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Big picture of a digital design
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Flip
-Flops/

Registers

Combinational Logic

• An implementation of 
“boolean functions” 

• Idempotent — the output 
only depends on the input 

• Has no memory

• Flip-flops provide “memory” 
• Circuits can use the values in 

“memory” as another input 
• With FFs, the design is now called a 

“sequential network” that 
implements a “finite state machine”



Master-Slave D Flip-flop

Recap: D flip-flop
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D-latch
D Q

Clk
D-latch

D Q

Clk

Input

Clk

Output

Clk

Input

Output

Triggered/controlled by clock edges

Whatever is sensed at the clock edge

Will be used/saved as the output for the rest of the clock cycle



Register

Clk

D Flip-
flop

DD Q

Input 1

Output 1

D Flip-
flop

DD Q

Input 2

Output 2

D Flip-
flop

DD Q

Input 3

Output 3

D Flip-
flop

DD Q

Input 4

Output 4

D Flip-
flop

DD Q

Input 5

Output 5

DD

Input 5

• Register: a sequential component that can store multiple bits 
• A basic register can be built simply by using multiple D-FFs
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Registers



Module

Big picture of a digital design
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Flip
-Flops/

Registers

Combinational Logic

• An implementation of 
“boolean functions” 

• Idempotent — the output 
only depends on the input 

• Has no memory

• Flip-flops provide “memory” 
• Circuits can use the values in 

“memory” as another input 
• With FFs, the design is now called a 

“sequential network” that 
implements a “finite state machine”

CLK

Module



• Combinational: 
• Maximum delay = Propagation delay (tpd) 
• Minimum delay = Contamination delay (tcd) 

• Flip Flops: 
• Input 

• Setup time (tsetup) 
• Hold time (thold) 

• Output 
• Propagation clock-to-Q time (tpcq) 
• Contamination clock-to-Q time (tccq)
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Summary on timing constraints

Once the logic/FFs are built, 
these timing characteristics 
are fixed properties

R1

CLK

R2Combinational 
Logic

D1 Q1 D2 Q2



How long is the clock cycle time?
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Flip
-Flops/

Registers

Combinational Logic

CLK

Module Module

tpcq

thold

tpdtsetup tsetup
tccq tcd

tskew

Tc ≥ tpcq + tpd + tsetup + tskew

tccq + tcd > thold + tskew
thold



Timing analysis

8CLK

X’

A

B

C

D

X

YY’

Flip flops

tccq 30 ps

tpcq 50 ps

tsetup 60 ps

thold 70 ps

Gates

tpd 35 ps

tcd 25 ps

tpd = 35*3 = 105 ps

tcd = 25 ps

Tc ≥ tpcq + tpd + tsetup + tskew
Tc ≥ 50 + 105 + 60 + 0 = 215ps

Setup time constraints

Hold time constraints
tccq + tcd > thold

30ps + 25ps > thold
thold = 70 ps! 

No!!!



Timing analysis

9CLK

X’

A

B

C

D

X

YY’

Flip flops

tccq 30 ps

tpcq 50 ps

tsetup 60 ps

thold 70 ps

Gates

tpd 35 ps

tcd 25 ps

tpd = 35*3 = 105 ps

tcd = 25 ps

Tc ≥ tpcq + tpd + tsetup
Tc ≥ 50 + 105 + 60 + 0 = 215ps

Setup time constraints

Hold time constraints
tccq + tcd > thold

30ps + 25ps + 25ps > thold
Buffers

+ 25 ps

Max frequency = 1/215 ps = 4.65 GHz!



How to design a sequential 
network?
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• Input Output Relation 
• State Diagram (Transition of states) 

• State minimization (Reduction) 
• Finite state machine partitioning 

• State Assignment (Map states into binary code) 
• Binary code, Gray encoding, One hot encoding, Coding optimization 

• State Table (Truth table of states) 
• Excitation Table (Truth table of the combinational circuits) 

• K Map, Minimal Expression 
• Logic Diagram
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Sequential Circuit Design Flow



Life on Mars
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S0 S1 S20/0 0/0

1/0

1/1

0/0

1/0

Current
State

Next State, Output
Input

0 1
S0 S1, 0 S0, 0
S1 S2, 0 S0, 0
S2 S2, 0 S0, 1

State Diagram

State Diagram

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK



Life on Mars
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State Diagram

State Assignment
S0 00
S1 01
S2 10

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
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flopDD Q
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Life on Mars
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S0 S1 S20/0 0/0

1/0

1/1

0/0

1/0

Current
State

Next State, Output
Input

0 1
S0 S1, 0 S0, 0
S1 S2, 0 S0, 0
S2 S2, 0 S0, 1

State Diagram

State Diagram

State Assignment
S0 00
S1 01
S2 10

State Truth Table
State\Input 0 1

00 01, 0 00, 0

01 10, 0 00, 0

10 10, 0 00, 1

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK



Life on Mars
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State Truth Table
State\Input 0 1

00 01, 0 00, 0

01 10, 0 00, 0

10 10, 0 00, 1

Excitation Table
NextStateOput

StateInput D1 D0 y
000
001
010
011
100
101
110
111

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK

0 1 0
0 0 0
1 0 0
0 0 0
1 0 0
0 0 1
X X X
X X X



Life on Mars
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State Truth Table
State\Input 0 1

00 01, 0 00, 0

01 10, 0 00, 0

10 10, 0 00, 1

Excitation Table
NextStateOput

StateInput D1 D0 y
000 0 1 0
001 0 0 0
010 1 0 0
011 0 0 0
100 1 0 0
101 0 0 1
110 X X X
111 X X X

K-Map — D1
0,0 0,1 1,1 1,0

0
1
D1 = x’Q0+x’Q1

K-Map — D0
0,0 0,1 1,1 1,0

0
1
D0 = Q0’Q1’x’

K-Map — y 0,0 0,1 1,1 1,0
0
1 y = Q1’x

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK

0 1 X 1
0 0 X 0

1 0 X 0
0 0 X 0

0 0 X 0
0 0 X 1



x

y

Circuit — Life on Mars
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D1 = x’Q0+x’Q1

D0 = Q0’Q1’x’
y = Q1’x

D Flip-
flop

DD Q0

D Flip-
flop

DD Q1

Clk

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK



Canonical Form: Mealy and Moore Machines
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C1 C2 y(t)

S(t)

Clk

x(t)

C1 C2 y(t)

S(t)

Clk

x(t)

yi(t) = fi(x(t), S(t)) yi(t) = fi(S(t))

Mealy Machine Moore Machine

Result only depends on the current stateResult depends on both input and 
the current state

Si Sjinput/output Si Sjinput
output

Si(t+1) = gi(x(t), S(t)) Si(t+1) = gi(x(t), S(t))



When sequential circuits meet 
datapath components (3)
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The delay is determined by the “critical path”
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C0      B0        A0C1      B1        A1C2      B2        A2C3      B3        A3

Cout0             O0Cout1             O1Cout2             O2Cout3             O3

C4      B4        A4

Cout4             O4

Available in the very beginning
Only this is available 

in the beginning

Carry-Ripple Adder

2-gate 
delay



• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are 
not (except the c0).
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CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• Size:  
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA 

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates 
• 1952 transistors 

• 32-bit CRA 
• 1600 transistors 

• Delay 
• 32-bit CLA with 8 4-bit CLAs 

• 2 gates * 8 = 16 
• 32-bit CRA 

• 64 gates
22

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!



