0
0.7936 1.5872 1
0.5872 1.1744 1
0.1744 0.3488 0
0.3488 0.6976 0
0.6976 1.3952 1
0.3952 0.7904 0

You can never get 0.0004 again if you
convert signal/store data in IEEE 754 float

• Please identify how many of the following statements explains why digital
computers are now more popular than analog computers.
① The cost of building systems with the same functionality is lower by using

digital computers.
② Digital computers can express more values than analog computers.
③ Digital signals are less fragile to noise and defective/low-quality components.
④ Digital data are easier to store.
A. 0
B. 1
C. 2
D. 3
E. 4

6

Recap: Why are digital computers more popular now?

Types of digital circuits

7

• Combinational logic
• The output is a pure function of its current inputs
• The output doesn’t change regardless how many times the logic is

triggered — Idempotent
• Sequential logic

• The output depends on current inputs, previous inputs, their history

8

Combinational v.s. sequential logic

• A Combinational logic is the implementation of a
Boolean Algebra function with only Boolean Variables as their
inputs

• A Sequential logic is the implementation of a
Finite-State Machine

9

Theory behind each

• {0, 1}: The only two possible values in inputs/outputs
• Basic operators

• AND (•) — a • b
• returns 1 only if both a and b are 1s
• otherwise returns 0

• OR (+) — a + b
• returns 1 if a or b is 1
• returns 0 if none of them are 1s

• NOT (‘) — a’
• returns 0 if a is 1
• returns 1 if a is 0

10

Basic Boolean Algebra Concepts

• A table sets out the functional values of logical expressions on
each of their functional arguments, that is, for each
combination of values taken by their logical variables

11

Truth tables

Input Output
A B
0 0 0
0 1 0
1 0 0
1 1 1

AND
Input Output

A B
0 0 0
0 1 1
1 0 1
1 1 1

OR
Input Output

A
0 1
0 1
1 0
1 0

NOT

• NAND — (a • b)’
• NOR — (a + b)’
• XOR — (a + b) • (a’ + b’) or ab’ + a’b
• XNOR — (a + b’) • (a’ + b) or ab + a’b’

12

Derived Boolean operators

Input Output
A B
0 0 1
0 1 1
1 0 1
1 1 0

NAND
Input Output

A B
0 0 1
0 1 0
1 0 0
1 1 0

NOR
Input Output

A B
0 0 0
0 1 1
1 0 1
1 1 0

XOR
Input Output

A B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

Express Boolean Operators/
Functions in Circuit “Gates”

13

Boolean operators their circuit “gate” symbols

14

AND

OR

NOT

NAND

NOR

XOR

NXOR
represents where we take a
compliment value on an input
represents where we take a
compliment value on an output

How to express y = e(ab+cd)

15

y
e

AND

OR

NOT

NAND

NOR

XOR

NXOR

a
b

c
d

gates : 4
signal nets : 9
pins: 12

inputs : 5
outputs : 1

We can make everything NAND!

16

Original NAND

AND

OR

NOT

a

b

a

b

a

a

b

a

b

a

We can also make everything NOR!

17

Original NAND

AND

OR

NOT

a

b

a

b

a

a

b

a

b

a

How to express y = e(ab+cd)

18

y
e

a
b

c
d

How to express y = e(ab+cd)

19

e

a
b

c
d y

How gates are implemented?

20

• nMOS
• Turns on when G = 1
• When it’s on, passes 0s, but not 1s
• Connect S to ground (0)
• Pulldown network

• pMOS
• Turns on when G = 0
• When it’s on, passes 1s, but not 0s
• Connect S to Vdd (1)
• Pullup network

21

Gates are made by — two type of CMOSs

G

S

D

G

S

D

NOT Gate (Inverter)

22

Input NMOS
(passes 0
when on

G=1)

PMOS
(passes 1
when on

G=0)

Output
A

0 OFF ON 1

1 ON OFF 0

GND

Vdd

OutputA

AND Gate

23GND

Vdd

Output

A B

A

B GND

Vdd

OR Gate

24GND

Vdd

Output

A

B

A B

GND

Vdd

NAND Gate

25GND

Input NMOS1
(passes 0 when

on G=1)

PMOS1
(passes 1 when

on G=0)

NMOS2
(passes 0 when

on G=1)

PMOS2
(passes 1 when

on G=0)
Output

A B
0 0 OFF ON OFF ON 1
0 1 OFF ON ON OFF 1
1 0 ON OFF OFF ON 1
1 1 ON OFF ON OFF 0

Vdd

A

A

B

B

Output

• NAND and NOR are “universal gates” — you can build any
circuit with everything NAND or NOR

• Simplifies the design as you only need one type of gate
• NAND only needs 4 transistors — gate delay is smaller than

OR/AND that needs 6 transistors
• NAND is slightly faster than NOR due to the physics nature

26

Universal Gates

How about total number of transistors?

27

4 gates, each 6 transistors : total 24 transistors

9 gates, each 4 transistors : total 36 transistors

However …

28

e

a
b

c
d y

Inverter Inverter

Inverter Inverter

Now, only 5 gates and 4 transistors each — 20 transistors!

