Datapath Components

Prof. Usagi

Recap: Digital circuits only have 0s and 1s...

Recap: Converting from decimal to binary

$$2 \begin{bmatrix} 321 \\ 2 & 160 & \dots & 1 \\ 2 & 80 & \dots & 0 \\ 2 & 40 & \dots & 0 \\ 2 & 20 & \dots & 0 \\ 2 & 20 & \dots & 0 \\ 2 & 20 & \dots & 0 \\ 2 & 10 & \dots & 0 \\ 2 & 5 & \dots & 0 \\ 2 & 5 & \dots & 0 \\ 1 & \dots & 0 \end{bmatrix}$$

= 0b**10100001**

Recap: 2-variable K-map example

F(A, B) = A'	
--------------	--

Inp	Output	
Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Recap: 3-variable K-map

- Reduce to 2-variable K-map 1 dimension will represent two variables
- Adjacent points should differ by only 1 bit
 - So we only change one variable in the neighboring column
 - 00, 01, 11, 10 such numbering scheme is so-called **Gray-code**

Recap: 4-variable K-map

6

- Reduce to 2-variable K-map both dimensions will represent two variables
- Adjacent points should differ by only 1 bit
 - So we only change one variable in the neighboring column
 - Use Gray-coding 00, 01, 11, 10

F(A, B, C) = A'B'C' + B'CD'

Recap: K-Map with "Don't Care"s You can treat "X" as either 0 or 1 — depending on which is more advantageous **A'B'** A'B AB **AB'** (A, B) 0,0 0,1 1,1 1,0 C \mathbf{C}^{\prime} **C'** X 0 С 1 0 $\left(\right)$ If we treat the "X" as 0? If we treat the "X" as 1? F(A,B,C)=A'B'+A'C+AC' F(A,B,C) = C' + A'C

BCD+1 — Binary coded decimal + 1

- 0x0—1
- 0x1-2
- 0x2-3
- 0x3-4
- 0x4 5
- 0x5-6
- 0x6-7
- 0x7—8
- 0x8-9
- 0x9—0
- OxA OxF Don't care

8

Input			Output			
14	12	11	08	04	02	01
0	0	0	0	0	0	1
0	0	1	0	0	1	0
0	1	0	0	0	1	1
0	1	1	0	1	0	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	1
1	1	1	1	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	1	0	Χ	Χ	Χ	Χ
0	1	1	Χ	Χ	Χ	Χ
1	0	0	Χ	Χ	Χ	Χ
1	0	1	Χ	Χ	Χ	Χ
1	1	0	Χ	Χ	Χ	Χ
1	1	1	X	Χ	Χ	Χ

0

0

0

0

0

|--|

Input					Out	tput	
18	14	12	11	08	04	02	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	Χ	Χ	Χ	Χ
1	0	1	1	Χ	Χ	Χ	Χ
1	1	0	0	Χ	Χ	Χ	Χ
1	1	0	1	Χ	Χ	Χ	Χ
1	1	1	0	Χ	Χ	Χ	Χ
1	1	1	1	X	X	X	Χ

08	-	18′14′	['] 18'14	1814	1814′
		00	01	11	10
12′11′	00	0	0	Х	1
12′11	01	0	0	Х	0
1211	11	0	1	Х	Х
1211′	10	0	0	Х	Х
02		18′14'	′ 18 ′14	1814	1814′
02		18'14' 00	⁷ 18′14 01	1814 11	1814' 10
O2 12′11′	00	18'14' 00	0 18'14	1814 11 X	1814' 10 0
O2 12′11′ 12′11	00	18'14' 00 1	18'14 01 0 1	1814 11 ×	1814' 10 0
O2 12'11' 12'11 1211	000 01 11	18'14' 00 1	18'14 01 1 0	1814 11 X X	I8I4' 10 0 0 X

04		18′14′	18′14	1814	1814′
		00	01	11	10
12′11′	00	0	1	Х	0
12′11	01	0	1	Х	0
1211	11	1	0	Х	Х
1211′	10	0	1	Х	Х
01		18'14'	18′14	1814	1814′
		00	01	11	10

		00	01	11	10
12′11′	00	1	1	Х	1
12′11	01	0	0	Х	0
1211	11	0	0	Х	Х
1211′	10	1	1	Х	Х

- Revisiting the binary number system
- Adders
- Multiplexer

What do we want from a number system?