Full 
Adder

Adder
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Full 
Adder

A0 B0A1 B1

Full 
Adder

A2 B2

Full 
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full 

Adder

A4 B4

O4

C4
Full 

Adder

A5 B5

O5



The basic idea
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C1 C2 y(t)

S(t)

Clk

x(t)
Mealy Machine

Full 
Adder

si

Clk

ai
bi
ci

ci+1



Excitation Table of Serial Adder
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ai bi ci ci+1 si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

ai

bi

si

D Flip-
flopD Q



• Consider the following adders? 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. Area: (1) > (2) > (3) > (4) Delay: (1) < (2) < (3) < (4) 
B. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (2) < (4) 
C. Area: (1) > (3) > (4) > (2) Delay: (1) < (3) < (4) < (2) 
D. Area: (1) > (2) > (3) > (4) Delay: (1) < (3) < (2) < (4) 
E. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (4) < (2)
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Area/Delay of adders

Each CLA — 2-gate delay — 8*2+1 ~ 17
Each carry — 2-gate delay — 64

Each CLA — (3-gate delay + 2-gate delay)*8 cycles  — 5*8+1 = 41
Each CLA — (2-gate delay + 2-gate delay)*32 cycles  — 4*32 = 128



• Consider the following adders. Assume each gate delay is 1ns and the 
delay in a register is 2ns. Please rank their maximum operating frequencies 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (2) > (1) > (3) > (4) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)
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Frequency

1
17ns = 58.8MHz

1
64ns

= 15.6MHz
1

5ns
= 200MHz

1
4ns = 250MHz



• Different parts of the hardware works on different requests/
commands simultaneously 

• A clock signal controls and synchronize the beginning and the 
end of each part/stage of the work 

• A pipeline register between different parts of the hardware to 
keep intermediate results necessary for the upcoming work 
• Register is basically an array of flip-flops!

28

Pipelining



Pipelining
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Pipelining a 4-bit serial adder
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Serial 
Adder 
# 1

Serial 
Adder 
# 2

Serial 
Adder 
# 3

Serial 
Adder 
# 4



Pipelining a 4-bit serial adder
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add a, b 
add c, d 
add e, f 
add g, h 
add i, j 
add k, l 
add m, n 
add o, p 
add q, r 
add s, t 
add u, v

1st 2nd 
1st 

3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 
2nd 
1st 

4th 
3rd 4th 
2nd 3rd 4th 

t

After this point, 
we are completing an 
add operation each 
cycle!

Cycles
Add

= 1



• Consider the following adders. Assume each gate delay is 1ns and the delay 
in a register is also 1ns. And we are processing millions of add operations. 
Please rank their throughputs. 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 8-stage, pipelined 32-bit serial adders made with 4-bit CLA adders 
④ 32-stage, pipelined 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (3) > (4) > (2) > (1) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)
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Throughput



• Latency — the amount of time to finish an operation 
• access time 
• response time 

• Throughput — the amount of work can be done within a given 
period of time 
• bandwidth (MB/Sec, GB/Sec, Mbps, Gbps) 
• IOPs 
• MFLOPs

33

Latency/Delay v.s. Bandwidth/Throughput



 Toyota Prius 100 Gb Network

bandwidth 290GB/sec 100 Gb/s or 
12.5GB/sec

latency 3.5 hours 2 Peta-byte over 167772 seconds 
= 1.94 Days

response time You see nothing in the first 3.5 hours You can start watching the movie 
as soon as you get a frame!

Latency/Delay v.s. Throughput
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•100 miles (161 km) from UCSD  
•75 MPH on highway! 
•Max load: 374 kg = 2,770 hard drives 
(2TB per drive)

•100 miles (161 km) from UCSD  
•Lightspeed! — 3*108m/sec 
•Max load:4 lanes operating at 25GHz



Multiplier
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Shift and add
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 B0

0  0  0  0 A3A2A1A0

8-bit Shifter SHL = 1

8-bit Adder

0 1             0 

MUX8

8
0

8

8

1             0 

MUX  B1

0

8-bit Adder

8-bit Shifter SHL = 1
8

1             0 

MUX  B2

0

8-bit Adder

8-bit Shifter SHL = 1
8

1             0 

MUX  B3

0

+5

+2

+2

+4

+5

+2

+4

+5

+2

+4 +5
— 40 gate delays



4-bit serial shift-and-add multiplier
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8-bit register for product Multiplier (4-bit)

Multiplicand (8-bit)

MUX 
1                  0

8-bit adder

Clock

8-bit shift left

4-bit shift right

0

+5

+4

+2

+2

+2 +2

+4

— 13 gate delays



Array style
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b0

b1

b2

b3

a0 a1 a2 a3

5-bit adder

0 0

6-bit adder

00 0

0

7-bit adder

000

p7 p6 p5 p4 p3 p2 p1 p0



• What’s the estimated gate-delay of a 32-bit multiplier? 
(Assume adders are composed of 4-bit CLAs) 
A. 0 — 100 
B. 100 — 500 
C. 500 — 1000 
D. 1000 — 1500 
E. > 1500
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Gate-delays of 32-bit array-style multipliers

We need 33-64 bit adders
33 - 36 -bit adders —> (9*2+1) gate delays *4
37 - 40 -bit adders —> (10*2+1) gate delays *4
41 - 44 -bit adders —> (11*2+1) gate delays *4
45 - 48 -bit adders —> (12*2+1) gate delays *4
49 - 52 -bit adders —> (13*2+1) gate delays *4
53 - 56 -bit  adders —> (14*2+1) gate delays *4
57 - 60 -bit adders —> (15*2+1) gate delays *4
61 - 64 -bit adders —> (16*2+1) gate delays *4

4*2*(9+10+11+12+13+14+15+16+1) = 808

Each n-bit adder is roundup(n/4)*2+1



Parallel-tree Multiplier
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32-bit Adder 32-bit Adder 32-bit Adder 32-bit Adder

32-bit Adder32-bit Adder

A b0

a0b0

p0

A b1

p1

A b2A b3A b28A b29A b30A b31

p63 p62

…………

32-bit Adder

……
…………

……

p47 …………p16

lg (32) == 5 level adders —> each has 8*4 = 32 gate-delays 
only 160 gate delays in total



