Datapath Components (3) —
Those Who “Remember” Things

Prof. Usagi

Recap: Combinational v.s. sequential logic

- Combinational logic
- The output is a pure function of its current inputs

- The output doesn't change regardless how many times the logic is
triggered — ldempotent

- Sequential logic
- The output depends on current inputs, previous inputs, their history

Sequential circuit has memory!

Recap: D flip- flop

Input Output

Clk

Clk

Input

Output

Recap: Positive-edge-triggered D flip-flop

o,
locko—t %_ g@

4

Outline

- Volatile Memory

- Regqisters
- SRAM
- DRAM

- Programming and memory
- Non-volatile Memory

Registers

Registers

- Register: a sequential component that can store muiltiple bits
- A basu: register can be built simply by using multiple D-FFs

Register

Output 1 Output 2 Output 3 Output 4 Output 5

Clk

Poll close in 1:30

What will we output 4 cycles later?

Clk

- For the above D-FF organization, what are we expecting to see in (01,02,03,04) in the
beginning of the 5th cycle after receiving (1,0,1,1)?

A. (1111)
B. (1,01,1)
C. (11,0
D. (
E. (

What will we output 4 cycles later?

Output 1 Output 2 Output 3 Output 4

Clk

- For the above D-FF organization, what are we expecting to see in (01,02,03,04) in the
beginning of the 5th cycle after receiving (1,0,1,1)?

A. (1111)
B. (1,01,1)
C. (11,0
D. (0,0,1,0)
E. (0,1,0,0)

Shift register

- Holds & shifts samples of input

Output 1 Output 2 Output 3 Output 4

10

Let's play with the shift register more...

Output 1

1

Let's play with the shift register more...

- For the extended shift register, what sequence of input will the
let the circuit output "“1"?

A (1,1,1,1)

B. (0,1,0,1)
C. (1,0,1,0) D
D. (0,1,1,0)
E. (1,0,0,1) '
g =g fop. fiop.
Input 1 D/\ - D ——D/\ D/\

12

Let's play with the shift register more...

- For the extended shift register, what sequence of input will the
let the circuit output "“1"?

A (1,1,1,1)
B. (0,1,0,) ,
C. (1,0,1,0) . D—
D. (0,1,1,0) _
oo | | (o | | |wes | | [hos
Input 1 D/_— D ——D/\ | D/\
Clk l l 1

13

Pattern Recognizer

: : : : We can recognize 1001!
- Combinational function of input samples

Output 1

14

Counters

- Sequences through a fixed set of patterns
- Note: definition is general

- For example, the one in the figure is a type of counter called Linear Feedback
Shift Register (LFSR)

Clk —

15

Static Random Access Memory
(SRAM)

A Classical 6-T SRAM Cell

, bitline' bitline
wordline

A Classical 6-T SRAM Cell

Write “1" to an SRAM Cell

, bitline' bitline
wordline .
.0 o 1 1
"

Q'

- Bitlines overpower cell with new
- Q=0,Q'=1,BL=1,BL'=0
Q' low, then Q rises high

Sense Amplifier
19

Write "0" to an SRAM Cell

, bitline' bitline
wordline

Sense Amplifier

Reading from an SRAM Cell

, bitline' bitline
wordline

Sense Amplifier

SRAM array

wdO wd wd?2 wd(m-1)

1 ------_-

2--_-_-_-
11T 11

Sense Sense Sense
Amp Amp Amp

We can only workoncells s
the same word line simultanie

upper bits of
address

Decoder

lower bits of
addresS

22 +

Dynamic Random Access Memory
(DRAM)

An DRAM cell

data - 1 transistor (rather than 6)

- Relies on large capacitor to store
bit

- Write: transistor conducts, data
voltage level gets stored on top
plate of capacitor

- Read: look at the value of d
- Problem: Capacitor discharges
over time

- Must “refresh” regularly, by reading
d and then writing it right back

wordline

24

DRAM array

0
AR RN RRRARRRA AN I

HEE NN EEE
_ 2=III_III

||||||||||||||||||||||||| e

Row Buffer

ower bits of SR T T T T
MUX

address

upper bits ¢
address

Row Decodr

N-|

25

Register v.s. DRAM v.s. SRAM

- Consider the following memory elements
® 64*64-bit Registers

@ 512B SRAM

® 512B DRAM

A. Area: (1) > (2) > (3) Delay: (1) < (2) < (3)
B. Area: (1) > (3) > (2) Delay: (1) < (3) < (2)
C. Area: (3) > (1) > (2) Delay: (1) < (3) < (2)
D. Area: (3) > (2) > (1) Delay: (3) < (2) < (1)
E. Area: (2) > (3) > (1) Delay: (2) < (3) < (1)

