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Recap: Memory “hierarchy” in modern processor architectures
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• Register: a sequential component that can store multiple bits 
• A basic register can be built simply by using multiple D-FFs
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Recap: Registers



Recap: A Classical 6-T SRAM Cell
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Recap: SRAM array
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• 1 transistor (rather than 6) 
• Relies on large capacitor to store 

bit 
• Write: transistor conducts, data 

voltage level gets stored on top 
plate of capacitor 

• Read: look at the value of d 
• Problem: Capacitor discharges 

over time 
• Must “refresh” regularly, by reading 

d and then writing it right back
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Recap: DRAM cell
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Recap: DRAM array
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Recap: Latency of volatile memory
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Size (Transistors per bit) Latency (ns)

Register 18T ~ 0.1 ns

SRAM 6T ~ 0.5 ns

DRAM 1T 50-100 ns



• Which side is faster in executing the for-loop? 
A. Left 
B. Right 
C. About the same9

Recap: Thinking about programming
struct student_record 
{ 
    int id; 
    double homework; 
    double midterm; 
    double final; 
}; 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    struct student_record *records; 
    records = (struct 
student_record*)malloc(sizeof(struct 
student_record)*number_of_records); 
    init(number_of_records,records); 

    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=records[i].midterm; 

    printf("average: %lf\n",midterm_average/
number_of_records); 
   free(records); 
    return 0; 
} 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    id = (int*)malloc(sizeof(int)*number_of_records); 
    midterm = (double*)malloc(sizeof(double)*number_of_records); 
    final = (double*)malloc(sizeof(double)*number_of_records); 
    homework = (double*)malloc(sizeof(double)*number_of_records); 
    init(number_of_records); 
     
    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=midterm[i]; 
             
    free(id); 
    free(midterm); 
    free(final); 
    free(homework); 
    return 0; 
} 

More row buffer hits in the 
DRAM, more SRAM hits



Recap: Memory “hierarchy” in modern processor architectures
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• Floating gate made by 
polycrystalline silicon trap 
electrons 

• The voltage level within 
the floating gate 
determines the value of 
the cell 

• The floating gates will 
wear out eventually
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Recap: Flash memory



Recap: Types of Flash Chips
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• Non-volatile memory — case study: flash memory 
• Sequential Datapath Components
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Programming in MLC
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Programming the 2nd page in MLC
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Optimizing 1st Page Programming in MLC
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2nd Page Programming in MLC
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• Regarding the following flash memory characteristics, please identify how 
many of the following statements are correct 
① Flash memory cells can only be programmed with limited times 
② The reading latency of flash memory cells can be largely different from 

programming 
③ The latency of programming different flash memory pages can be different 
④ The programmed cell cannot be reprogrammed again unless its charge level is 

refilled to the top-level 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Flash memory characteristics
Poll close in



Program-erase cycles: SLC v.s. MLC v.s. TLC v.s. QLC
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Flash performance

20

Reads:
less than 150us

Program/write:
less than 2ms

Erase:
less than 3.6ms

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf. 
Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.
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• Regarding the following flash memory characteristics, please identify how 
many of the following statements are correct 
① Flash memory cells can only be programmed with limited times 
② The reading latency of flash memory cells can be largely different from 

programming 
③ The latency of programming different flash memory pages can be different 
④ The programmed cell cannot be reprogrammed again unless its charge level is 

refilled to the top-level 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Flash memory characteristics



• Flash pages must be erased in “blocks”
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Basic flash operations
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• The bit is stored in the crystal 
structure of a tiny spec of metal. 

• To write, it melts the metal (650C) 
• let it cool quickly or slowly to set the 

value 
• Crystaline and amorphous states have 

different resistance

23

Phase change memory



• Bits stored as magnetic orientation of a thin film 
• Change the state using polarized electrons (!) 
• Depending on polarization, resistance differs 
• More complex cell structure 
• Great promise — potential DRAM replacement 

• Roughly the same speed, power, and bandwidth. 
• But it’s durable!
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Spin-torque transfer



Non-volatile memory technologies

25

H.D.D Flash Optane STT-MRAM

Latency ~ 10-15 ms ~ 100 us (read)
~ 1 ms (write)

7 us (read)
18 us (write) 35 ns

Bandwidth ~200 MB/Sec 3.5 GB/sec (read)
2.1 GB/sec (write)

1.35 GB/sec (read)
290 MB/sec (write)

Dollar/GB 0.0295 0.583 2.18

Flash is still the most convincing technology for now



• Software designer should be 
aware of the characteristics 
of underlying hardware 
components

26

If programmer doesn’t know flash “features”



• Size:  
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA 

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates 
• 1952 transistors 

• 32-bit CRA 
• 1600 transistors 

• Delay 
• 32-bit CLA with 8 4-bit CLAs 

• 2 gates * 8 = 16 
• 32-bit CRA 

• 64 gates
27

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!



Serial Adder
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The basic idea
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The basic idea
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Excitation Table of Serial Adder
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ai bi ci ci+1 si

0 0 0
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Excitation Table of Serial Adder
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• Consider the following adders? 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. Area: (1) > (2) > (3) > (4) Delay: (1) < (2) < (3) < (4) 
B. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (2) < (4) 
C. Area: (1) > (3) > (4) > (2) Delay: (1) < (3) < (4) < (2) 
D. Area: (1) > (2) > (3) > (4) Delay: (1) < (3) < (2) < (4) 
E. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (4) < (2)

33

Area/Delay of adders
Poll close in



• Consider the following adders? 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. Area: (1) > (2) > (3) > (4) Delay: (1) < (2) < (3) < (4) 
B. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (2) < (4) 
C. Area: (1) > (3) > (4) > (2) Delay: (1) < (3) < (4) < (2) 
D. Area: (1) > (2) > (3) > (4) Delay: (1) < (3) < (2) < (4) 
E. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (4) < (2)
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Area/Delay of adders

Each CLA — 2-gate delay — 8*2+1 ~ 17
Each carry — 2-gate delay — 64

Each CLA — (3-gate delay + 2-gate delay)*8 cycles  — 5*8+1 = 41
Each CLA — (2-gate delay + 2-gate delay)*32 cycles  — 4*32 = 128



• Consider the following adders. Assume each gate delay is 1ns and the 
delay in a register is 2ns. Please rank their maximum operating frequencies 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (2) > (1) > (3) > (4) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)

35

Frequency
Poll close in



• Consider the following adders. Assume each gate delay is 1ns and the 
delay in a register is 2ns. Please rank their maximum operating frequencies 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (2) > (1) > (3) > (4) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)
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Frequency

1
17ns = 58.8MHz

1
64ns

= 15.6MHz
1

5ns
= 200MHz

1
4ns = 250MHz



• Assignment #4 due tonight — Chapter 4.8-4.9 & 5.2-5.4 
• Lab 5 is up — due this Thursday 

• Watch the video and read the instruction BEFORE your session 
• There are links on both course webpage and iLearn lab section 
• Submit through iLearn > Labs 

• Office Hours 
• All office hours share the same meeting instance — if you have registered once, you 

cannot do it again. 
• Zoom does not resend registration confirmation and does not allow us to “re-approve” if 

you have registered 
• The only way is to dig out the e-mail from Zoom 

• Last reading quiz due next Tuesday 
• Check your grades in iLearn
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Announcement 
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