• Consider the following multipliers and assume each gate delay 
is 1ns and the delay in a register is 2ns. If all circuits can operate 
their maximum frequency, please identify the multiplier with 
shortest end-to-end latency in generating the result for 
multiplying two 32-bit numbers 
A. 32 32-bit shift and add multipliers 
B. 32-bit array-style multipliers 
C. Pipelined 4-bit serial shift-and-add multiplier
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Latency of multipliers

— 39*64 = 2496 gate delays

— 808 gate delays

— 41*64 = 2624 gate delays



• Consider the following multipliers and assume each gate delay 
is 1ns and the delay in a register is 2ns. If all circuits can operate 
their maximum frequency, please identify the multiplier with 
shortest end-to-end latency in generating the result for 
multiplying two million pairs of 32-bit numbers 
A. 32-bit shift and add multipliers 
B. 32-bit array-style multipliers 
C. Pipelined 32-bit serial shift-and-add multiplier

42

Throughput of multipliers



Put everything all together
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• We have learned all datapath components for an ALU! 
• Register 
• Shifter 
• Adders 
• Multiplier 

• Processor has only one clock generator 
• Each datapath component has a different latency 
• We have make some of the above “serial”
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Let’s put all things together!



Overview of the simple “processor”
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Re
gi

st
er

 F
ile

Shifter

8-bit Serial 
Adder

4-bit Serial 
Multiplier

Control Unit

M
U
X

a

b

operation
are we done?

Datapath

Control Path

cycles mux

shift 1 0

add 4 1

mul 32 2



HLSM — High-Level State 
Machine

46



• High-level state machine (HLSM) extends FSM with: 
• Multi-bit input/output 
• Local storage 
• Arithmetic operations 

• Conventions 
• Each transition is implicitly ANDed with a rising edge of the clock 
• Any bit output not explicitly assigned a value in a state is implicitly assigned to 0. This convention does not 
apply for multibit outputs 

• Every HLSM multibit output is registered 
• Numbers: 

• Single-bit: '0' (single quotes) 
• Integer: 0 (no quotes) 
• Multi-bit: “0000” (double quotes) 

• == for comparison equal 
• Multi-bit outputs must be registered via local storage 
• – // precedes a comment
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Benefits of HLSMs

Soda 
Dispenser

a (8-bit)s (8-bit)

c

d

Init Wait
Add

Disp.

c

tot:=tot+a

tot:=0
d:=‘0’

c’*(tot<s) c’*(tot<s)’

d:=‘1’



RTL(Register Transfer Level) 
Design

48



• Step 1: Capture a high-level state machine 
• Describe the system’s desired behavior as a high-level state machine. 
The state machine consists of states and transitions. The state machine 
is high level because the transition conditions and the state actions are 
more than just Boolean operations on single-bit input and outputs  

• Recommendations: 
• Always list all inputs, outputs and local registers on top of your HLSM diagram 
• Clearly specify the size in bits of each of them 
• On states: update the value of registers, update of outputs 
• On transitions: express conditions in terms of the HLSM inputs or state of the 
internal values and arithmetic operations between them.

49

RTL Design Process 



• Step 2: Convert it to a circuit 
• Create a datapath 

• Create a datapath to carry out the data operations of the high level state machine 
• Elements of your datapaths can be registers, adders, comparators, multipliers, dividers, etc. 

• Connect the datapath to a controller 
• Connect the datapath to a controller block. 
• Connect the external control inputs and outputs to the controller block. 
• Clearly label all control signals that are exchanged between the datapath and the controller  

• Derive the controller’s FSM 
• Convert the high-level state machine to a finite state machine (FSM) for the controller, by 
replacing data operations with setting and reading of control signals to and from the 
datapath 

• Final Step Implement the FSM as a state register and logic

50

RTL Design Process 



• Capture the behavior with HLSM 
• Convertit to a circuit 

• High-level architecture (datapath and control path) 
• Datapath capable of HLSM's data operations 
• Design controller to control the datapath

51

RTL Design Summary 



• Register: tot 
• Comparator: to compare tot 
and s 

• Adder: to update tot = tot + a 
• Connect datapath elements 
• I/O interface

52

Create Datapath for Soda Dispenser

Init Wait
Add

Disp.

c

tot:=tot+a

tot:=0
d:=‘0’

c’*(tot<s) c’*(tot<s)’
d:=‘1’

tot ld
clr

8-bit <

8-bit adder

a

tot < s

s



The HLSM for the processor’s control

53

Control Unit
operation
are we done?

Control Path

cycles mux

shift 1 0

add 4 1

mul 32 2

Init Add 
Begin

Mul 
Begin

add

mux := “0”
done := “0”

Shiftshift
mux := 0
done := 1 shift

Add
In-progress

remain == 0
remain > 0

remain := “3”
done :=“0”

Add
Done

remain > 0

remain := remain - 1 

mux := “1”,
done :=“1”add

mul
remain := “7”
done :=“0”

Mul
In-progress

remain > 0
remain := remain - 1

Mul
Doneremain > 0

remain == 0

mux := “2”,
done :=“1”

mul

shift

add

shift

mul



Memory technologies
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Static Random Access Memory 
(SRAM)
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A Classical 6-T SRAM Cell

56

bitlinebitline’
wordline

Q’ Q

Sense Amplifier 



A Classical 6-T SRAM Cell
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Sense Amplifier 



MUX

SRAM array

58

De
co

de
r

0
1
2

n-1
Sense
Amp

Sense
Amp

Sense
Amp

Sense
Amp

wd0          wd1           wd2 wd(m-1)

We can only work on cells sharing 
the same word line simultaneously

upper bits of 
address

lower bits of 
address



Dynamic Random Access Memory 
(DRAM)

59



• 1 transistor (rather than 6) 
• Relies on large capacitor to store 
bit 
• Write: transistor conducts, data 
voltage level gets stored on top 
plate of capacitor 

• Read: look at the value of d 
• Problem: Capacitor discharges 
over time 
• Must “refresh” regularly, by reading 
d and then writing it right back

60

An DRAM cell

wordline

data



DRAM array
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Ro
w
 D

ec
od

er
0
1
2

n-1

upper bits of 
address

Row Buffer

lower bits of 
address

Usually 4K — the page size of your OS!