- Obvious representation of 0, 1, 2,
- Represent positive/negative/integer/floating points
- Efficient usage of number space
- Equal coverage of positive and negative numbers
- Easy hardware design
 - Minimize the hardware cost/reuse the same hardware as much as possible
 - Easy to distinguish positive numbers
 - Easy to negation

Representing a positive number

Assume that we have 4 bits

Decimal	Binary	Decimal	Bina
0	0000	4	010
1	0001	5	010
2	0010	6	011
3	0011	7	011

• Example binary arithmetic

$$3 + 2 = 5$$

1, carry
0011
+0010
0101

$$3 + 3 = 6$$

1, 1,
0 0 1 1
+ 0 0 1 1
0 1 1 0

Poll close in 1:30

The first proposal

- How many of the following goals can "simply using the most significant bit as the signed bit" to represent a negative number fulfill in the number system?
 - ① Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - ③ Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0
 - B. 1
 - C. 2
 - D. 3

E. 4

Decimal	Binary	Decimal	Binary
0	0000	-0	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

The first proposal

- How many of the following goals can "simply using the most significant bit as the signed bit" to represent a negative number fulfill in the number system?
 - Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0
 - B. 1
 - C. 2
 - D. 3

E. 4

Decimal	Binary	Decimal	Binary
0	0000	-0	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

Can this work?

• 3 + 2 = 50011 +00100101

•
$$3 + (-2) = 1$$

 $0 0 11$
 $+ 1010$
 $1 1 0 1 = -5$ (Not 1)

Doesn't work well and you need a separate procedure to deal with negative numbers!

The first proposal

- How many of the following goals can "simply using the most significant bit as the signed bit" to represent a negative number fulfill in the number system?
 - Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - ③ Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0
 - B. 1

D. 3

Decimal	Binary	Decimal	Binary
0	0000	-0	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

Poll close in 1:30

The second proposal — 1's complement

- How many of the following goals can "1's complement flip/not every bit in the corresponding positive number" to represent a negative number fulfill in the number system?
 - ① Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - ③ Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Decimal	Binary	Decimal	Binary
0	0000	-0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

The second proposal — 1's complement

- How many of the following goals can "1's complement flip/not every bit in the corresponding positive number" to represent a negative number fulfill in the number system?
 - Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Decimal	Binary	Decimal	Binary
0	0000	-0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

Second proposal: 1's complement

•
$$3 + 2 = 5$$

 0011
 $+0010$
 0101
• $3 + (-2) = 1$
• $3 + (-2) = 1$
• 0011
 1111
 0011
 -1111
 0011
 -1111
 0011
 -1111
 0011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -1111
 00011
 -11101
 00011
 -11101
 $00000 = 0$ (Still not 1)

Still does not work, but seems closer...

The second proposal — 1's complement

- How many of the following goals can "1's complement flip/not every bit in the corresponding positive number" to represent a negative number fulfill in the number system?
 - Obvious representation of 0, 1, 2,
 - ② Efficient usage of number space
 - Equal coverage of positive and negative numbers
 - ④ Easy hardware design
 - A. 0

D. 3

E. 4

Decimal	Binary	Decimal	Binary
0	0000	-0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

Poll close in 1:30

The third proposal — 2's complement

• How many of the following goals can "2's complement — take the 1's complement of corresponding positive number and then +1" to represent a negative number fulfill in the

number system?

- ① Obvious representation of 0, 1, 2,
- 2 Efficient usage of number space
- Equal coverage of positive and negative (3) numbers
- ④ Easy hardware design
- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

Decimal	Binary	Decimal	Binary
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	-7	1001
7	0111	-8	1000

The third proposal — 2's complement

• How many of the following goals can "2's complement — take the 1's complement of corresponding positive number and then

+1" to represent a negative number fulfill in the number system?

- Obvious representation of 0, 1, 2,
- Efficient usage of number space Does not waste 1111 anymore Equal coverage of positive and negative numbers
- ④ Easy hardware design
- A. 0
- **B**. 1
- C. 2
- D. 3
- E. 4

Decimal	Binary	Decimal	Binary
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	-7	1001
7	0111	-8	1000

Evaluating 2's complement

• Do we need a separate procedure/hardware for adding positive and negative numbers?

