
Datapath Components
Prof. Usagi

Recap: Digital circuits only have 0s and 1s…

2

1

0

Recap: Converting from decimal to binary

3

3212
160 …… 12
80 …… 02
40 …… 02
20 …… 02
10 …… 02
5 …… 02
2 …… 12
1 …… 0

321 = 0b101000001

Recap: 2-variable K-map example

4

Input Output
A B
0 0 1
0 1 1
1 0 1
1 1 0

A

B
0 1

0 1 1

1 1 0

A’

B’

F(A, B) = A’ + B’

A’ A

B’

B

• Reduce to 2-variable K-map — 1 dimension will represent two variables
• Adjacent points should differ by only 1 bit

• So we only change one variable in the neighboring column
• 00, 01, 11, 10 — such numbering scheme is so-called Gray–code

5

Recap: 3-variable K-map

Input Output
A B C
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 (A, B)
C 0,0 0,1 1,1 1,0

0 1 1 1 1

1 1 1 0 0

C’

A’
F(A, B, C) = A’ + C’

A’B’ A’B AB AB’

C’

C

• Reduce to 2-variable K-map — both dimensions will represent two variables
• Adjacent points should differ by only 1 bit

• So we only change one variable in the neighboring column
• Use Gray-coding — 00, 01, 11, 10

6

Recap: 4-variable K-map

00 01 11 10

00 1 0 0 0

01 1 0 0 0

11 0 0 0 0

10 1 0 0 1

A’B’ A’B AB AB’

C’D’

C’D

CD

CD’

A’B’C’

B’CD’

F(A, B, C) = A’B’C’+B’CD’

Recap: K-Map with “Don’t Care”s

7

 (A, B)
C 0,0 0,1 1,1 1,0

0 1 X 1 1

1 1 1 0 0

A’B’ A’B AB AB’

C’

C

If we treat the “X” as 0?

0

A’B’ A’C
AC’

F(A,B,C)=A’B’+A’C+AC’

You can treat “X” as either 0 or 1

If we treat the “X” as 1?

1 C’

A’C

F(A,B,C) = C’ + A’C

— depending on which is more advantageous

• 0x0 — 1
• 0x1 — 2
• 0x2 — 3
• 0x3 — 4
• 0x4 — 5
• 0x5 — 6
• 0x6 — 7
• 0x7 — 8
• 0x8 — 9
• 0x9 — 0
• 0xA — 0xF — Don’t care

8

BCD+1 — Binary coded decimal + 1
Input Output

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

C
om

pa
ra

to
rI8

I4

I2

I1

O8

O4
Input

O2
Output

O1

K-maps

9

Input Output
I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

00 01 11 10

00 0 0 X 1

01 0 0 X 0

11 0 1 X X

10 0 0 X X

I8’I4’ I8’I4 I8I4 I8I4’

I2’I1’

I2’I1

I2I1

I2I1’

O8
00 01 11 10

00 0 1 X 0

01 0 1 X 0

11 1 0 X X

10 0 1 X X

I8’I4’ I8’I4 I8I4 I8I4’

I2’I1’

I2’I1

I2I1

I2I1’

O4

00 01 11 10

00 0 0 X 0

01 1 1 X 0

11 0 0 X X

10 1 1 X X

I8’I4’ I8’I4 I8I4 I8I4’

I2’I1’

I2’I1

I2I1

I2I1’

O2
00 01 11 10

00 1 1 X 1

01 0 0 X 0

11 0 0 X X

10 1 1 X X

I8’I4’ I8’I4 I8I4 I8I4’

I2’I1’

I2’I1

I2I1

I2I1’

O1

• Revisiting the binary number system
• Adders
• Multiplexer

10

Outline

• Obvious representation of 0, 1, 2,
• Represent positive/negative/integer/floating points
• Efficient usage of number space
• Equal coverage of positive and negative numbers
• Easy hardware design

• Minimize the hardware cost/reuse the same hardware as much as
possible

• Easy to distinguish positive numbers
• Easy to negation

11

What do we want from a number system?

