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Recap: Digital circuits only have 0s and 1s…
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1

0



Recap: Converting from decimal to binary
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3212
160 …… 12
80 …… 02
40 …… 02
20 …… 02
10 …… 02
5 …… 02
2 …… 12
1 …… 0

321 = 0b101000001



Recap: 2-variable K-map example
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Input Output
A B
0 0 1
0 1 1
1 0 1
1 1 0

A

B
0 1

0 1 1

1 1 0

A’

B’

F(A, B) = A’ + B’

A’ A

B’

B



• Reduce to 2-variable K-map — 1 dimension will represent two variables 
• Adjacent points should differ by only 1 bit 

• So we only change one variable in the neighboring column 
• 00, 01, 11, 10  — such numbering scheme is so-called Gray–code
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Recap: 3-variable K-map

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

        (A, B)
C         0,0 0,1 1,1 1,0

0 1 1 1 1

1 1 1 0 0

C’

A’
F(A, B, C) = A’ + C’

A’B’              A’B               AB               AB’

C’ 

C



• Reduce to 2-variable K-map — both dimensions will represent two variables 
• Adjacent points should differ by only 1 bit 

• So we only change one variable in the neighboring column 
• Use Gray-coding — 00, 01, 11, 10
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Recap: 4-variable K-map

00 01 11 10

00 1 0 0 0

01 1 0 0 0

11 0 0 0 0

10 1 0 0 1

A’B’    A’B     AB      AB’

C’D’ 

C’D 

CD 

CD’

A’B’C’

B’CD’

F(A, B, C) = A’B’C’+B’CD’



Recap: K-Map with “Don’t Care”s
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        (A, B)
C         0,0 0,1 1,1 1,0

0 1 X 1 1

1 1 1 0 0

A’B’              A’B               AB               AB’

C’ 

C

If we treat the “X” as 0?

0

A’B’ A’C
AC’

F(A,B,C)=A’B’+A’C+AC’

You can treat “X” as either 0 or 1

If we treat the “X” as 1?

1 C’

A’C

F(A,B,C) = C’ + A’C

— depending on which is more advantageous



• 0x0 — 1 
• 0x1 — 2 
• 0x2 — 3 
• 0x3 — 4 
• 0x4 — 5 
• 0x5 — 6 
• 0x6 — 7 
• 0x7 — 8 
• 0x8 — 9 
• 0x9 — 0 
• 0xA — 0xF — Don’t care
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BCD+1 — Binary coded decimal + 1
Input Output

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

C
om

pa
ra

to
rI8

I4

I2

I1

O8

O4
Input

O2
Output

O1



K-maps
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Input Output
I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

00 01 11 10

00 0 0 X 1

01 0 0 X 0

11 0 1 X X

10 0 0 X X

I8’I4’  I8’I4    I8I4      I8I4’ 

I2’I1’ 

I2’I1 

I2I1 

I2I1’

O8
00 01 11 10

00 0 1 X 0

01 0 1 X 0

11 1 0 X X

10 0 1 X X

I8’I4’  I8’I4    I8I4      I8I4’ 

I2’I1’ 

I2’I1 

I2I1 

I2I1’

O4

00 01 11 10

00 0 0 X 0

01 1 1 X 0

11 0 0 X X

10 1 1 X X

I8’I4’  I8’I4    I8I4      I8I4’ 

I2’I1’ 

I2’I1 

I2I1 

I2I1’

O2
00 01 11 10

00 1 1 X 1

01 0 0 X 0

11 0 0 X X

10 1 1 X X

I8’I4’  I8’I4    I8I4      I8I4’ 

I2’I1’ 

I2’I1 

I2I1 

I2I1’

O1



• Revisiting the binary number system 
• Adders 
• Multiplexer
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Outline



• Obvious representation of 0, 1, 2, ...... 
• Represent positive/negative/integer/floating points 
• Efficient usage of number space 
• Equal coverage of positive and negative numbers 
• Easy hardware design 

• Minimize the hardware cost/reuse the same hardware as much as 
possible 

• Easy to distinguish positive numbers 
• Easy to negation
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What do we want from a number system?