26

Register v.s. DRAM v.s. SRAM

- Consider the following memory elements
® 64*64-bit Registers

@ 512B SRAM

® 512B DRAM

A. Area: (1) > (2) > (3) Delay: (1) < (2) < (3)
B. Area: (1) > (3) > (2) Delay: (1) < (3) < (2)
C. Area: (3) > (1) > (2) Delay: (1) < (3) < (2)
D. Area: (3) > (2) > (1) Delay: (3) < (2) < (1)
E. Area: (2) > (3) > (1) Delay: (2) < (3) < (1)

27

current decreases and
charge increases.

RC charging

~
—
-

Charge on capacitor

28

Y.‘.’. t.l ..
R . max - max
g Charge on
5 capacitor |
& = .ﬁ_ e—l /RC
g R -
E Charging 1
°V/ current
0 RC 2;10 IRC
At 1=0
Q=0
V. =0
=%
R

Latency of volatile memory

Size (Transistors per bit) Latency (ns)

Register

29

Programming and memory

Memory “hierarchy” in modern processor architectures
fastest Processor

Processor

<1ns Core
fastest
Registers
-
a few ns

SRAM $
S

DRAM

Storage

tens of n

tens of ns

Thinking about programming

int main(int argc, char xxargv)

struct student _record

{
int id;
double homework;
double midterm;
double final;

r;

int main(int argc, char sxxargv)

int 1,73;

double midterm_average=0.0;

int number_of_records = 10000000;

struct timeval time_start, time_end;

struct student_record *xrecords;

records = (struct
student_recordx)malloc(sizeof(struct
student_record)*xnumber of_records):

init(number_of _records,records);

for (j = 0; j < 100; j++)
for (i = 0; 1 < number_of_records; i++)

midterm_average+=records[i].midterm;

printf("average: %1f\n",midterm_average/
number_of _records);
free(records);
return 9;

{

}

int i,73;

double midterm_average=0.0;

int number_ of _records = 10000000;

struct timeval time_start, time_end;

id = (intx)malloc(sizeof(int)*xnumber_ of_records);

midterm = (doublex)malloc(sizeof(double)s*xnumber of records);
final = (doublex)malloc(sizeof(double)xnumber of _records);
homework = (doublex)malloc(sizeof(double)xnumber of records);
init(number_of_records);

for (j = 0; j < 100; j++)
for (1 = 0; 1 < number_of_records; 1i++)
midterm_average+=midterm[i];

free(id);
free(midterm);
free(final);
free(homework) ;
return 0O;

- Which side is faster in executing the for-loop?

A. Left
B. Right
32C. About the same

Thinking about programming

int main(int argc, char xxargv)

struct student _record

{
int id;
double homework;
double midterm;
double final;

r;

int main(int argc, char sxxargv)

int 1,73;

double midterm_average=0.0;

int number_ of _records = 10000000;

struct timeval time_start, time_end;

struct student_record *xrecords;

records = (struct
student_recordx)malloc(sizeof(struct
student_record)*xnumber of_records):

init(number_of _records,records);

for (j = 0; j < 100; j++)
for (i = 0; 1 < number_of_records; i++)

midterm_average+=records[i].midterm;

printf("average: %1f\n",midterm_average/
number_of _records);
free(records);
return 9;

{

}

int i,73;

double midterm_average=0.0;

int number_ of _records = 10000000;

struct timeval time_start, time_end;

id = (intx)malloc(sizeof(int)*xnumber_ of_records);

midterm = (doublex)malloc(sizeof(double)s*xnumber of records);
final = (doublex)malloc(sizeof(double)xnumber of _records);
homework = (doublex)malloc(sizeof(double)xnumber of_records);
init(number_of_records);

for (j = 0; j < 100; j++)
for (i = 0; 1 < number_of_records; i++)
midterm_average+=midterm[i];

free(id);
free(midterm);
free(final);
free(homework) ;
return 0O;