• One approach estimates transistors, assuming every gate input
requires 2 transistors, and ignoring inverters for simplicity. A
2-input gate requires 2 inputs · 2 trans/input = 4 transistors.
A 3-input gate requires 3 · 2 = 6 transistors. A 4-input gate:
8 transistors. Wires also contribute to size, but ignoring wires
as above is a common approximation.

29

Estimating the size of a design

Truth tables —> Boolean functions

30

Canonical form — Sum of “Minterms”

31

Input Output
X Y
0 0 0
0 1 0
1 0 1
1 1 1

f(X,Y) = XY’ + XY

Input Output
A B
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

f(A,B) = A’B’ + AB

A minterm

Sum (OR) of “product” terms

Binary addition

32

3 + 2 = 5

0 0 1 1
+ 0 0 1 0

10

1 carry

10

3 + 3 = 6

0 0 1 1
+ 0 0 1 1

01

1

10

1

half adder — adder
without a carry as an inputfull adder — adder with

a carry as an input

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Half adder

33

Input Output
A B Out Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Out = A’B + AB’
Cout = AB

A

B

Cout

Out

• How many of the following minterms are part of the sum-of-product form of the full adder in
generating the output bit?
① A’B’Cin’
② A’BCin’
③ AB’Cin’
④ ABCin’
⑤ A’B’Cin
⑥ A’BCin
⑦ AB’Cin
⑧ ABCin
A. 0
B. 1
C. 2
D. 3
E. 4

34

The sum-of-product form of the full adder

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Out = A’BCin’ + AB’Cin’ + A’B’Cin + ABCin
Cout = ABCin’ + A’BCin + AB’Cin + ABCin

The full adder

35

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Out = A’BCin’ + AB’Cin’ + A’B’Cin + ABCin
Cout = ABCin’ + A’BCin + AB’Cin + ABCin The same

A

B

Cin

Out

Cout

Laws in Boolean Algebra

36

OR AND

Associative laws (a+b)+c=a+(b+c) (a·b) ·c=a·(b·c)

Commutative laws a+b=b+a a·b=b·a

Distributive laws a+(b·c)=(a+b)·(a+c) a·(b+c)=a·b+a·c

Identity laws a+0=a a·1=a

Complement laws a+a’=1 a·a’=0

DeMorgan’s Theorem (a + b)’ = a’b’ a’b’ = (a + b)’

Covering Theorem a(a+b) = a+ab = a ab + ab’ = (a+b)(a+b’) = a

Consensus Theorem ab+ac+b’c = ab+b’c (a+b)(a+c)(b’+c) = (a+b)(b’+c)

Uniting Theorem a (b + b’) = a (a+b)·(a+b’)=a

Shannon’s Expansion f(a,b,c) = a’b’ + bc + ab’c
f(a,b,c) = a f(1, b, c) + a’ f(0,b,c)

• For the truth table shown on the right, what’s the minimum
number of “OR” gates we need?

A. 1
B. 2
C. 3
D. 4
E. 5

37

How many “OR”s?

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

F(A, B, C) =
A’B’C’+ A’B’C + A’BC’ + A’BC + AB’C’ + ABC’
A’B’(C’+C)= + A’B(C’+C)+ AC’(B’+B)

= A’B’ + A’B + AC’
= A’ + AC’ = A’(1+C’)+AC’

= A’ + A’C’ + AC’
= A’ + (A’+A)C’
= A’ + C’

Distributive Laws

Uniting Theorem

Simplifying circuits using
Karnaugh maps

38

• Alternative to truth-tables to help visualize adjacencies
• Guide to applying the uniting theorem
• Steps

• Create a 2-D truth table with input variables on each dimension, and
adjacent column(j)/row(i) only change one bit in the variable.

• Fill each (i,j) with the corresponding result in the truth table
• Identify ON-set (all 1s) with size of power of 2 (i.e., 1, 2, 4, 8, …) and

“unite” them terms together (i.e. finding the “common literals” in their
minterms)

• Find the “minimum cover” that covers all 1s in the graph
• Sum with the united product terms of all minimum cover ON-sets

39

Karnaugh maps

2-variable K-map example

40

Input Output
A B
0 0 1
0 1 1
1 0 1
1 1 0

A

B
0 1

0 1 1

1 1 0

A’

B’

F(A, B) = A’ + B’

A’ A

B’

B

• Reduce to 2-variable K-map — 1 dimension will represent two variables
• Adjacent points should differ by only 1 bit

• So we only change one variable in the neighboring column
• 00, 01, 11, 10 — such numbering scheme is so-called Gray–code

41

3-variable K-map?

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 (A, B)
C 0,0 0,1 1,1 1,0

0 1 1 1 1

1 1 1 0 0

C’

A’
F(A, B, C) = A’ + C’

A’B’ A’B AB AB’

C’

C

• How many of the followings are “valid” K-Maps?

A. 0
B. 1
C. 2
D. 3
E. 4

42

Valid K-Maps

0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

0,1 1,1 1,0 0,0
0 1 0 1 0
1 0 1 0 1

1,1 1,0 0,1 0,0
0 0 1 1 0
1 1 0 0 1

0,0 0,1 1,0 1,1
0 0 1 1 0
1 1 0 0 1

(1) (2) (3)

(4)

• Minimum number of SOP terms to cover the “Cout” function
for a one-bit full adder?