MUX



Recap: Latency of volatile memory
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Size (Transistors per bit) Latency (ns)

Register 18T ~ 0.1 ns

SRAM 6T ~ 0.5 ns

DRAM 1T 50-100 ns



Memory “hierarchy” in modern processor architectures
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Processor

DRAM

Storage

SRAM $

Processor 
Core

Registers

larger

fastest

< 1ns

tens of ns

tens of ns

a few ns

GBs

TBs

32 or 64 words

KBs ~ MBs

L1 $

L2 $

L3 $

fastest

larger



• Which side is faster in executing the for-loop? 
A. Left 
B. Right 
C. About the same64

Thinking about programming
struct student_record 
{ 
    int id; 
    double homework; 
    double midterm; 
    double final; 
}; 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    struct student_record *records; 
    records = (struct 
student_record*)malloc(sizeof(struct 
student_record)*number_of_records); 
    init(number_of_records,records); 

    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=records[i].midterm; 

    printf("average: %lf\n",midterm_average/
number_of_records); 
   free(records); 
    return 0; 
} 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    id = (int*)malloc(sizeof(int)*number_of_records); 
    midterm = (double*)malloc(sizeof(double)*number_of_records); 
    final = (double*)malloc(sizeof(double)*number_of_records); 
    homework = (double*)malloc(sizeof(double)*number_of_records); 
    init(number_of_records); 
     
    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=midterm[i]; 
             
    free(id); 
    free(midterm); 
    free(final); 
    free(homework); 
    return 0; 
} 

More row buffer hits in the 
DRAM, more SRAM hits



• Which side is consuming less memory? 
A. Left 
B. Right 
C. About the same65

Thinking about programming (2)
struct student_record 
{ 
    int id; 
    double homework; 
    double midterm; 
    double final; 
}; 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    struct student_record *records; 
    records = (struct 
student_record*)malloc(sizeof(struct 
student_record)*number_of_records); 
    init(number_of_records,records); 

    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=records[i].midterm; 

    printf("average: %lf\n",midterm_average/
number_of_records); 
   free(records); 
    return 0; 
} 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    id = (int*)malloc(sizeof(int)*number_of_records); 
    midterm = (double*)malloc(sizeof(double)*number_of_records); 
    final = (double*)malloc(sizeof(double)*number_of_records); 
    homework = (double*)malloc(sizeof(double)*number_of_records); 
    init(number_of_records); 
     
    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=midterm[i]; 
             
    free(id); 
    free(midterm); 
    free(final); 
    free(homework); 
    return 0; 
} 

64-bit

final

homework

midterm

final

homework

midterm

id

id



Flash memory
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• Floating gate made by 
polycrystalline silicon trap 
electrons 

• The voltage level within 
the floating gate 
determines the value of 
the cell 

• The floating gates will 
wear out eventually

67

Recap: Flash memory



Recap: Types of Flash Chips

68

Single-Level Cell
(SLC)

Multi-Level Cell
(MLC)

Triple-Level Cell
(TLC)

2 voltage levels, 
1-bit

4 voltage levels, 
2-bit

8 voltage levels, 
3-bit

Quad-Level Cell
(QLC)

16 voltage levels, 
4-bit



Programming in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

11

10

01

00

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11 
10 
01 
00

3 Cycles/Phases to finish programming

phase #1

phase #2

phase #3



Optimizing 1st Page Programming in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

1 
0 
0
0

1 Phase to finish programming the first page! 
— the phase is shorter now

1 
0 
0 
0

phase #1

phase #1

1 

0

1st page



2nd Page Programming in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11 
10 
01
00

11 
10 
01 
00

phase #1

phase #1

1st page

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #2

phase #2

2 Phase to finish programming the second page!

2nd page



Program-erase cycles: SLC v.s. MLC v.s. TLC v.s. QLC
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• Flash pages must be erased in “blocks”
73

Basic flash operations

Block #0 …………………

Page #: 0 1 2 3 4 5 6 7 n-8n-7 n-6n-5n-4 n-3n-2 n-1

Block #1 …………………

Block #2 …………………

…
…
…
…

…
…
…
…

…
…
…
…

Block #n-2 …………………

Block #n-1 …………………

Free PageProgram Read

Erase

Programmed page



• Software designer should be 
aware of the characteristics 
of underlying hardware 
components

74

If programmer doesn’t know flash “features”



Power consumption

75



• Power is the direct contributor of “heat” 
• Packaging of the chip 
• Heat dissipation cost 
• Power = PDynamic + Pstatic 

• Energy = P * ET 
• The electricity bill and battery life is related to energy! 
• Lower power does not necessary means better battery life if the 
processor slow down the application too much

76

Power v.s. Energy



• The power consumption due to the switching of transistor 
states 

• Dynamic power per transistor 

• α: average switches per cycle 
• C: capacitance 
• V: voltage 
• f: frequency, usually linear with V 
• N: the number of transistors

77

Dynamic/Active Power

Pdynamic ∼ α × C × V2 × f × N



• The power consumption due to leakage — transistors do not 
turn all the way off during no operation 

• Becomes the dominant factor in the most advanced process 
technologies.  

• N: number of transistors 
• V: voltage 
• Vt: threshold voltage where 
transistor conducts (begins to switch)

78

Static/Leakage Power

Pleakage ∼ N × V × e−Vt



• Given a scaling factor S

79

Dennardian Broken

Parameter Relation Classical Scaling Leakage Limited
Power Budget 1 1

Chip Size 1 1
Vdd (Supply Voltage) 1/S 1
Vt (Threshold Voltage) 1/S 1/S 1
tex (oxide thickness) 1/S 1/S

W, L (transistor dimensions) 1/S 1/S
Cgate (gate capacitance) WL/tox 1/S 1/S
Isat (saturation current) WVdd/tox 1/S 1
F (device frequency) Isat/(CgateVdd) S S

D (Device/Area) 1/(WL) S2 S2

p (device power) IsatVdd 1/S2 1
P (chip power) Dp 1 S2

U (utilization) 1/P 1 1/S2



Power consumption
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Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Chip
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Dennardian Scaling Dennardian Broken

=49W =50W =100W!



Power density
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Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Chip
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Dennardian Scaling Dennardian Broken

= 49W
Chip Area = 50W

Chip Area
= 100W

Chip Area



Power density
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https://www.cadalyst.com/hardware/workstation-performance-tomorrow039s-possibilities-viewpoint-column-6351

https://www.cadalyst.com/hardware/workstation-performance-tomorrow039s-possibilities-viewpoint-column-6351


Power consumption to light on all transistors

83

Chip Chip
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Chip
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

=49W =50W =100W!

Dennardian Scaling Dennardian Broken

On ~ 
50W

Off ~ 
0W

Dark!

If we can only cool down 50W in the same area —



• Your power consumption goes up as the number of transistors 
goes up 

• Even Moore’s Law allows us to put more transistors within the 
same area —we cannot use them all simultaneously! 

• We have no choice to not activate all transistors at the same 
time!
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Dark silicon



• Aggressive dynamic voltage/frequency scaling 
• Throughout oriented — slower, but more 
• Just let it dark — activate part of circuits, but not all 
• From general-purpose to domain-specific — ASIC

85

Trends in the Dark Silicon Era



More cores per chip, slower per core

86
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An Overview of Kepler GK110 and GK210 Architecture 
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing 

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute 

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly 

less power and generating much less heat output.  