• Assume that we have 4 bits

• Example binary arithmetic

12

Representing a positive number

Decimal Binary Decimal Binary
0 0000 4 0100
1 0001 5 0101
2 0010 6 0110
3 0011 7 0111

3 + 2 = 5

0 0 1 1
+ 0 0 1 0

10

1 carry

10

3 + 3 = 6

0 0 1 1
+ 0 0 1 1

01

1

10

1

• How many of the following goals can “simply
using the most significant bit as the
signed bit” to represent a negative number
fulfill in the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

13

The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111

Poll close in

• How many of the following goals can “simply
using the most significant bit as the
signed bit” to represent a negative number
fulfill in the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

14

The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111

• 3 + 2 = 5

• 3 + (-2) = 1

15

Can this work?

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 0 1 0

10

1

11 = -5 (Not 1)

Doesn’t work well and you need a separate procedure
to deal with negative numbers!

• How many of the following goals can “simply
using the most significant bit as the signed
bit” to represent a negative number fulfill in
the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

16

The first proposal
Decimal Binary Decimal Binary

0 0000 -0 1000
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111

• How many of the following goals can “1’s
complement — flip/not every bit in the
corresponding positive number” to represent
a negative number fulfill in the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

17

The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000

Poll close in

• How many of the following goals can “1’s
complement — flip/not every bit in the
corresponding positive number” to represent
a negative number fulfill in the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

18

The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000

• 3 + 2 = 5

• 3 + (-2) = 1

19

Second proposal: 1’s complement

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 1 0 1

00

1

00 = 0 (Still not 1)

Still does not work, but seems closer...

111
overflow

• How many of the following goals can “1’s
complement — flip/not every bit in the
corresponding positive number” to represent
a negative number fulfill in the number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

20

The second proposal — 1’s complement
Decimal Binary Decimal Binary

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000

• How many of the following goals can “2’s
complement — take the 1’s complement of
corresponding positive number and then
+1” to represent a negative number fulfill in the
number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

21

The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Poll close in

• How many of the following goals can “2’s
complement — take the 1’s complement of
corresponding positive number and then
+1” to represent a negative number fulfill in the
number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

22

The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Does not waste 1111 anymore

• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies
B. No. The same “procedure” applies but it changes overflow detection
C. Yes, and we need a new procedure
D. Yes, and we need a new procedure and a new hardware
E. None of the above

23

Evaluating 2’s complement
Poll close in

• Do we need a separate procedure/hardware for adding positive and negative numbers?

A. No. The same procedure applies
B. No. The same “procedure” applies but it changes overflow detection
C. Yes, and we need a new procedure
D. Yes, and we need a new procedure and a new hardware
E. None of the above

24

Evaluating 2’s complement

• 3 + 2 = 5 • 3 + (-2) = 1

0 0 1 1
+ 0 0 1 0

10

1

10

0 0 1 1
+ 1 1 1 0

1000 = 1

11
1

• How many of the following goals can “2’s
complement — take the 1’s complement of
corresponding positive number and then
+1” to represent a negative number fulfill in the
number system?
① Obvious representation of 0, 1, 2,
② Efficient usage of number space
③ Equal coverage of positive and negative

numbers
④ Easy hardware design
A. 0
B. 1
C. 2
D. 3
E. 4

25

The third proposal — 2’s complement
Decimal Binary Decimal Binary

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Adder

26

We’ve built this before!

27

Half
Adder

Full
Adder

A0 B0A1 B1

Full
Adder

A2 B2

Full
Adder

A3 B3

C0C1C2

O0O1O2O3

C3

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

28

If we want to support subtraction?
Poll close in

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

29

If we want to support subtraction?

This is what we want!

30

Half
Adder

Full
Adder

A0 B0A1 B1

Full
Adder

A2 B2

Full
Adder

A3 B3

C0C1C2

O0O1O2O3

C3
Full

Adder is neg?

Full
Adder

We can support more bits!

