
Datapath Components (2)
Prof. Usagi

• Guidelines
• Obvious representation of 0, 1, 2,
• Efficient usage of number space
• Equal coverage of positive and negative numbers
• Easy hardware design

• 1‘s complement + 1 = 2’s complement
• Invert every bit, then + 1
• -1 = b‘1110 + b’1 = b‘1111

2

Recap: 2’s complement

Decimal Binary Decimal Binary
0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Does not waste 1111 anymore

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

3

If we want to support subtraction?

Full
Adder

We can support more bits!

4

Full
Adder

A0 B0A1 B1

Full
Adder

A2 B2

Full
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full

Adder

A4 B4

O4

C4
Full

Adder

A5 B5

O5

• One approach estimates transistors, assuming every gate input requires 2
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but
ignoring wires as above is a common approximation.

• Considering the shown 1-bit full adder and use it to build a 32-bit adder,
how many transistor do we need?

A. 1152
B. 1600
C. 1664
D. 1792
E. 1984

5

How efficient is the adder?

ABCin

Cout Out

of 2-inputs: 3
of 3-inputs: 5
of 4-inputs: 1
= 3*4 + 5*6 + 1*8 = 50 each

The delay is determined by the “critical path”

6

C0 B0 A0C1 B1 A1C2 B2 A2C3 B3 A3

Cout0 O0Cout1 O1Cout2 O2Cout3 O3

C4 B4 A4

Cout4 O4

Available in the very beginning
Only this is available

in the beginning

Carry-Ripple Adder

2-gate
delay

• Adders
• Multiplexer
• Multiplier
• Divisor

7

Outline

• Uses logic to quickly pre-compute the carry for each digit

8

Carry-lookahead adder

A0 B0A1 B1A2 B2A3 B3

O0O1O2

Cin

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

Input Output
A B Cin Out Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Both A, B are 0 —
no carry (Delete)

Both A, B are 1
— must carry
(Generate)

Needs to
wait Cin
(Propagate)

O3

FAFAFAFA

• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are
not (except the c0).

9

CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

10

CLA’s gate delay
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• What’s the gate-delay of a 4-bit CLA?
A. 2
B. 4
C. 6
D. 8
E. 10

11

CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many transistors do we need to implement a 4-bit CLA
logic?

A. 38
B. 64
C. 88
D. 116
E. 128

12

CLA’s size
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

• How many transistors do we need to implement a 4-bit CLA
logic?

A. 38
B. 64
C. 88
D. 116
E. 128

13

CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0
+ P3 P2 P1P0C0

4 + 4 = 8

4 + 6 + 6 = 16

4 + 6 + 8 + 8 =26

4 + 6 + 8 + 10 + 10 = 38

• Size:
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates
• 1952 transistors

• 32-bit CRA
• 1600 transistors

• Delay
• 32-bit CLA with 8 4-bit CLAs

• 2 gates * 8 = 16
• 32-bit CRA

• 64 gates
14

CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!

• If we would like to extend the 4-bit adder
that we’ve built before to support “A-B”
with 2’s complement, how many of the
followings should we add at least?
① Provide an option to use bitwise NOT A
② Provide an option to use bitwise NOT B
③ Provide an option to use bitwise A XOR B
④ Provide an option to add 0 to the input of the half adder
⑤ Provide an option to add 1 to the input of the half adder
A. 1
B. 2
C. 3
D. 4
E. 5

15

Recap: If we want to support subtraction?

How to provide this option

To “NOT” or not to “NOT”, that’s the question!

Multiplexer

16

• Problem — you have multiple possible inputs and you only want to use
one of them
• N-to-M MUX mean a MUX with N inputs, M outputs.

• Solution — you need a multiplexer (MUX) to control the output

17

Multiplexer

Adder

A0 B0 B0’

MUX

A1 B1 B1’

MUX

A2 B2 B2’

MUX

A3 B3 B3’

MUX

• The MUX has two input ports — numbered as 0 and 1
• To select from two inputs, you need a 1-bit control/select signal

to indicate the desired input port

18

Let’s start with a 2-to-1 MUX

2:1
MUX

B

A 0

1

Sel

Output

Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

2:1 MUX

Use K-Map

19

Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

(A, B)
Sel 0,0 0,1 1,1 1,0

0 0 0 1 1

1 0 1 1 0

ASel’
A’B’ A’B AB AB’

Sel’

Sel

BSel

Output = ASel’ + BSel

A

B

Sel

Output

Sel’ means output A
Sel means output B

• Function Z(A,B,C) implemented by 2:1 Muxes above is:

A. A’B’C’+ABC+BC’
B. (A’+AC)B+B’C’
C. A’B’+B’C+BC’
D. (A’+AC)B’+BC’

20

Cascading MUXes

2:1
MUXC

1 0

1

A

2:1
MUX

0

1

B

C’
Z

Poll close in

• Function Z(A,B,C) implemented by 2:1 Muxes above is:

A. A’B’C’+ABC+BC’
B. (A’+AC)B+B’C’
C. A’B’+B’C+BC’
D. (A’+AC)B’+BC’

21

Cascading MUXes

2:1
MUXC

1 0

1

A

2:1
MUX

0

1

B

C’
Z

1A’+CA
(1A’+CA)B’ + C’B = (A’+AC)B’ + BC’

4:1 MUX

4-to-1 MUX

22

A

B

S0 S1

OutputC

D

S0==0 && S1==0 output A
S0==0 && S1==1 output B
S0==1 && S1==0 output C
S0==1 && S1==1 output D

Output = AS0’S1’ + BS0’S1 +
 CS0S1’ + DS0S1

4:1
MUX

00

01

10

11

S
2

• What’s the estimated gate delay of an 8:1 MUX?
A. 1
B. 2
C. 4
D. 8
E. 16

23

Gate delay of 8:1 MUX
Poll close in

• What’s the estimated gate delay
of an 8:1 MUX?

A. 1
B. 2
C. 4
D. 8
E. 16

24

Gate delay of 8:1 MUX

8:1 MUX

A

S0S1S2

Output

B

C

D

E

F

G

H

• What if we need to output an N-bit (say 4-bit) number from the
input set?

25

N-bit MUX

2

11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX

D3 D2 D1 D0 C3 C2 C1 C0 B3 B2 B1 B0 A3 A2 A1 A0

Y0Y1Y2Y3

• How many estimated transistors are there in the 4-bit 4:1
MUX?

A. 48
B. 64
C. 80
D. 128
E. 192

26

How big is the 4-bit 4:1 MUX?
Poll close in

• How many estimated transistors are there in the 4-bit 4:1
MUX?

A. 48
B. 64
C. 80
D. 128
E. 192

27

How big is the 4-bit 4:1 MUX?

4:1 MUX —
each AND gate would need 2 inputs for
control and one for number
an OR gate collects 4 results from AND gates
— 4 3-input AND gates and one 4-input OR
gate
— 4*6 + 8 = 32
We need 4 of these = 32*4 = 128

Shifters

28

• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned
char in C). How many of the following C statements and their execution results
are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

29

What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1

Poll close in

• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned
char in C). How many of the following C statements and their execution results
are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

30

What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1

0

0
0

• Logical shifter: shifts value to left or right and fills empty spaces with 0’s
• 11001 >> 2 = 00110
• 11001 << 2 = 00100

• Arithmetic shifter: same as logical shifter, but on right shift, fills empty
spaces with the old most significant bit
• Ex: 11001 >>> 2 = 11110
• Ex: 11001 <<< 2 = 00100

• Rotator: rotates bits in a circle, such that bits shifted off one end are
shifted into the other end
• Ex: 11001 ROR 2 = 01110
• Ex: 11001 ROL 2 = 00111

31

Shifters

https://en.wikipedia.org/wiki/Circular_shift

https://en.wikipedia.org/wiki/Circular_shift

Shift “Right”

32

shamt
2

11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX
11 10 01 00

MUX

Y0Y1Y2Y3

Based on the value of the selection
input (shamt = shift amount)

The “chain” of multiplexers
determines how many bits to shift

A3 A2 A1 A00 Example:
if S = 01
then
Y3 = 0
Y2 = A3
Y1 = A2
Y0 = A1

Example:
if S = 10
then
Y3 = 0
Y2 = 0
Y1 = A3
Y0 = A2

Example:
if S = 11
then
Y3 = 0
Y2 = 0
Y1 = 0
Y0 = A3

• Assignment 2 due 4/23
• Submit on zyBooks.com directly — all challenge questions 2.3-3.5

• Reading quiz 5 due 4/28 BEFORE the lecture
• Under iLearn > reading quizzes

• Lab 3 due 4/30
• Watch the video and read the instruction BEFORE your session
• There are links on both course webpage and iLearn lab section
• Submit through iLearn > Labs

• Midterm on 5/7 during the lecture time, access through iLearn — no late
submission is allowed — make sure you will be able to take that at the time

• Check your grades in iLearn

33

Announcement

http://zyBooks.com

つづく

Electrical
Computer
Engineering

Science 120A