GK110 and GK210 are both designed to provide fast double precision computing performance to 

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU 

architecture, which is designed primarily for fast graphics performance and single precision consumer 

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32 

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing 

double precision calculations at a rate of up to 1/3 of single precision compute performance. 

Full Kepler GK110 and GK210 implementations inclƵde ϭϱ SMX ƵniƚƐ and Ɛiǆ ϲϰͲbiƚ memoƌǇ conƚƌolleƌƐ͘  
Different products will use different configurations.  For example, some products may deploy 13 or 14 

SMXs. Key features of the architecture that will be discussed below in more depth include: 

x The new SMX processor architecture 

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at 

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O 

implementation. 

x Hardware support throughout the design to enable new programming model capabilities 

x GK210  expands ƵƉon GKϭϭϬ͛Ɛ on-chip resources, doubling the available register file and shared 

memory capacities per SMX. 

 

SMX (Streaming 
Multiprocessor)

Thread 
scheduler

GPU 
global 

memory

High-
bandwidth 
memory 

controllers

The rise of GPU
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Recap: Floating point adder
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Programming and hardware

91

#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    float a, b, c, d; 
    int i = 0; 
    a = 1.345; 
    b = 1.123; 
    c = a + b; 
    printf("A: %d\n", c==2.468); 
     
    a = 16777216.0; 
    b = 1.0; 
    c = a+b+b; 
    d = a+2*b; 
    printf("B: %d\n", c==d); 
     
    printf("C: %d\n", d == 16777218.0); 
     
    a = 1.0; 
    for(i=0;i<200;i++) 
        a *= 2.0; 
    printf("D: %f\n", a); 

    a = a - a; 
    printf("E: %f\n", a); 
    return 0; 
} 



Data storage matters

92



• What’s the expected size of “test.a” 
A. 4 
B. 8 
C. 9 
D. 10 
E. None of the above

93

Expected file size
#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    FILE *fp; 
    int a = 123456789; 
    fp = fopen("test.a","w"); 
    fprintf(fp, "%d", a); 
    fclose(fp); 
    return 0; 
} 

Poll close in



• What’s the expected size of “test.a” 
A. 4 
B. 8 
C. 9 
D. 10 
E. None of the above
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Expected file size
#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    FILE *fp; 
    int a = 123456789; 
    fp = fopen("test.a","w"); 
    fprintf(fp, "%d", a); 
    fclose(fp); 
    return 0; 
} 



ASCII to Binary doesn’t scale with I/O bandwidth
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Demo
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Let’s take a group photo!

97



Sample Final

98



• Multiple choices * 50 
• (Multiple choices + explanation) * 10 
• Free answer/open-ended questions * 6 
•

99

Format of final



• Input to a FF comes from the output of another FF through a 
combinational circuit 

• The FF and combinational circuit have a min & max delay 
• Which of the following violations occurs if max delay of R1 is zero & 
max delay of the combinational circuit is equal to the clock period? 
A. Hold time violation for R2 
B. Setup violation for R2 
C. Hold time violation for R1 
D. Setup violation for R1 
E. None of the above

100

Causes of Timing Issues in Sequential Circuits

R1

CLK

R2Combinational 
Logic



• Input to a FF comes from the output of another FF through a 
combinational circuit 

• The FF and combinational circuit have a min & max delay 
• Which of the following violations occurs if min delay of R1 is 
zero & max delay of the combinational circuit was just a wire? 
A. Hold time violation for R2 
B. Setup violation for R2 
C. Hold time violation for R1 
D. Setup violation for R1 
E. None of the above

101

Causes of Timing Issues in Sequential Circuits (2)

R1

CLK

R2Combinational 
Logic



• What’s the maximum 
frequency?  
A. 1 / 110ns 
B. 1 / 220ns 
C. 1 / 200ns 
D. 1 / 180ns 
E. None of the above

102

Example: timing constraints

CLK

A

B

C

D

E

Flip flops

tccq 10 ns

tpcq 70 ns

tsetup 20 ns

thold 30 ns

tpd tcd
AND 20 ns 10 ns

NOT 10 ns 10 ns

XOR 110 ns 50 ns

Tc ≥ tpcq + tpd + tsetup
tccq + tcd > thold



• Regarding power and energy, how many of the following statements 
are correct? 
① Lowering the power consumption helps extending the battery life 
② Lowering the power consumption helps reducing the heat generation 
③ Lowering the energy consumption helps reducing the electricity bill 
④ A CPU with 10% utilization can still consume 33% of the peak power 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

103

Power & Energy



• If we are able to cram more transistors within the same chip area (Moore’s law continues), 
but the power consumption per transistor remains the same. Right now, if put more 
transistors in the same area because the technology allows us to. How many of the 
following statements are true? 
① The power consumption per chip will increase 
② The power density of the chip will increase 
③ Given the same power budget, we may not able to power on all chip area if we maintain the 

same clock rate 
④ Given the same power budget, we may have to lower the clock rate of circuits to power on all 

chip area 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What happens if power doesn’t scale with process technologies?



Which is the most likely circuit realization of Life on Mars

105

S0 S1 S20/0 0/0

1/1

0/0

1/0
(A)

input
(D)

Combinational 
Circuit

input output

(B)

1/0

Combin
ational 
Circuit

input

D Flip-
flopDD Q

CLK

output

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK

(C)

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK



• Regarding the following flash memory characteristics, please identify how 
many of the following statements are correct 
① Flash memory cells can only be programmed with limited times 
② The reading latency of flash memory cells can be largely different from 

programming 
③ The latency of programming different flash memory pages can be different 
④ The programmed cell cannot be reprogrammed again unless its charge level is 

refilled to the top-level 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Flash memory characteristics



• Consider the following adders. Assume each gate delay is 1ns and the 
delay in a register is 2ns. Please rank their maximum operating frequencies 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (2) > (1) > (3) > (4) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)
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Frequency



• Refer to the shift right logic, what do we 
need to modify to perform shift left? 
A. We can alter the interpretation of shamt 

to support shift left 
B. We don’t need to modify the circuit, just 

take a not on every input 
C. We don’t need to modify the circuit, just 

change the order of inputs 
D. We don’t need to modify the circuit, just 

change the order of outputs 
E. None of the above

108

How to support shift left?



