
Datapath Components (2)
Prof. Usagi



• Guidelines 
• Obvious representation of 0, 1, 2, ...... 
• Efficient usage of number space 
• Equal coverage of positive and negative numbers 
• Easy hardware design 

• 1‘s complement + 1 = 2’s complement 
• Invert every bit, then + 1 
• -1 = b‘1110 + b’1 = b‘1111 
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Recap: 2’s complement

Decimal Binary Decimal Binary
0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

Does not waste 1111 anymore



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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If we want to support subtraction?



Full 
Adder

We can support more bits!
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Adder

A0 B0A1 B1

Full 
Adder

A2 B2

Full 
Adder

A3 B3

C0C1C2

O0O1O2O3

C3 is neg?
Full 

Adder

A4 B4

O4

C4
Full 

Adder

A5 B5

O5



• One approach estimates transistors, assuming every gate input requires 2 
transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 
inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 
transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but 
ignoring wires as above is a common approximation. 

• Considering the shown 1-bit full adder and use it to build a 32-bit adder, 
how many transistor do we need? 

A. 1152 
B. 1600 
C. 1664 
D. 1792 
E. 1984
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How efficient is the adder?

ABCin

Cout Out

# of 2-inputs: 3 
# of 3-inputs: 5 
# of 4-inputs: 1 
= 3*4 + 5*6 + 1*8 = 50 each



The delay is determined by the “critical path”
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C0      B0        A0C1      B1        A1C2      B2        A2C3      B3        A3

Cout0             O0Cout1             O1Cout2             O2Cout3             O3

C4      B4        A4

Cout4             O4

Available in the very beginning
Only this is available 

in the beginning

Carry-Ripple Adder

2-gate 
delay



• Adders 
• Multiplexer 
• Multiplier 
• Divisor
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Outline



• Uses logic to quickly pre-compute the carry for each digit
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Carry-lookahead adder

A0 B0A1 B1A2 B2A3 B3

O0O1O2

Cin

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

Input Output
A B Cin Out Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Both A, B are 0 — 
no carry (Delete)

Both A, B are 1 
— must carry
(Generate)

Needs to 
wait Cin 
(Propagate)

O3

FAFAFAFA



• All “G” and “P” are immediately available (only need to look over Ai and Bi), but “c” are 
not (except the c0).
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CLA (cont.)

A0 B0A1 B1A2 B2A3 B3

O0O1O2

C0

Cout
Carry-lookahead Logic

C1C2C3 G0P0G1P1G2P2G3P3

O3

FAFAFAFA
C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• What’s the gate-delay of a 4-bit CLA? 
A. 2 
B. 4 
C. 6 
D. 8 
E. 10
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CLA’s gate delay
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• What’s the gate-delay of a 4-bit CLA? 
A. 2 
B. 4 
C. 6 
D. 8 
E. 10
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CLA’s gate delay

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many transistors do we need to implement a 4-bit CLA 
logic? 

A. 38 
B. 64 
C. 88 
D. 116 
E. 128
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CLA’s size
Poll close in

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0



• How many transistors do we need to implement a 4-bit CLA 
logic? 

A. 38 
B. 64 
C. 88 
D. 116 
E. 128
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CLA’s size

C1 = G0 + P0 C0

C2 = G1 + P1 C1

Gi = AiBi

Pi = Ai XOR Bi

C3 = G2 + P2 C2

C4 = G3 + P3 C3

= G1 + P1 (G0 + P0 C0)
= G1 + P1G0 + P1P0C0

= G2 + P2 G1 + P2 P1G0 + P2 P1P0C0

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1G0 
+ P3 P2 P1P0C0

4 + 4 = 8

4 + 6 + 6 = 16

4 + 6 + 8 + 8 =26

4 + 6 + 8 + 10 + 10 = 38



• Size:  
• 32-bit CLA with 4-bit CLAs — requires 8 of 4-bit CLA 

• Each requires 116 for the CLA 4*(4*6+8) for the A+B — 244 gates 
• 1952 transistors 

• 32-bit CRA 
• 1600 transistors 

• Delay 
• 32-bit CLA with 8 4-bit CLAs 

• 2 gates * 8 = 16 
• 32-bit CRA 

• 64 gates
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CLA v.s. Carry-ripple

Win!

Win!

Area-Delay Trade-off!



• If we would like to extend the 4-bit adder 
that we’ve built before to support “A-B” 
with 2’s complement, how many of the 
followings should we add at least? 
① Provide an option to use bitwise NOT A 
② Provide an option to use bitwise NOT B 
③ Provide an option to use bitwise A XOR B 
④ Provide an option to add 0 to the input of the half adder 
⑤ Provide an option to add 1 to the input of the half adder 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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Recap: If we want to support subtraction?

How to provide this option

To “NOT” or not to “NOT”, that’s the question!



Multiplexer
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• Problem — you have multiple possible inputs and you only want to use 
one of them 
• N-to-M MUX mean a MUX with N inputs, M outputs. 