A. 1
B. 2
C. 3
D. 4
E. 5

43

Minimum SOP for a full adder

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Out(A, B) 0,0 0,1 1,1 1,0
0 0 0 1 0
1 0 1 1 1

A’B’ A’B AB AB’

Cin’
Cin

AB ACinBCin

• Minimum number of SOP terms to cover the following
function?

A. 1
B. 2
C. 3
D. 4
E. 5

C (A, B) 0,0 0,1 1,1 1,0
0 1 1 0 0
1 0 1 1 0

A’B’ A’B AB AB’

C’
C

44

Minimum number of SOP terms

Input Output
A B C
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1A’C’

BCA’B

F(A, B, C) = A’C’ + BC’

We don’t need A’B to cover all 1s

• Reduce to 2-variable K-map — both dimensions will represent two variables
• Adjacent points should differ by only 1 bit

• So we only change one variable in the neighboring column
• Use Gray-coding — 00, 01, 11, 10

45

4-variable K-map

00 01 11 10

00 1 0 0 0

01 1 0 0 0

11 0 0 0 0

10 1 0 0 1

A’B’ A’B AB AB’

C’D’

C’D

CD

CD’

A’B’C’

B’CD’

F(A, B, C) = A’B’C’+B’CD’

• What’s the minimum sum-of-products expression of the given
K-map?

A. B’C’ + A’B’
B. B’C’D’ + A’B’ + B’C’D’
C. A’B’CD’ + B’C’
D. AB’ + A’B’ + A’B’D’
E. B’C’ + A’C’D’

46

4-variable K-map

00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 0 0 0 0

10 1 1 0 0

A’B’ A’B AB AB’

C’D’

C’D

CD

CD’

B’C’

A’CD’

• Situations where the output of a function can be either 0 or 1 for a
particular combination of inputs

• This is specified by a don’t care in the truth table
• This happens when

• The input does not occur. e.g. Decimal
numbers 0… 9 use 4 bits, so (1,1,1,1) does
not occur.

• The input may happen but we don’t care
about the output. E.g. The output driving a
seven segment display – we don’t care
about illegal inputs (greater than 9)

47

Incompletely Specified Functions

A

B
0 1

0 0 0

1 1 X

Don’t care

K-Map with “Don’t Care”s

48

 (A, B)
C 0,0 0,1 1,1 1,0

0 1 X 1 1

1 1 1 0 0

A’B’ A’B AB AB’

C’

C

If we treat the “X” as 0?

0

A’B’ A’C
AC’

F(A,B,C)=A’B’+A’C+AC’

You can treat “X” as either 0 or 1

If we treat the “X” as 1?

1 C’

A’C

F(A,B,C) = C’ + A’C

— depending on which is more advantageous

Digital Arithmetics

49

• Obvious representation of 0, 1, 2,
• Represent positive/negative/integer/floating points
• Efficient usage of number space
• Equal coverage of positive and negative numbers
• Easy hardware design

• Minimize the hardware cost/reuse the same hardware as much as
possible

• Easy to distinguish positive numbers
• Easy to negation

50

What do we want from a number system?

• How many of the following goals can “2’s
complement — take the 1’s complement of
corresponding positive number and then
+1” to represent a negative number fulfill in the
number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

51

The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies
B. No. The same “procedure” applies but it changes overflow detection
C. Yes, and we need a new procedure
D. Yes, and we need a new procedure and a new hardware
E. None of the above

52

Evaluating 2’s complement

• 3 + 2 = 5 • 3 + (-2) = 1

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 1 1 0

1000 = 1

11
1

Adder

53

Full
Adder

We can support more bits!

54

Full
Adder

A0 B0A1 B1

Full
Adder

A2 B2

Full
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full

Adder

A4 B4

O4

C4
Full

Adder

A5 B5

O5

Recap: Full Adder

55

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Cout(A, B) 0,0 0,1 1,1 1,0
0 0 0 1 0
1 0 1 1 1

A’B’ A’B AB AB’

Cin’
Cin

ACinABBCin

Out(A, B) 0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

A’B’ A’B AB AB’

Cin’
Cin

ABCin

Cout Out

The delay is determined by the “critical path”

56

C0 B0 A0C1 B1 A1C2 B2 A2C3 B3 A3

Cout0 O0Cout1 O1Cout2 O2Cout3 O3

C4 B4 A4

Cout4 O4

Available in the very beginning
Only this is available

in the beginning

Carry-Ripple Adder

2-gate
delay

• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the
final output?

A. 2
B. 32
C. 64
D. 128
E. 288

57

How efficient is the adder?

ABCin

Cout Out

• Uses logic to quickly pre-compute the carry for each digit

58

Carry-lookahead adder

A0 B0A1 B1A2 B2A3 B3

O0O1O2

Cin

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

Input Output
A B Cin Out Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Both A, B are 0 —
no carry (Delete)

Both A, B are 1
— must carry
(Generate)

Needs to
wait Cin
(Propagate)

O3

FAFAFAFA

• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are
not (except the c0).