• Where to place a buffer 
with 𝑡𝑐𝑑= 𝑡𝑝𝑑= 25 ns to 
solve this hold time 
violation? 
A. After A 
B. After B 
C. After C 
D. Before D 
E. Before E

109

Example: timing constraints

CLK

A

B

C

D

E

tpd tcd
AND 20 ns 10 ns

NOT 10 ns 10 ns

XOR 110 ns 50 ns

Flip flops

tccq 10 ns

tpcq 70 ns

tsetup 20 ns

thold 30 ns



• Assume we have a 25 ns 
buffer placed before E, but 
now with 20 ns clock 
skew. Are we having hold 
time violation? 
A. Yes 
B. No

110

Example: timing constraints

CLK

A

B

C

D

E

tpd tcd
AND 20 ns 10 ns

NOT 10 ns 10 ns

XOR 110 ns 50 ns

Flip flops

tccq 10 ns

tpcq 70 ns

tsetup 20 ns

thold 30 ns



• If we are designing a processor that supports shift, add, mul operations with 
the following datapath components, what’s the expected processor clock 
rate? 
• Register — 0.1 ns 
• Shifter — 0.2 ns 
• Serial 4-bit CLA — 0.3 ns 
• Serial 32-bit shift-and-add multiplier — 0.9 ns 
A. ~ 10 GHz 
B. ~ 5 GHz 
C. ~ 1 GHz 
D. ~ 500 MHz 
E. ~ 50 MHz

111

The clock rate of the processor (2)



• If we are designing a processor that supports shift, add, mul operations with 
the following datapath components and the clock rate is set to 1GHz, what’s 
the expected number of cycles we need for a 32-bit add operation? 
• Register — 0.1 ns 
• Shifter — 0.2 ns 
• Serial 8-bit CLA — 0.4 ns 
• Serial 32-bit shift-and-add multiplier — 0.9 ns 
A. 1 
B. 2 
C. 4 
D. 8 
E. 16

112

How many cycles for an add?



• Which path in the above circuit determines the contamination 
delay of the circuit (assuming the delay of all the gates is the 
same)? 
A. Blue path 
B. Red path 
C. Both 
D. Neither

113

Combinational Logic: Output Timing Constraints



• Which path in the above circuit determines the propagation 
delay of the circuit (assuming the delay of all the gates is the 
same)? 
A. Blue path 
B. Red path 
C. Both 
D. Neither

114

Combinational Logic: Output Timing Constraints



• The timing of which of the following signals can cause a setup-
time violation? 
A. The input signal D(t) 
B. The output signal Q(t) 
C. Both of the above 
D. None of the above
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Setup-time violation

D Flip-
flop

DD Q

CLK

Combinational 
Logic

Q(t)
D(t)



• Excitation table is basically the truth table describing the 
combinational circuit that provides inputs for the flip-flops in 
the sequential circuit. How many rows are there in the 
excitation table of Life on Mars? 
A. 2 
B. 3 
C. 4 
D. 8 
E. 32

116

Excitation Table

input

Combin
ational 
Circuit

D Flip-
flopDD Q

output
D Flip-
flopDD Q

CLK
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What will we output 4 cycles later?

Clk

D Flip-
flop

DD QInput 1

D Flip-
flop

DD Q

D Flip-
flop

DD Q

D Flip-
flop

DD Q

Output 4Output 3Output 2Output 1

• For the above D-FF organization, what are we expecting to see in (O1,O2,O3,O4) in the 
beginning of the 5th cycle after receiving (1,0,1,1)? 

A. (1,1,1,1) 
B. (1,0,1,1) 
C. (1,1,0,1) 
D. (0,0,1,0) 
E. (0,1,0,0)



• For the extended shift register, what sequence of input will the 
let the circuit output “1”? 
A. (1, 1, 1, 1) 
B. (0, 1, 0, 1) 
C. (1, 0, 1, 0) 
D. (0, 1, 1, 0) 
E. (1, 0, 0, 1)
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Let’s play with the shift register more…



• Consider the following memory elements 
① 64*64-bit Registers 
② 512B SRAM 
③ 512B DRAM 
A. Area: (1) > (2) > (3) Delay: (1) < (2) < (3) 
B. Area: (1) > (3) > (2) Delay: (1) < (3) < (2) 
C. Area: (3) > (1) > (2) Delay: (1) < (3) < (2) 
D. Area: (3) > (2) > (1) Delay: (3) < (2) < (1) 
E. Area: (2) > (3) > (1) Delay: (2) < (3) < (1)
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Register v.s. DRAM v.s. SRAM



• Please identify how many of the following statements explains  why digital 
computers are now more popular than analog computers. 
① The cost of building systems with the same functionality is lower by using 

digital computers. 
② Digital computers can express more values than analog computers. 
③ Digital signals are less fragile to noise and defective/low-quality components. 
④ Digital data are easier to store. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Recap: Why are digital computers more popular now?



• X, Y are two Boolean variables. Consider the following function:
X • Y + X
How many of the following the input values of X and Y can lead to an output of 1 
① X = 0, Y = 0 
② X = 0, Y = 1 
③ X = 1, Y = 0 
④ X = 1, Y = 1 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Let’s practice!



• A Boolean equation is converted to a circuit in what order 
A. Items within parentheses, then NOT, then AND, then OR. 
B. OR, then NOT, then AND, then items within parentheses. 
C. Items within parentheses, then AND, then OR, then NOT. 
D. NOT, then items within parentheses, then AND, then OR.
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A Boolean equation is converted to a circuit in what order?



• Which equation best captures the following logic: Bob will pass 
the class only if doing all of the following: Bob attends all 
lectures, completes all assignments, passes all exams. Inputs: 
A = 1 indicates attends all lectures, Z = 1 indicates completes all 
assignments, E = 1 indicates passes all exams Outputs: P = 1 
indicates passes the class 
A. P = A AND Z OR NOT(E) 
B. P = A OR Z OR E 
C. P = A AND Z OR E 
D. P = A AND Z AND E
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Boolean Equation from Truth Table



This equation Y = (a' + b)c is implemented by which circuit?
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• How many of the following minterms are part of the sum-of-product form of the full adder in 
generating the output bit? 
① A’B’Cin’ 
② A’BCin’ 
③ AB’Cin’ 
④ ABCin’ 
⑤ A’B’Cin 
⑥ A’BCin 
⑦ AB’Cin 
⑧ ABCin 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The sum-of-product form of the full adder



• What’s the simplified function of the following K-map? 
A. A’ 
B. A’B 
C. AB’ 
D. B 
E. A
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Practicing 2-variable K-map 

A

B
0 1

0 0 0

1 1 1



• How many of the followings are “valid” K-Maps?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Valid K-Maps

0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

0,1 1,1 1,0 0,0
0 1 0 1 0
1 0 1 0 1

1,1 1,0 0,1 0,0
0 0 1 1 0
1 1 0 0 1

0,0 0,1 1,0 1,1
0 0 1 1 0
1 1 0 0 1

(1) (2) (3)

(4)
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Minimum number of SOP terms

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

• Minimum number of SOP terms to cover the following 
function? 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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Minimum number of SOP terms

Input Output
A B C
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• Minimum number of SOP terms to cover the following 
function? 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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Minimum SOP terms
• What’s the minimum sum-of-products expression of the given 
truth table? 
A. A’B’C’ + A’BC’+ A’BC + AB’C’ 
B. A’B’C + AB + AC 
C. AB’C’ + B’C’ 
D. A’B + B’C’ 
E. A’C’ + A’B + AB’C’