- A. No. The same procedure applies
- B. No. The same "procedure" applies but it changes overflow detection
- C. Yes, and we need a new procedure
- D. Yes, and we need a new procedure and a new hardware
- E. None of the above

Evaluating 2's complement

• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies

- B. No. The same "procedure" applies but it changes overflow detection
- C. Yes, and we need a new procedure
- D. Yes, and we need a new procedure and a new hardware
- E. None of the above

The third proposal — 2's complement

 How many of the following goals can "2's complement — take the 1's complement of corresponding positive number and then
 1" to represent a positive number fulfill in the

+1" to represent a negative number fulfill in the number system?

- Obvious representation of 0, 1, 2,
 - Efficient usage of number space
 - Equal coverage of positive and negative numbers
- ਓ Easy hardware design
- A. 0
- B. 1
- C. 2
- D. 3

E. 4

Decimal	Binary	Decimal	Binary
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	-7	1001
7	0111	-8	1000

Adder

We've built this before!

Poll close in 1:30

If we want to support subtraction?

- If we would like to extend the 4-bit adder that we've built before to support "A-B" with 2's complement, how many of the followings should we add at least?
 - ① Provide an option to use bitwise NOT A
 - ② Provide an option to use bitwise NOT B
 - ③ Provide an option to use bitwise A XOR B
 - ④ Provide an option to add 0 to the input of the half adder
 - S Provide an option to add 1 to the input of the half adder
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

If we want to support subtraction?

A₃B₃

Full

Adder

O3

C₃

 \mathbf{C}_2

- If we would like to extend the 4-bit adder that we've built before to support "A-B" with 2's complement, how many of the followings should we add at least?
 - ① Provide an option to use bitwise NOT A
 - Provide an option to use bitwise NOT B
 - ③ Provide an option to use bitwise A XOR B
 - $\textcircled{\sc opt}$ Provide an option to add 0 to the input of the half adder
 - Provide an option to add 1 to the input of the half adder
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

This is what we want!

We can support more bits!

Input			Ou	tput
Α	В	Cin	Out	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Recap: Full Adder

		A'B'	Α΄Β	AB	AB'
	Out(A, B)	0,0	0,1	1,1	1,0
Cin'	0	0	1	0	1
Cin	1	1	0	1	0

- One approach estimates transistors, assuming every gate input requires 2 transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 inputs \cdot 2 trans/input = 4 transistors. A 3-input gate requires $3 \cdot 2 = 6$ transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but ignoring wires as above is a common approximation.
- Considering the shown 1-bit full adder and use it to build a 32-bit adder, how many transistor do we need?
 - A. 1152
 - B. 1600
 - C. 1664
 - D. 1792
 - E. 1984

- One approach estimates transistors, assuming every gate input requires 2 transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 inputs \cdot 2 trans/input = 4 transistors. A 3-input gate requires $3 \cdot 2 = 6$ transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but ignoring wires as above is a common approximation.
- Considering the shown 1-bit full adder and use it to build a 32-bit adder, how many transistor do we need?

of 2-inputs: 3 # of 3-inputs: 5 # of 4-inputs: 1 = 3*4 + 5*6 + 1*8 = 50 each

- Considering the shown 1-bit full adder and use it to build a 32bit adder, how many gate-delays are we suffering to getting the final output?
 - A. 2
 - B. 32
 - C. 64
 - D. 128
 - E. 288

The delay is determined by the "critical path"

Carry-Ripple Adder

Only this is available in the beginning

 Considering the shown 1-bit full adder and use it to build a 32bit adder, how many gate-delays are we suffering to getting the final output?

E. 288

Carry-lookahead adder

Uses logic to quickly pre-compute the carry for each digit

$A_3 B_3 A_2 B_2 A_1 B_1 A_0 B_0$ FA FA P₃G₃C₃ P₂G₂C₂ P₁G₁ C₁ P₀G₀ Carry-lookahead Logic \mathbf{O}_2 O_1 O_0

CLA (cont.)