59

CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

60

CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• Size:
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates
• 1952 transistors

• 32-bit CRA
• 1600 transistors

• Delay
• 32-bit CLA with 8 4-bit CLAs

• 2 gates * 8 = 16
• 32-bit CRA

• 64 gates
61

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!

• There is number with a decimal point
• Fixed point

• One bit is used for representing positive or negative
• Fixed number of bits is used for the integer part
• Fixed number of bits is used for the fraction part
• Therefore, the decimal point is fixed

• Floating point
• One bit is used for representing positive or negative
• A fixed number of bits is used for exponent
• A fixed number of bits is used for fraction
• Therefore, the decimal point is floating —

depending on the value of exponent
62

Integer is not the only type of number we need to deal with!

+/- Integer Fraction.
is always here

+/- Exponent Fraction
.Can be anywhere in the fraction

• Realign the number into 1.F * 2e
• Exponent stores e + 127
• Fraction only stores F

63

IEEE 754 format
+/- Exponent (8-bit) Fraction (23-bit)32-bit float

• Convert the following number
1 1000 0010 0100 0000 0000 0000 0000 000

A. - 1.010 * 2^130
B. -10
C. 10
D. 1.010 * 2^130
E. None of the above

1 1000 0010 0100 0000 0000 0000 0000 000

- e = 130
-127 = 3 1.f = 1.01 = 1 + 0*2-1 + 1* 2-2 = 1.25

1.25 * 2^3 = 10

• Regarding the pros of floating point and fixed point
expressions, please identify the correct statement

A. Fixed point can be express wider range of numbers than floating
point numbers, but the hardware design is more complex

B. Floating point can be express wider range of numbers than
floating point numbers, but the hardware design is more complex

C. Fixed point can be express wider range of numbers than floating
point numbers, and the hardware design is simpler

D. Floating point can be express wider range of numbers than
floating point numbers, and the hardware design is simpler

64

The advantage of floating/fixed point

Multiplexer

65

• The MUX has two input ports — numbered as 0 and 1
• To select from two inputs, you need a 1-bit control/select signal

to indicate the desired input port

66

Let’s start with a 2-to-1 MUX

2:1
MUX

B

A 0

1

Sel

Output

Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

2:1 MUX

Use K-Map

67

Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

(A, B)
Sel 0,0 0,1 1,1 1,0

0 0 0 1 1

1 0 1 1 0

ASel’
A’B’ A’B AB AB’

Sel’

Sel

BSel

Output = ASel’ + BSel

A

B

Sel

Output

Sel’ means output A
Sel means output B

4:1 MUX

4-to-1 MUX

68

A

B

S0 S1

OutputC

D

S0==0 && S1==0 output A
S0==0 && S1==1 output B
S0==1 && S1==0 output C
S0==1 && S1==1 output D

Output = AS0’S1’ + BS0’S1 +
 CS0S1’ + DS0S1

4:1
MUX

00

01

10

11

S
2

• What’s the estimated gate delay
of an 8:1 MUX?

A. 1
B. 2
C. 4
D. 8
E. 16

69

Gate delay of 8:1 MUX

8:1 MUX

A

S0S1S2

Output

B

C

D

E

F

G

H

Shifters

70

• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned
char in C). How many of the following C statements and their execution results
are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

71

What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1

0

0
0

Shift “Right”

72

shamt
2

11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX

Y0Y1Y2Y3

Based on the value of the selection
input (shamt = shift amount)

The “chain” of multiplexers
determines how many bits to shift

A3 A2 A1 A00 Example:
if S = 01
then
Y3 = 0
Y2 = A3
Y1 = A2
Y0 = A1

Example:
if S = 10
then
Y3 = 0
Y2 = 0
Y1 = A3
Y0 = A2

Example:
if S = 11
then
Y3 = 0
Y2 = 0
Y1 = 0
Y0 = A3

Floating point hardware

73

Floating point adder

74

• Consider the following two C programs.

Please identify the correct statement.
A. X will print “We’re done” and finish, but Y will not.
B. X won’t print “We’re done” and won’t finish, but Y will.
C. Both X and Y will print “We’re done” and finish
D. Neither X nor Y will finish

75

Why — Will the loop end?

X Y
#include <stdio.h>

int main(int argc, char **argv)
{
 int i=0;
 while(i >= 0) i++;
 printf("We're done! %d\n", i);
 return 0;
}

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=0.0;
 while(i >= 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}Because Floating Point Hardware Handles “sign”, “exponent”, “mantissa” separately

Maximum and minimum in float

76

0 1111 1110 1111 1111 1111 1111 1111 111
254-127 =127 1.1111 1111 1111 1111 1111 111

1111 1111 = NaN

= 340282346638528859811704183484516925440
= 3.40282346639e+38

max in int32 is 2^31-1 = 2147483647

But, this also means that float cannot express all possible numbers
between its max/min — lose of precisions

Special numbers in IEEE 754 float

77

0 0000 0000 0000 0000 0000 0000 0000 000+0

1 0000 0000 0000 0000 0000 0000 0000 000-0

0 1111 1111 0000 0000 0000 0000 0000 000+Inf

1 1111 1111 0000 0000 0000 0000 0000 000-Inf

0 1111 1111 xxxx xxxx xxxx xxxx xxxx xxx+NaN

1 1111 1111 xxxx xxxx xxxx xxxx xxxx xxx-Nan

What’s 0.0004 in IEEE 754?