Input Output
A B C
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0



• What’s the minimum sum-of-products expression of the given 
K-map? 
A. B’C’ + A’B’ 
B. B’C’D’ + A’B’ + B’C’D’ 
C. A’B’CD’ + B’C’ 
D. AB’ + A’B’ + A’B’D’ 
E. B’C’ + A’C’D’
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4-variable K-map

00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 0 0 0 0

10 1 1 0 0

A’B’    A’B     AB      AB’

C’D’ 

C’D 

CD 

CD’



• What’s the minimum SOP presentation of LT? 
A. A’B’D’ + AC’ + BCD 
B. A'B'D + A'C + B’CD 
C. A'B'C'D' + A'BC'D + ABCD + AB’CD’ 
D. ABCD + AB’CD’ + A’B’C’D’ + A’BC’D 
E. BC'D' + AC' + ABD'
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LT?
Input Output

A B C D LT EQ GT
0 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 1 0



• A 4-bit adder/subtractor has inputs A = 0100, and B = 0010. 
What value of sub outputs sum S = 0110 and cout = 0000? 
A. 0 
B. 1 
C. 0000 
D. 1111
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Input/output of a design



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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If we want to support subtraction?



• One approach estimates transistors, assuming every gate input requires 2 
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but 
ignoring wires as above is a common approximation. 

• Considering the shown 1-bit full adder and use it to build a 32-bit adder, 
how many transistor do we need? 
A. 1152 
B. 1600 
C. 1664 
D. 1792 
E. 1984
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How efficient is the adder?

ABCin

Cout Out



• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the 
final output? 
A. 2 
B. 32 
C. 64 
D. 128 
E. 288
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How efficient is the adder?

ABCin

Cout Out



• What’s the gate-delay of a 4-bit CLA? 
A. 2 
B. 4 
C. 6 
D. 8 
E. 10
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CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many transistors do we need to implement a 4-bit CLA 
logic? 
A. 38 
B. 64 
C. 88 
D. 116 
E. 128

138

CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many estimated transistors are there in the 4-bit 4:1 
MUX? 
A. 48 
B. 64 
C. 80 
D. 128 
E. 192
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How big is the 4-bit 4:1 MUX?



• What’s the estimated gate delay of an 8:1 MUX? 
A. 1 
B. 2 
C. 4 
D. 8 
E. 16
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Gate delay of 8:1 MUX



• How many AND gates does a 16x1 mux require? 
A. 2 
B. 4 
C. 8 
D. 16
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16-1 MUX



• Realign the number into 1.F * 2e 
• Exponent stores e + 127 
• Fraction only stores F
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IEEE 754 format
+/- Exponent (8-bit) Fraction (23-bit)32-bit float

• Convert the following number
1 1000 0010 0100 0000 0000 0000 0000 000 
A. - 1.010 * 2^130 
B. -10 
C. 10 
D. 1.010 * 2^130 
E. None of the above



• Regarding the above clock signal, please identify how many of the following 
statements are correct? 
① Clock period of 4ns with 250MHz frequency 
② Clock duty cycle 75% 
③ Clock period of 1ns with 1GHz frequency 
④ The above contains two complete clock cycles. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Clock signal
0ns 1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns



• Which of the following diagrams is a correct FSM for the 001 
pattern recognizer on the Mars rover? (If sees “001”, output “1”)
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FSM for Life on Mars

S0 S1 S20/0 0/0

1/0

1/1

0/0

1/0(A)

S0 S1 S20/0 0/0
1/10/0

1/0

1/0(B)
(D)  All are correct 

(E)  None is correct

(C)

S0 S1 S20/0 1/1

1/0 1/1

1/0 0/0

1/0 == Input 1/Output 0



• Which is true about the given 2-bit carry-lookahead adder? Hint: g = ab, p = a + 
b, and the expression for each digit's carry-out is co = ab + (a + b)ci = g + p·ci. 

A. c0 = 0, when a0 = 1, b0 = 1, and cin = 0 
B. c0 = 1, when a0 = 1, b0 = 1, and cin = 1 
C. c1 = 1, when cin = 1, g0 = 1, p0 = 1, g1 = 0, and p1 = 0 
D. c1 = 0, when cin = 0, g0 = 1, p0 = 1, g1 = 1, and p1 = 1
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2-bit CLA



• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned 
char in C). How many of the following C statements and their execution results 
are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1



• Regarding the pros of floating point and fixed point 
expressions, please identify the correct statement 
A. Fixed point can be express wider range of numbers than floating 

point numbers, but the hardware design is more complex 
B. Floating point can be express wider range of numbers than 

floating point numbers, but the hardware design is more complex 
C. Fixed point can be express wider range of numbers than floating 

point numbers, and the hardware design is simpler 
D. Floating point can be express wider range of numbers than 

floating point numbers, and the hardware design is simpler
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The advantage of floating/fixed point



• What’s the minimum sum-of-products expression of the given 
K-map? 
A. B’C’ + A’B’ 
B. B’C’D’ + A’B’ + B’C’D’ 
C. A’B’CD’ + B’C’ 
D. AB’ + A’B’ + A’B’D’ 
E. B’C’ + A’C’D’
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4-variable K-map

00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 0 0 0 0

10 1 1 0 0

A’B’    A’B     AB      AB’

C’D’ 

C’D 

CD 

CD’



• How many of the followings are “valid” K-Maps?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Valid K-Maps

0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

0,1 1,1 1,0 0,0
0 1 0 1 0
1 0 1 0 1

1,1 1,0 0,1 0,0
0 0 1 1 0
1 1 0 0 1

0,0 0,1 1,0 1,1
0 0 1 1 0
1 1 0 0 1

(1) (2) (3)

(4)



Multiple choices + explanations
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• Does the circuit have a 
hold violation? 
A. Yes 
B. No
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Example: timing constraints

CLK

A

B

C

D

E

tpd tcd
AND 20 ns 10 ns

NOT 10 ns 10 ns

XOR 110 ns 50 ns

Flip flops

tccq 10 ns

tpcq 70 ns

tsetup 20 ns

thold 30 ns

Tc ≥ tpcq + tpd + tsetup + tskew
tccq + tcd > thold + tskew

Why?



• What’s the estimated gate-delay of the 4-bit multiplier? 
(Assume adders are composed of 4-bit CLAs) 
A. 9 
B. 12 
C. 13 
D. 15 
E. 16
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Gate-delays of Array-style Multipliers

Why?



• If we are designing a processor that supports shift, add, mul operations with 
the following datapath components, what’s the expected processor clock 
rate? 
• Register — 0.1 ns 
• Shifter — 0.2 ns 
• 32-bit CLA — 1.6 ns 
• 32-bit hierarchical multiplier — 16 ns 
A. ~ 10 GHz 
B. ~ 5 GHz 
C. ~ 500 MHz 
D. ~ 50 MHz 
E. ~ 5 MHz
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The clock rate of the processor

Why?