More row buffer hits in the
DRAM, more SRAM hits

- Which side is faster in executing the for-loop?
A. Left

Thinking about programming (2)

struct student _record

{
int id;
double homework;
double midterm;
double final;

r;

int main(int argc, char sxxargv)

int 1,73;

double midterm_average=0.0;

int number_of_records = 10000000;

struct timeval time_start, time_end;

struct student_record *xrecords;

records = (struct
student_recordx)malloc(sizeof(struct
student_record)*xnumber of_records):

init(number_of _records,records);

for (j = 0; j < 100; j++)
for (i = 0; 1 < number_of_records; i++)

midterm_average+=records[i].midterm;

printf("average: %1f\n",midterm_average/
number_of _records);
free(records);
return 9;

{

int main(int argc, char xxargv)

int i,73;

double midterm_average=0.0;

int number_ of _records = 10000000;

struct timeval time_start, time_end;

id = (intx)malloc(sizeof(int)*xnumber_ of_records);

midterm = (doublex)malloc(sizeof(double)s*xnumber of records);
final = (doublex)malloc(sizeof(double)xnumber of _records);
homework = (doublex)malloc(sizeof(double)xnumber of records);
init(number_of_records);

for (j = 0; j < 100; j++)
for (1 = 0; 1 < number_of_records; 1i++)
midterm_average+=midterm[i];

free(id);
free(midterm);
free(final);

free(homework) ;
return 0;

- Which side is consuming less memory?
A. Left
B. Right

34 C. About the same

Thinking about programming (2)

struct student_record final

i . . midterm
int 1d;
double homework; homework

double midterm;
double final;

o

.] . midterm

int main(int argc, char xxargv)

{ homework
int 1,73;
double midterm_average=0.0;) .
int number_ of _records = 10000000: 64-bit

struct timeval time_start, time_end;
struct student_record *xrecords;
records = (struct
student_recordx)malloc(sizeof(struct
student_record)*xnumber of_records):
init(number_of _records,records);

for (j = 0; j < 100; j++)
for (1 = ©; 1 < number_of_records; i++)
midterm_average+=records[i].midterm;

printf("average: %1f\n",midterm_average/
number_of _records);
free(records);
return 9;

int main(int argc, char xxargv)

{

35

int i,73;

double midterm_average=0.0;

int number_ of _records = 10000000;

struct timeval time_start, time_end;

id = (intx)malloc(sizeof(int)*xnumber_ of_records);

midterm = (doublex)malloc(sizeof(double)s*xnumber of records);
final = (doublex)malloc(sizeof(double)xnumber of _records);
homework = (doublex)malloc(sizeof(double)xnumber of_records);
init(number_of_records);

for (j = 0; j < 100; j++)
for (i = 0; 1 < number_of_records; i++)
midterm_average+=midterm[i];

free(id);
free(midterm);
free(final);
free(homework) ;
return 0O;

- Which side is consuming less memory?
A. Left

Non-volatile memory

Volatile v.s. Non-volatile

- Volatile memory

- The stored bits will vanish if the cell is not supplied with eletricity
- Register, SRAM, DRAM

- Non-volatile memory

- The stored bits will not vanish “immediately” when it's out of
electricity — usually can last years

- Flash memory, PCM, MRAM, STTRAM

37

Flash memory

- Floating gate made by
polycrystalline silicon trap
electrons

- The voltage level within
the floating gate
determines the value of

Rit Line

Word Lire ‘
Contrel Gate

FHoat Gate |

un
select 0
e Ce transistor

ine

- The floating gates will
wear out eventually

Basic flash operations
Program Read Programmed page

Page#: 0O 1 2 3 4 5 6/ 7 n-8n-7 n-6 n-5n-4 n-3n-2 n-1
Block #0

Block #1

Block #2

Block #n-2

Block #n-1

Types of Flash Chips

2 voltage levels, 4 voltage levels, 3 voltage levels, 16 voltage levels,
1-bit 2-bit 3-bit 4-bit

Single-Level Cell Multi-Level Cell Triple-Level Cell Quad-Level Cell
(SLC) (MLC) (TLC) (QLC)

40

Programming in MLC

4 voltage levels,
2-bit 3.1400000000000001243449787580

= O0x40091EBB51EB851F
11 = 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

10
phase #1
phase #2 01
phase #3

3 Cycles/Phases to finish programming

O1

00

Multi-Level Cell
(MLC)

41

Announcement

- Assignment #4 due next Tuesday — Chapter 4.8-4.9 &
5.2-5.4

- Lab 5is up — due next Thursday
- Start early & plan your time carefully

- Watch the video and read the instruction BEFORE your session

- There are links on both course webpage and iLearn lab section
- Submit through iLearn > Labs

. Check your grades iniLearn

42

Electrical
Computer
Engineering