78

after x2 > 1?
0.0004 0.0008 0
0.0008 0.0016 0
0.0016 0.0032 0
0.0032 0.0064 0
0.0064 0.0128 0
0.0128 0.0256 0
0.0256 0.0512 0
0.0512 0.1024 0
0.1024 0.2048 0
0.2048 0.4096 0
0.4096 0.8192 0
0.8192 1.6384 1
0.6384 1.2768 1
0.2768 0.5536 0
0.5536 1.1072 1
0.1072 0.2144 0
0.2144 0.4288 0
0.4288 0.8576 0
0.8576 1.7152 1
0.7152 1.4304 1

after x2 > 1?
0.4304 0.8608 0
0.8608 1.7216 1
0.7216 1.4432 1
0.4432 0.8864 0
0.8864 1.7728 1
0.7728 1.5456 1
0.5456 1.0912 1
0.0912 0.1824 0
0.1824 0.3648 0
0.3648 0.7296 0
0.7296 1.4592 1
0.4592 0.9184 0
0.9184 1.8368 1
0.8368 1.6736 1
0.6736 1.3472 1
0.3472 0.6944 0
0.6944 1.3888 1
0.3888 0.7776 0
0.7776 1.5552 1
0.5552 1.1104 1

12

-12 + 127 = 115 = 0b01110011

0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1

Demo — Are we getting the same numbers?

79

#include <stdio.h>

int main(int argc, char **argv)
{
 float a, b, c;
 a = 1280.245;
 b = 0.0004;
 c = (a + b)*10.0;
 printf("(1280.245 + 0.0004)*10 = %f\n",c);
 c = a*10.0 + b*10.0;
 printf("1280.245*10 + 0.0004*10 = %f\n",c);
 return 0;
} Commutative law is broken!!!

• For the following code, please identify how many statements are correct
① We will see the same output at X and Y
② X will print — 12802.454
③ Y will print — 12802.454
④ Neither X nor Y will print the right result,

but X is closer to the right answer
⑤ Neither X nor Y will print the right result,

but Y is closer to the right answer
A. 0
B. 1
C. 2
D. 3
E. 4

80

Are we getting the same numbers?
#include <stdio.h>

int main(int argc, char **argv) {
 float a, b, c;
 a = 1280.245;
 b = 0.0004;
 c = (a + b)*10.0;
 printf("%f\n”,c); // X
 c = a*10.0 + b*10.0;
 printf("%f\n”,c); // Y
 return 0;
}

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < 0
D. The program will not finish since i will always be a positive non-zero number.
E. The program will not finish but raise an exception since we will go to NaN first.

81

Recap: Will the loop end? (one more run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

• Consider the following C program.

Why i stuck at 16777216.000?
A. It’s a special number in IEEE 754 standard that an adder will treat it differently
B. It’s a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard
C. It’s just the maximum integer that IEEE 754 standard can represent
D. It’s nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0
E. It’s nothing special, but just happened to be the case that 16777216.0 add anything will become

16777216.0

82

Why stuck at 16777216?

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

What’s 16777216 special about?

83

16777216 = 1.0 * 224

0 10010111 0000 0000 0000 0000 0000 000 0 0111 1111 0000 0000 0000 0000 0000 000

To add 1.0 = 1.0 *20

 to this number, you
have to shift 24 bits —

1 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 000 >> 24 == 0

You’re essentially adding 0 to 16777216
 — even worse — programmer never know

A good programmer needs to know
these kinds of

“hardware features” to avoid bugs!

Can you think of some other numbers
would result in the same situation?

Sequential Circuits

84

• Combinational logic
• The output is a pure function of its current inputs
• The output doesn’t change regardless how many times the logic is

triggered — Idempotent
• Sequential logic

• The output depends on current inputs, previous inputs, their history

85

Recap: Combinational v.s. sequential logic

Sequential circuit has memory!

• A Combinational logic is the implementation of a
Boolean Algebra function with only Boolean Variables as their
inputs

• A Sequential logic is the implementation of a
Finite-State Machine

86

Recap: Theory behind each

Finite-State Machines

87

• FSM consists of
• Set of states
• Set of inputs, set of outputs
• Initial state
• Set of transitions

• Only one can be true at a
time

• FSM representations:
• State diagram
• State table

88

Finite State Machines

Reset

10 9 8 7 6 5

43210

signal signal signal signal signal

signal
signalsignalsignalsignalsignal

display = 0:09display = 0:10 display = 0:08 display = 0:07 display = 0:06 display = 0:05

display = 0:04display = 0:03display = 0:02display = 0:01

display = 0:00

Current
State

Next State
Signal

0 1
10 10 9
9 9 8
8 8 7
7 7 6
6 6 5
5 5 4
4 4 3
3 3 2
2 2 1
1 1 0
0 0 0

• Mars rover has a binary input x. When it receives the input
sequence x(t-2, t) = 001 from its life detection sensors, it
means that the it has detected life on Mars and the output y(t)
= 1, otherwise y(t) = 0 (no life on Mars).