• Consider the following adders? 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 32-bit serial adders made with 4-bit CLA adders 
④ 32-bit serial adders made with 1-bit full adders 
A. Area: (1) > (2) > (3) > (4) Delay: (1) < (2) < (3) < (4) 
B. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (2) < (4) 
C. Area: (1) > (3) > (4) > (2) Delay: (1) < (3) < (4) < (2) 
D. Area: (1) > (2) > (3) > (4) Delay: (1) < (3) < (2) < (4) 
E. Area: (1) > (3) > (2) > (4) Delay: (1) < (3) < (4) < (2)
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Area/Delay of adders

Why?



• Consider the following adders. Assume each gate delay is 1ns and the delay 
in a register is also 1ns. And we are processing millions of add operations. 
Please rank their throughputs. 
① 32-bit CLA made with 8 4-bit CLA adders 
② 32-bit CRA made with 32 full adders 
③ 8-stage, pipelined 32-bit serial adders made with 4-bit CLA adders 
④ 32-stage, pipelined 32-bit serial adders made with 1-bit full adders 
A. (1) > (2) > (3) > (4) 
B. (2) > (1) > (4) > (3) 
C. (3) > (4) > (2) > (1) 
D. (4) > (3) > (2) > (1) 
E. (4) > (3) > (1) > (2)
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Throughput

Why?



• Assume each gate 
delay is 1ns and the 
delay in a register is 
2ns, what’s the cycle 
time of the circuit? 
A. 2 ns 
B. 3 ns 
C. 4 ns 
D. 5 ns 
E. 6 ns
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Cycle time of the circuit?

ai

bi

si

D Flip-
flopD Q

Why?



• How many transistors do we need to implement a 4-bit CLA 
logic? 
A. 38 
B. 64 
C. 88 
D. 116 
E. 128
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Recap: CLA’s size

Why?



• Consider the following C program.

Please identify the correct statement. 
A. The program will finish since i will end up to be +0 
B. The program will finish since i will end up to be something < 0 
C. The program will not finish since i will always be a positive non-zero number. 
D. The program will not finish since i will end up staying at some special FP32 presentation 
E. The program will not finish but raise an exception since we will go to NaN first.
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Will the loop end? (last run)

#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    float i=1.0; 
    while(i > 0) i+=i; 
    printf("We're done! %f\n",i); 
    return 0; 
} Why?



• Consider the following C program.

Why i stuck at 16777216.000? 
A. It’s a special number in IEEE 754 standard that an adder will treat it differently 
B. It’s a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard 
C. It’s just the maximum integer that IEEE 754 standard can represent 
D. It’s nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0 
E. It’s nothing special, but just happened to be the case that 16777216.0 add anything will become 

16777216.0
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Why stuck at 16777216?

#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    float i=1.0; 
    while(i > 0) i++; 
    printf("We're done! %f\n",i); 
    return 0; 
} Why?



• For the following code, please identify how many statements are correct 
① We will see the same output at X and Y 
② X will print — 12802.454 
③ Y will print — 12802.454 
④ Neither X nor Y will print the right result, 

but X is closer to the right answer 
⑤ Neither X nor Y will print the right result, 

but Y is closer to the right answer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Are we getting the same numbers?
#include <stdio.h> 

int main(int argc, char **argv) { 
    float a, b, c; 
    a = 1280.245; 
    b = 0.0004; 
    c = (a + b)*10.0; 
    printf("%f\n”,c); // X 
    c = a*10.0 + b*10.0; 
    printf("%f\n”,c); // Y 
    return 0; 
}

Why?



Free Answer Questions
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• 0x0 — 1 
• 0x1 — 2 
• 0x2 — 3 
• 0x3 — 4 
• 0x4 — 5 
• 0x5 — 6 
• 0x6 — 7 
• 0x7 — 8 
• 0x8 — 9 
• 0x9 — 0 
• 0xA — 0xF — Don’t care
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BCD+1 — Binary coded decimal + 1

C
om

pa
ra

to
rI8

I4

I2

I1

O8

O4
Input

O2
Output

O1

Can you write the truth table? 
Can you create a K-map? 

Can simplify the boolean equation?



What’s the output of this? and Why?
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#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    float a, b, c, d; 
    int i = 0; 
    a = 1.2; 
    b = 1.0; 
    c = a + b; 
    printf("A: %d\n", c==2.2); 
     
    a = 33554432.0; 
    b = 2.0; 
    c = a+b; 
    printf("B: %d\n", c, d, c==33554434.0); 
     
    a = 1.0; 
    for(i=0;i<200;i++) 
        a += a; 
    printf("C: %f\n", a); 

    a = a/0.0; 
    printf("D: %f\n", a); 
    return 0; 
} 



164

Which side is faster? Why?
struct student_record 
{ 
    int id; 
    double homework; 
    double midterm; 
    double final; 
}; 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    struct student_record *records; 
    records = (struct 
student_record*)malloc(sizeof(struct 
student_record)*number_of_records); 
    init(number_of_records,records); 

    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=records[i].midterm; 

    printf("average: %lf\n",midterm_average/
number_of_records); 
   free(records); 
    return 0; 
} 

int main(int argc, char **argv) 
{ 
    int i,j; 
    double midterm_average=0.0; 
    int number_of_records = 10000000; 
    struct timeval time_start, time_end; 
    id = (int*)malloc(sizeof(int)*number_of_records); 
    midterm = (double*)malloc(sizeof(double)*number_of_records); 
    final = (double*)malloc(sizeof(double)*number_of_records); 
    homework = (double*)malloc(sizeof(double)*number_of_records); 
    init(number_of_records); 
     
    for (j = 0; j < 100; j++) 
        for (i = 0; i < number_of_records; i++) 
            midterm_average+=midterm[i]; 
             
    free(id); 
    free(midterm); 
    free(final); 
    free(homework); 
    return 0; 
} 



• Can you design a serial shifter? What’s the pros and cons? 
• Can you design a pipelined floating point adder? Where would you 
insert pipeline registers? What do you expect that to change the 
performance of your processors? 

• If Moore’s law allows us to keep putting more transistors into the same 
area, you can add more pipeline stages into the current design. Do 
you think adding more stages helps improve performance? Why or 
why not? 

• Why ASICs can improve system performance? 
• What do you expect PLC (Peta-level cell, 5-bit in a cell) to change the 
behavior of flash SSD?
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Other questions to think about



• iEval — Capture your screenshot, submit through iLearn and 
you will receive a full credit assignment 

• Assignment 6 due tonight 
• Lab 6 due this Friday 
• Please fill out ABET survey through iLearn 
• Final exam will be held during the campus scheduled period to 
avoid conflicts 
• 6/11 11:30am — 2:59:59pm 
• About the same format as midterm, but longer
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Announcement 
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