31

Full
Adder

A0 B0A1 B1

Full
Adder

A2 B2

Full
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full

Adder

A4 B4

O4

C4
Full

Adder

A5 B5

O5

Recap: Full Adder

32

Input Output
A B Cin Out Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Cout(A, B) 0,0 0,1 1,1 1,0
0 0 0 1 0
1 0 1 1 1

A’B’ A’B AB AB’

Cin’
Cin

ACinABBCin

Out(A, B) 0,0 0,1 1,1 1,0
0 0 1 0 1
1 1 0 1 0

A’B’ A’B AB AB’

Cin’
Cin

ABCin

Cout Out

• One approach estimates transistors, assuming every gate input requires 2
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but
ignoring wires as above is a common approximation.

• Considering the shown 1-bit full adder and use it to build a 32-bit adder,
how many transistor do we need?

A. 1152
B. 1600
C. 1664
D. 1792
E. 1984

33

How efficient is the adder?
Poll close in

ABCin

Cout Out

• One approach estimates transistors, assuming every gate input requires 2
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but
ignoring wires as above is a common approximation.

• Considering the shown 1-bit full adder and use it to build a 32-bit adder,
how many transistor do we need?

A. 1152
B. 1600
C. 1664
D. 1792
E. 1984

34

How efficient is the adder?

ABCin

Cout Out

of 2-inputs: 3
of 3-inputs: 5
of 4-inputs: 1
= 3*4 + 5*6 + 1*8 = 50 each

• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the
final output?

A. 2
B. 32
C. 64
D. 128
E. 288

35

How efficient is the adder?
Poll close in

ABCin

Cout Out

The delay is determined by the “critical path”

36

C0 B0 A0C1 B1 A1C2 B2 A2C3 B3 A3

Cout0 O0Cout1 O1Cout2 O2Cout3 O3

C4 B4 A4

Cout4 O4

Available in the very beginning
Only this is available

in the beginning

Carry-Ripple Adder

2-gate
delay

• Considering the shown 1-bit full adder and use it to build a 32-
bit adder, how many gate-delays are we suffering to getting the
final output?

A. 2
B. 32
C. 64
D. 128
E. 288

37

How efficient is the adder?

ABCin

Cout Out

• Uses logic to quickly pre-compute the carry for each digit

38

Carry-lookahead adder

A0 B0A1 B1A2 B2A3 B3

O0O1O2

Cin

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

Input Output
A B Cin Out Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Both A, B are 0 —
no carry (Delete)

Both A, B are 1
— must carry
(Generate)

Needs to
wait Cin
(Propagate)

O3

FAFAFAFA

• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are
not (except the c0).

39

CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

40

CLA’s gate delay
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

41

CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many transistors do we need to implement a 4-bit CLA
logic?

A. 38
B. 64
C. 92
D. 116
E. 128

42

CLA’s size
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many transistors do we need to implement a 4-bit CLA
logic?

A. 38
B. 64
C. 92
D. 116
E. 128

43

CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

4 + 4 = 8

4 * 4 = 16
4 * 4 = 16

4 + 6 + 6 = 16

4 + 6 + 8 + 8 =26

4 + 6 + 8 + 10 + 10 = 38

• Size:
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates
• 1952 transistors

• 32-bit CRA
• 1600 transistors

• Delay
• 32-bit CLA with 8 4-bit CLAs

• 2 gates
• 32-bit CRA

• 64 gates
44

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

45

Recap: If we want to support subtraction?

How to provide this option

To “NOT” or not to “NOT”, that’s the question!

• Lab 2 due tonight
• Watch the video and read the instruction BEFORE your session
• There are links on both course webpage and iLearn lab section
• Submit through iLearn > Labs

• Reading quiz 4 due 4/21 BEFORE the lecture
• Under iLearn > reading quizzes

• Assignment 2 due 4/23
• Submit on zyBooks.com directly — all challenge questions 2.3-3.5

• Lab 3 due 4/30
• Watch the video and read the instruction BEFORE your session
• There are links on both course webpage and iLearn lab section
• Submit through iLearn > Labs

• Check your grades in iLearn
46

Announcement

http://zyBooks.com

つづく

Electrical
Computer
Engineering

Science 120A