• This pattern recognizer should have
A. One state because it has one output
B. One state because it has one input
C. Two states because the input can be 0 or 1
D. More than two states because ….
E. None of the above

89

Life on Mars

• Reduce the problem to a “sequence recognizer”
• To recognize a sequence with length N, you need N+1 states by

default
• Layout the states and connect states with arrows (or create a

state transition table)
• Merge states with exactly the same transitions (same input

lead to exactly the same output) together

90

“Procedure” for creating an FSM

FSM for Life on Mars

91

S 0 00 001

1/1

0/0
0/0

0/00/0

1/0

all the outputs of “001" are equal to S!1/0
Merge “001” into S

1/0

FSM for Life on Mars

92

S0 S1 S2

1/1
0/00/0

1/0

Merge S3 into S0

0/01/0

State Transition Table of Life on Mars

93

Current
State

Next State

Input

0 1

S0 — something else

S1 — 0

S2 — 00

S3 — 001

S1, 0 S0, 0

S2, 0 S0, 0

S2, 0 S3, 1

S1, 0 S0, 0

How make FSM true?

94

• A set of logic to display the remaining time — we know how to
do this already

• A logic to keep track of the “current state”
• A set of logic that uses the “current state” and “a new input” to

transit to a new state and generate the output — we also
know how to build this

• A control signal that helps us to transit to the right state at the
right time

95

What do we need to physically implement the timer?

— memory

— clock

• SR-latch
• S = 1 sets Q = 1
• R = 1 sets Q = 0
• Problem: S = 1, R = 1, Q = undefined

• Level-sensitive SR-latch
• S, R only become effective when C = 1
• Problem: avoid the case of signal oscillation, but

cannot avoid the “intensional” 1,1 inputs
• D-latch

• SR can never be 11 if the Clk is set appropriately
• Problem: D single needs to be stably long enough to set the

memory
• D-flip-flop

• Only loads the value into memory in the beginning of the rising
edge. Values can hold for a complete clock cycle

• Problem: more gates

96

4-different types of bit storage

SR-Latch: the very basic “memory”

97

S (Set)

R (Reset)
Q

S (Set)

R (Reset)

Q

Input Output
A B
0 0 1
0 1 0
1 0 0
1 1 0

0

0

0

0
1

0

0

1
1

0

0

1

1

0

0
0

0

1

1

1

1

0

0

1

0

0
0

0
0

1

0

1

Set — Make the “stored bit 1”
Reset — Make the “stored bit 0”
Hold — both set/reset are 0

The circuit has memory!

S R Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0

1 1 1

Q’

What if S/R are both 1s?

98

S (Set)

R (Reset)
Q

S (Set)

R (Reset)

Q

Input Output
A B
0 0 1
0 1 0
1 0 0
1 1 0

0

0

0

0
1

0

0

1
1

0

0

1

1

0

0
0

0

1

1

1

1

0

0

1

0

0
0

0
0

1

0

1

Doesn’t function if both are 1s!

1
1

1

1

0

0

0

S R Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Q’

1
0

1

99

D-Latch
D

Q

Clk

R

S

CLK D D’ S R Q Q’

0 X X’ 0 0 Qprev Qprev’

0 0 1 0 1 0 1

1 1 0 1 0 1 0

Q’

We will never get
1, 1 in this way

100

D-Latch
D

Q

Clk

R

S

Q’

Clk

D

Q

CLK D D’ S R Q Q’

0 X X’ 0 0 Qprev Qprev’

0 0 1 0 1 0 1

1 1 0 1 0 1 0

Only change Q/Q’ during positive clock edges

Output doesn’t hold for the whole cycle

Master-Slave D Flip-flop

D flip-flop

101

D-latch
D Q

Clk
D-latch

D Q

Clk

Input

Clk

Output

Clk

Input

Output

• Consider a 32-bit carry-
lookahead adder built with 8 4-bit
carry-lookahead adders. If we take the
output after 4 gate delays and feed
another input at that time, which of the
following would be true?

A. At the time we take the output, we can get the correct result
B. At the time we take the output, we cannot get the correct result
C. At the time we take the output, we cannot get the correct result,

but we can get the correct result after another 8 gate delays

102

What if ?

• Clock -- Pulsing signal for enabling latches; ticks like a clock
• Synchronous circuit: sequential circuit with a clock
• Clock period: time between pulse starts

• Above signal: period = 20 ns
• Clock cycle: one such time interval

• Above signal shows 3.5 clock cycles
• Clock duty cycle: time clock is high

• 50% in this case
• Clock frequency: 1/period

• Above : freq = 1 / 20ns = 50MHz;
103

Clock signal

0ns 10ns 20ns 30ns 40ns 50ns 60ns 70ns 80ns 90ns

Sample Midterm

104

• Format
• Multiple choices * 30
• Free answer questions (filling the blanks) *3

• Make sure your answer follow EXACTLY the same format that the
question requires, otherwise, the auto-grader won’t grade it correctly

• You may open book, create cheatsheets, just don’t cheat
• Once opened, you only have one chance to finish — if your browser

crashes because you opened too many windows/programs, I won’t
help you.