• Solution — you need a multiplexer (MUX) to control the output
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Multiplexer

Adder

A0 B0 B0’

MUX

A1 B1 B1’

MUX

A2 B2 B2’

MUX

A3 B3 B3’

MUX



• The MUX has two input ports — numbered as 0 and 1 
• To select from two inputs, you need a 1-bit control/select signal 

to indicate the desired input port
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Let’s start with a 2-to-1 MUX

2:1
MUX

B

A 0

1

Sel

Output

Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1



2:1 MUX

Use K-Map
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Input Output
A B Sel
0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 0
1 1 1 1

(A, B) 
Sel         0,0 0,1 1,1 1,0

0 0 0 1 1

1 0 1 1 0

ASel’
A’B’       A’B        AB        AB’

Sel’ 

Sel

BSel

Output = ASel’ + BSel

A

B

Sel

Output

Sel’ means output A 
Sel means output B



• Function Z(A,B,C) implemented by 2:1 Muxes above is:

A. A’B’C’+ABC+BC’ 
B. (A’+AC)B+B’C’ 
C. A’B’+B’C+BC’ 
D. (A’+AC)B’+BC’
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Cascading MUXes

2:1
MUXC

1 0

1

A

2:1
MUX

0

1

B

C’
Z

Poll close in



• Function Z(A,B,C) implemented by 2:1 Muxes above is:

A. A’B’C’+ABC+BC’ 
B. (A’+AC)B+B’C’ 
C. A’B’+B’C+BC’ 
D. (A’+AC)B’+BC’
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Cascading MUXes

2:1
MUXC

1 0

1

A

2:1
MUX

0

1

B

C’
Z

1A’+CA
(1A’+CA)B’ + C’B = (A’+AC)B’ + BC’



4:1 MUX

4-to-1 MUX
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A

B

S0 S1

OutputC

D

S0==0 && S1==0 output A 
S0==0 && S1==1 output B 
S0==1 && S1==0 output C 
S0==1 && S1==1 output D

Output = AS0’S1’ + BS0’S1 + 
                      CS0S1’ + DS0S1

4:1
MUX

00 

01 

10 

11

S
2



• What’s the estimated gate delay of an 8:1 MUX? 
A. 1 
B. 2 
C. 4 
D. 8 
E. 16
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Gate delay of 8:1 MUX
Poll close in



• What’s the estimated gate delay 
of an 8:1 MUX? 

A. 1 
B. 2 
C. 4 
D. 8 
E. 16
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Gate delay of 8:1 MUX

8:1 MUX

A

S0S1S2

Output

B

C

D

E

F

G

H



• What if we need to output an N-bit (say 4-bit) number from the 
input set?
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N-bit MUX

2

11      10    01    00 

MUX
11      10    01    00 

MUX
11      10    01    00 

MUX
11      10    01    00 

MUX

D3 D2 D1 D0 C3 C2 C1 C0 B3 B2 B1 B0 A3 A2 A1 A0

Y0Y1Y2Y3



• How many estimated transistors are there in the 4-bit 4:1 
MUX? 

A. 48 
B. 64 
C. 80 
D. 128 
E. 192
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How big is the 4-bit 4:1 MUX?
Poll close in



• How many estimated transistors are there in the 4-bit 4:1 
MUX? 

A. 48 
B. 64 
C. 80 
D. 128 
E. 192
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How big is the 4-bit 4:1 MUX?

4:1 MUX — 
each AND gate would need 2 inputs for 
control and one for number
an OR gate collects 4 results from AND gates 
— 4 3-input AND gates and one 4-input OR 
gate 
— 4*6 + 8 = 32 
We need 4 of these = 32*4 = 128



Shifters
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• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned 
char in C). How many of the following C statements and their execution results 
are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

29

What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1

Poll close in



• Assume we have a data type that stores 8-bit unsigned integer (e.g., unsigned 
char in C). How many of the following C statements and their execution results 
are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What’s after shift?

Statement C = ?
I c = 3; c = c >> 2; 1
II c = 255; c = c << 2; 252
III c = 256; c = c >> 2; 64
IV c = 128; c = c << 1; 1

0

0
0



• Logical shifter: shifts value to left or right and fills empty spaces with 0’s 
• 11001 >> 2 = 00110 
• 11001 << 2 = 00100 

• Arithmetic shifter: same as logical shifter, but on right shift, fills empty 
spaces with the old most significant bit 
• Ex: 11001 >>> 2 = 11110 
• Ex: 11001 <<< 2 = 00100 

• Rotator: rotates bits in a circle, such that bits shifted off one end are 
shifted into the other end 
• Ex: 11001 ROR 2 = 01110 
• Ex: 11001 ROL 2 = 00111
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Shifters

https://en.wikipedia.org/wiki/Circular_shift

https://en.wikipedia.org/wiki/Circular_shift


Shift “Right”
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shamt
2

11      10    01    00 

MUX
11      10    01    00 

MUX
11      10    01    00 

MUX
11      10    01    00 

MUX

Y0Y1Y2Y3

Based on the value of the selection 
input (shamt = shift amount)

The “chain” of multiplexers 
determines how many bits to shift

A3                A2               A1               A00 Example:  
if S = 01 
then 
Y3 = 0 
Y2 = A3 
Y1 = A2 
Y0 = A1

Example:  
if S = 10 
then 
Y3 = 0 
Y2 = 0 
Y1 = A3 
Y0 = A2

Example:  
if S = 11 
then 
Y3 = 0 
Y2 = 0 
Y1 = 0 
Y0 = A3



• Assignment 2 due 4/23 
• Submit on zyBooks.com directly — all challenge questions 2.3-3.5 

• Reading quiz 5 due 4/28 BEFORE the lecture 
• Under iLearn > reading quizzes 

• Lab 3 due 4/30 
• Watch the video and read the instruction BEFORE your session 
• There are links on both course webpage and iLearn lab section 
• Submit through iLearn > Labs 

• Midterm on 5/7 during the lecture time, access through iLearn — no late 
submission is allowed — make sure you will be able to take that at the time 

• Check your grades in iLearn
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Announcement 

http://zyBooks.com


つづく
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Science 120A