• Assume that we have 4 bits

• Example binary arithmetic
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Representing a positive number

Decimal Binary Decimal Binary
0 0000 4 0100
1 0001 5 0101
2 0010 6 0110
3 0011 7 0111

3 + 2 = 5

0 0 1 1
+ 0 0 1 0

10

1 carry

10

3 + 3 = 6

0 0 1 1
+ 0 0 1 1

01

1

10

1



• How many of the following goals can “simply 
using the most significant bit as the 
signed bit” to represent a negative number 
fulfill in the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111

Poll close in



• How many of the following goals can “simply 
using the most significant bit as the 
signed bit” to represent a negative number 
fulfill in the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111



• 3 + 2 = 5

• 3 + (-2) = 1
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Can this work?

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 0 1 0

10

1

11 = -5 (Not 1)

Doesn’t work well and you need a separate procedure 
to deal with negative numbers!



• How many of the following goals can “simply 
using the most significant bit as the signed 
bit” to represent a negative number fulfill in 
the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111



• How many of the following goals can “1’s 
complement — flip/not every bit in the 
corresponding positive number” to represent 
a negative number fulfill in the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000

Poll close in



• How many of the following goals can “1’s 
complement — flip/not every bit in the 
corresponding positive number” to represent 
a negative number fulfill in the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000



• 3 + 2 = 5

• 3 + (-2) = 1
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Second proposal: 1’s complement

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 1 0 1

00

1

00 = 0 (Still not 1)

Still does not work, but seems closer...

111
overflow



• How many of the following goals can “1’s 
complement — flip/not every bit in the 
corresponding positive number” to represent 
a negative number fulfill in the number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000



• How many of the following goals can “2’s 
complement — take the 1’s complement of 
corresponding positive number and then 
+1” to represent a negative number fulfill in the 
number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Poll close in



• How many of the following goals can “2’s 
complement — take the 1’s complement of 
corresponding positive number and then 
+1” to represent a negative number fulfill in the 
number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Does not waste 1111 anymore



• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies 
B. No. The same “procedure” applies but it changes overflow detection 
C. Yes, and we need a new procedure 
D. Yes, and we need a new procedure and a new hardware 
E. None of the above
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Evaluating 2’s complement
Poll close in



• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies 
B. No. The same “procedure” applies but it changes overflow detection 
C. Yes, and we need a new procedure 
D. Yes, and we need a new procedure and a new hardware 
E. None of the above
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Evaluating 2’s complement

• 3 + 2 = 5 • 3 + (-2) = 1

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 1 1 0

1000 = 1 

11
1



• How many of the following goals can “2’s 
complement — take the 1’s complement of 
corresponding positive number and then 
+1” to represent a negative number fulfill in the 
number system? 
① Obvious representation of 0, 1, 2, ...... 
② Efficient usage of number space 
③ Equal coverage of positive and negative 

numbers 
④ Easy hardware design 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000



Adder
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We’ve built this before!
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Half 
Adder

Full 
Adder

A0 B0A1 B1

Full 
Adder

A2 B2

Full 
Adder

A3 B3

C0C1C2

O0O1O2O3

C3



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5

28

If we want to support subtraction?
Poll close in



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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If we want to support subtraction?



This is what we want!
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Half 
Adder

Full 
Adder

A0 B0A1 B1

Full 
Adder

A2 B2

Full 
Adder

A3 B3

C0C1C2

O0O1O2O3

C3
Full 

Adder is neg?



Full 
Adder

We can support more bits!
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Full 
Adder

A0 B0A1 B1

Full 
Adder

A2 B2

Full 
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full 

Adder

A4 B4

O4

C4
Full 

Adder

A5 B5

O5



Recap: Full Adder

32

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Cout(A, B)       0,0 0,1 1,1 1,0
0 0 0 1 0
1 0 1 1 1

A’B’              A’B               AB               AB’

Cin’ 
Cin

ACinABBCin

Out(A, B)       0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

A’B’              A’B               AB               AB’

Cin’ 
Cin

ABCin

Cout Out



• One approach estimates transistors, assuming every gate input requires 2 
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but 
ignoring wires as above is a common approximation. 