• If your submission is late by x sec, your grade is max(raw_score *
((100-x)/100),0)

105

Midterm Format

• Please identify how many of the following statements explains why digital
computers are now more popular than analog computers.
① The cost of building systems with the same functionality is lower by using

digital computers.
② Digital computers can express more values than analog computers.
③ Digital signals are less fragile to noise and defective/low-quality components.
④ Digital data are easier to store.
A. 0
B. 1
C. 2
D. 3
E. 4

106

Recap: Why are digital computers more popular now?

• X, Y are two Boolean variables. Consider the following function:
X • Y + X
How many of the following the input values of X and Y can lead to an output of 1
① X = 0, Y = 0
② X = 0, Y = 1
③ X = 1, Y = 0
④ X = 1, Y = 1
A. 0
B. 1
C. 2
D. 3
E. 4

107

Let’s practice!

• A Boolean equation is converted to a circuit in what order
A. Items within parentheses, then NOT, then AND, then OR.
B. OR, then NOT, then AND, then items within parentheses.
C. Items within parentheses, then AND, then OR, then NOT.
D. NOT, then items within parentheses, then AND, then OR.

108

A Boolean equation is converted to a circuit in what order?

• Which equation best captures the following logic: Bob will pass
the class only if doing all of the following: Bob attends all
lectures, completes all assignments, passes all exams. Inputs:
A = 1 indicates attends all lectures, Z = 1 indicates completes all
assignments, E = 1 indicates passes all exams Outputs: P = 1
indicates passes the class

A. P = A AND Z OR NOT(E)
B. P = A OR Z OR E
C. P = A AND Z OR E
D. P = A AND Z AND E

109

Boolean Equation from Truth Table

This equation Y = (a' + b)c is implemented by which circuit?

110

• How many of the following minterms are part of the sum-of-product form of the full adder in
generating the output bit?
① A’B’Cin’
② A’BCin’
③ AB’Cin’
④ ABCin’
⑤ A’B’Cin
⑥ A’BCin
⑦ AB’Cin
⑧ ABCin
A. 0
B. 1
C. 2
D. 3
E. 4

111

The sum-of-product form of the full adder

• What’s the simplified function of the following K-map?
A. A’
B. A’B
C. AB’
D. B
E. A

112

Practicing 2-variable K-map

A

B
0 1

0 0 0

1 1 1

• How many of the followings are “valid” K-Maps?

A. 0
B. 1
C. 2
D. 3
E. 4

113

Valid K-Maps

0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

0,1 1,1 1,0 0,0
0 1 0 1 0
1 0 1 0 1

1,1 1,0 0,1 0,0
0 0 1 1 0
1 1 0 0 1

0,0 0,1 1,0 1,1
0 0 1 1 0
1 1 0 0 1

(1) (2) (3)

(4)

114

Minimum number of SOP terms

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

• Minimum number of SOP terms to cover the following
function?

A. 1
B. 2
C. 3
D. 4
E. 5

115

Minimum number of SOP terms

Input Output
A B C
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• Minimum number of SOP terms to cover the following
function?

A. 1
B. 2
C. 3
D. 4
E. 5

116

Minimum SOP terms
• What’s the minimum sum-of-products expression of the given

truth table?
A. A’B’C’ + A’BC’+ A’BC + AB’C’
B. A’B’C + AB + AC
C. AB’C’ + B’C’
D. A’B + B’C’
E. A’C’ + A’B + AB’C’

Input Output
A B C
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

• What’s the minimum sum-of-products expression of the given
K-map?

A. B’C’ + A’B’
B. B’C’D’ + A’B’ + B’C’D’
C. A’B’CD’ + B’C’
D. AB’ + A’B’ + A’B’D’
E. B’C’ + A’C’D’

117

4-variable K-map

00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 0 0 0 0

10 1 1 0 0

A’B’ A’B AB AB’

C’D’

C’D

CD

CD’

• What’s the minimum SOP presentation of LT?
A. A’B’D’ + AC’ + BCD
B. A'B'D + A'C + B’CD
C. A'B'C'D' + A'BC'D + ABCD + AB’CD’
D. ABCD + AB’CD’ + A’B’C’D’ + A’BC’D
E. BC'D' + AC' + ABD'

118

LT?
Input Output

A B C D LT EQ GT
0 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 1 0

• A 4-bit adder/subtractor has inputs A = 0100, and B = 0010.
What value of sub outputs sum S = 0110 and cout = 0000?

A. 0
B. 1
C. 0000
D. 1111

119

Input/output of a design

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

120

If we want to support subtraction?

• One approach estimates transistors, assuming every gate input requires 2
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but
ignoring wires as above is a common approximation.

• Considering the shown 1-bit full adder and use it to build a 32-bit adder,
how many transistor do we need?

A. 1152
B. 1600
C. 1664
D. 1792
E. 1984

121

How efficient is the adder?

ABCin

Cout Out

• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the
final output?

A. 2
B. 32
C. 64
D. 128
E. 288

122

How efficient is the adder?