• All "G" and "P" are immediately available (only need to look over Ai and Bi), but "c" are not (except the c0).

- $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)$ $= G_1 + P_1G_0 + P_1P_0C_0$

 - $= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 - $= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$

CLA's gate delay

- What's the gate-delay of a 4-bit CLA?
 - A. 2 $G_i = A_i B_i$ B. 4 $P_i = A_i XOR B_i$ C. 6 $C_1 = G_0 + P_0 C_0$ $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)$ D. 8 $= G_1 + P_1G_0 + P_1P_0C_0$ E. 10
 - $C_3 = G_2 + P_2 C_2$
 - $= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 - $C_4 = G_3 + P_3 C_3$
 - $= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$ $+ P_3 P_2 P_1 P_0 C_0$

CLA's gate delay

- What's the gate-delay of a 4-bit CLA?
 - A. 2 $G_i = A_i B_i$ B. 4 $P_i = A_i XOR B_i$ C. 6 $C_1 = G_0 + P_0 C_0$ $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)$ D. 8 $= G_1 + P_1G_0 + P_1P_0C_0$ E. 10 $C_3 = G_2 + P_2 C_2$
 - $= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 - $C_4 = G_3 + P_3 C_3$
 - $= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$ $+ P_3 P_2 P_1 P_0 C_0$

CLA's size

- How many transistors do we need to implement a 4-bit CLA logic? $G_i = A_i B_i$
 - A. 38 $P_i = A_i XOR B_i$
 - B. 64 $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)$ C. 92 $= G_1 + P_1G_0 + P_1P_0C_0$
 - D. 116 $C_3 = G_2 + P_2 C_2$ E. 128
 - $= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 - $C_4 = G_3 + P_3 C_3$
 - $= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$ $+ P_3 P_2 P_1 P_0 C_0$

CLA's size

- How many transistors do we need to implement a 4-bit CLA logic? $G_i = A_i B_i$ 4 * 4 = 16
 - A. 38 $P_i = A_i XOR B_i$ 4 * 4 = 16
 - B. 64 $C_1 = G_0 + P_0 C_0 4 + 4 = 8$
 - C. 92

- $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)$ $= G_1 + P_1G_0 + P_1P_0C_0$ 4 + 6 + 6 = 16
- $C_3 = G_2 + P_2 C_2$
 - $= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
- $C_4 = G_3 + P_3 C_3$ 4 + 6 + 8 + 8 = 26
 - $= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$ $+ P_3 P_2 P_1 P_0 C_0$ 4 + 6 + 8 + 10 + 10 = 38

CLA v.s. Carry-ripple

- Size:
 - 32-bit CLA with 4-bit CLAs requires 8 of 4-bit CLA

Win!

- Each requires 116 for the CLA $4^{*}(4^{*}6+8)$ for the A+B 244 gates
- 1952 transistors
- 32-bit CRA
 - 1600 transistors
- Delay
 - 32-bit CLA with 8 4-bit CLAs
 - 2 gates
 - 32-bit CRA
 - 64 gates

Area-Delay Trade-off!

Recap: If we want to support subtraction?

 If we would like to extend the 4-bit adder that we've built before to support "A-B" with 2's complement, how many of the followings should we add at least?

- Provide an option to use bitwise NOT A
- Provide an option to use bitwise NOT B How to provide this option
- ③ Provide an option to use bitwise A XOR B
- Provide an option to add 0 to the input of the half adder 4
- Provide an option to add 1 to the input of the half adder
- A. 1
- B. 2
- C. 3
- To "NOT" or not to "NOT", that's the question! D. 4 E. 5

Announcement

- Lab 2 due tonight
 - Watch the video and read the instruction BEFORE your session
 - There are links on both course webpage and iLearn lab section
 - Submit through iLearn > Labs
- Reading quiz 4 due 4/21 **BEFORE** the lecture
 - Under iLearn > reading quizzes
- Assignment 2 due 4/23
 - Submit on zyBooks.com directly all challenge questions 2.3-3.5
- Lab 3 due 4/30
 - Watch the video and read the instruction BEFORE your session
 - There are links on both course webpage and iLearn lab section
 - Submit through iLearn > Labs
- Check your grades in iLearn

Electrical Computer Science Engineering