• Considering the shown 1-bit full adder and use it to build a 32-bit adder, 
how many transistor do we need? 

A. 1152 
B. 1600 
C. 1664 
D. 1792 
E. 1984

33

How efficient is the adder?
Poll close in

ABCin

Cout Out



• One approach estimates transistors, assuming every gate input requires 2 
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but 
ignoring wires as above is a common approximation. 

• Considering the shown 1-bit full adder and use it to build a 32-bit adder, 
how many transistor do we need? 

A. 1152 
B. 1600 
C. 1664 
D. 1792 
E. 1984
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How efficient is the adder?

ABCin

Cout Out

# of 2-inputs: 3 
# of 3-inputs: 5 
# of 4-inputs: 1 
= 3*4 + 5*6 + 1*8 = 50 each



• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the 
final output? 

A. 2 
B. 32 
C. 64 
D. 128 
E. 288

35

How efficient is the adder?
Poll close in

ABCin

Cout Out



The delay is determined by the “critical path”
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C0      B0        A0C1      B1        A1C2      B2        A2C3      B3        A3

Cout0             O0Cout1             O1Cout2             O2Cout3             O3

C4      B4        A4

Cout4             O4

Available in the very beginning
Only this is available 

in the beginning

Carry-Ripple Adder

2-gate 
delay



• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the 
final output? 

A. 2 
B. 32 
C. 64 
D. 128 
E. 288
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How efficient is the adder?

ABCin

Cout Out



• Uses logic to quickly pre-compute the carry for each digit
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Carry-lookahead adder

A0 B0A1 B1A2 B2A3 B3

O0O1O2

Cin

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

Input Output
A B Cin Out Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Both A, B are 0 — 
no carry (Delete)

Both A, B are 1 
— must carry
(Generate)

Needs to 
wait Cin 
(Propagate)

O3

FAFAFAFA



• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are 
not (except the c0).
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CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• What’s the gate-delay of a 4-bit CLA? 
A. 2 
B. 4 
C. 6 
D. 8 
E. 10
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CLA’s gate delay
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• What’s the gate-delay of a 4-bit CLA? 
A. 2 
B. 4 
C. 6 
D. 8 
E. 10
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CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many transistors do we need to implement a 4-bit CLA 
logic? 

A. 38 
B. 64 
C. 92 
D. 116 
E. 128
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CLA’s size
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many transistors do we need to implement a 4-bit CLA 
logic? 

A. 38 
B. 64 
C. 92 
D. 116 
E. 128
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CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0

4 + 4 = 8

4 * 4 = 16
4 * 4 = 16

4 + 6 + 6 = 16

4 + 6 + 8 + 8 =26

4 + 6 + 8 + 10 + 10 = 38



• Size:  
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA 

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates 
• 1952 transistors 

• 32-bit CRA 
• 1600 transistors 

• Delay 
• 32-bit CLA with 8 4-bit CLAs 

• 2 gates 
• 32-bit CRA 

• 64 gates
44

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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Recap: If we want to support subtraction?

How to provide this option

To “NOT” or not to “NOT”, that’s the question!



• Lab 2 due tonight 
• Watch the video and read the instruction BEFORE your session 
• There are links on both course webpage and iLearn lab section 
• Submit through iLearn > Labs 

• Reading quiz 4 due 4/21 BEFORE the lecture 
• Under iLearn > reading quizzes 

• Assignment 2 due 4/23 
• Submit on zyBooks.com directly — all challenge questions 2.3-3.5 

• Lab 3 due 4/30 
• Watch the video and read the instruction BEFORE your session 
• There are links on both course webpage and iLearn lab section 
• Submit through iLearn > Labs 

• Check your grades in iLearn
46

Announcement 

http://zyBooks.com
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