ABCin

Cout Out

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

123

CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many transistors do we need to implement a 4-bit CLA
logic?

A. 38
B. 64
C. 88
D. 116
E. 128

124

CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many estimated transistors are there in the 4-bit 4:1
MUX?

A. 48
B. 64
C. 80
D. 128
E. 192

125

How big is the 4-bit 4:1 MUX?

• What’s the estimated gate delay of an 8:1 MUX?
A. 1
B. 2
C. 4
D. 8
E. 16

126

Gate delay of 8:1 MUX

• How many AND gates does a 16x1 mux require?
A. 2
B. 4
C. 8
D. 16

127

16-1 MUX

• Realign the number into 1.F * 2e
• Exponent stores e + 127
• Fraction only stores F

128

IEEE 754 format
+/- Exponent (8-bit) Fraction (23-bit)32-bit float

• Convert the following number
1 1000 0010 0100 0000 0000 0000 0000 000

A. - 1.010 * 2^130
B. -10
C. 10
D. 1.010 * 2^130
E. None of the above

• Consider the following C program.

Why i stuck at 16777216.000?
A. It’s a special number in IEEE 754 standard that an adder will treat it differently
B. It’s a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard
C. It’s just the maximum integer that IEEE 754 standard can represent
D. It’s nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0
E. It’s nothing special, but just happened to be the case that 16777216.0 add anything will become

16777216.0

129

Why stuck at 16777216?

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < 0
D. The program will not finish since i will always be a positive non-zero number.
E. The program will not finish but raise an exception since we will go to NaN first.

130

Will the loop end? (one more run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be something < 0
C. The program will not finish since i will always be a positive non-zero number.
D. The program will not finish since i will end up staying at some special FP32 presentation
E. The program will not finish but raise an exception since we will go to NaN first.

131

Will the loop end? (last run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i+=i;
 printf("We're done! %f\n",i);
 return 0;
}

• Regarding the above clock signal, please identify how many of the following
statements are correct?
① Clock period of 4ns with 250MHz frequency
② Clock duty cycle 75%
③ Clock period of 1ns with 1GHz frequency
④ The above contains two complete clock cycles.
A. 0
B. 1
C. 2
D. 3
E. 4

132

Clock signal
0ns 1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns

• Which of the following diagrams is a correct FSM for the 001
pattern recognizer on the Mars rover? (If sees “001”, output “1”)

133

FSM for Life on Mars

S0 S1 S20/0 0/0

1/0

1/1

0/0

1/0(A)

S0 S1 S20/0 0/0
1/10/0

1/0

1/0(B)
(D) All are correct

(E) None is correct

(C)

S0 S1 S20/0 1/1

1/0 1/1

1/0 0/0

1/0 == Input 1/Output 0

• Which is true about the given 2-bit carry-lookahead adder? Hint: g = ab, p = a +
b, and the expression for each digit's carry-out is co = ab + (a + b)ci = g + p·ci.

A. c0 = 0, when a0 = 1, b0 = 1, and cin = 0
B. c0 = 1, when a0 = 1, b0 = 1, and cin = 1
C. c1 = 1, when cin = 1, g0 = 1, p0 = 1, g1 = 0, and p1 = 0
D. c1 = 0, when cin = 0, g0 = 1, p0 = 1, g1 = 1, and p1 = 1

134

2-bit CLA

• 0x0 — 1
• 0x1 — 2
• 0x2 — 3
• 0x3 — 4
• 0x4 — 5
• 0x5 — 6
• 0x6 — 7
• 0x7 — 8
• 0x8 — 9
• 0x9 — 0
• 0xA — 0xF — Don’t care

135

BCD+1 — Binary coded decimal + 1

C
om

pa
ra

to
rI8

I4

I2

I1

O8

O4
Input

O2
Output

O1

Can you write the truth table?
Can you create a K-map?

Can simplify the boolean equation?

What’s the output of this? and Why?

136

#include <stdio.h>

int main(int argc, char **argv)
{
 float a, b, c, d;
 int i = 0;
 a = 1.2;
 b = 1.0;
 c = a + b;
 printf("A: %d\n", c==2.2);

 a = 33554432.0;
 b = 2.0;
 c = a+b;
 printf("B: %d\n", c, d, c==33554434.0);

 a = 1.0;
 for(i=0;i<200;i++)
 a += a;
 printf("C: %f\n", a);

 a = a/0.0;
 printf("D: %f\n", a);
 return 0;
}

• What are the differences among SR-latch, D-latch, D-flip flop?
• What’s pMOS? What’s nMOS?
• What’s the difference between sequential logic and

combinational logic?

137

Other questions to think about

• Assignment #3 due tonight— Chapter 3.6-3.16 & 4.1-4.4 &
4.8-4.9

• Midterm on 5/7 during the lecture time, access through iLearn
• No late submission is allowed — make sure you will be able to take

that at the time
• Covers: Chapter 1, Chapter 2, Chapter 3.1 — 3.12, Chapter 3.15 &

3.16, Chapter 4.1—4.9
• Lab 4 is up — due after final (5/12).
• Check your grades in iLearn

138

Announcement

つづく

Electrical
Computer
Engineering

Science 120A

