Floating Point (cont.) &
Sequential Circuits

Prof. Usagi

Recap: “Floating” v.s. “Fixed"” point

- We want to express both a relational number’s "“integer” and “fraction” parts
- Fixed point

- One bit is used for representing positive or negative

- Fixed number of bits is used for the integer part

- Fixed number of bits is used for the fraction part

- Therefore, the decimal point is fixed +/- Integer m

. Floatlng. pomt | - | — is always here
- One bit is used for representing positive or negative

- A fixed number of bits is used for exponent
- A fixed number of bits is used for fraction Can be anywhere in the fraction

- Therefore, the decimal point is floating —
depending on the value of exponent
4= EXxponent
g - m

Recap: What's 0.0004 in IEEE 7547

O ZRERERE R ANENNE 1 O 1 OOO0O1T 1011011100011 10 1

after x2

oNoloholhoholhohoRoRoNoN.

0.8608
1.7216
1.4432
0.8864
1.7728
1.5456
1.0912
0.1824
0.3648
0.7296
1.4592
0.9184
1.8368
1.6736
1.3472
0.6944
1.3888
0.7776
1.5552
11104

after x2

0.2208
0.4416
0.8832
1.7664
1.5328
1.0656
0.1312
0.2624
0.5248
1.0496
0.0992
0.1984
0.3968
0.7936
1.5872
11744
0.3488
0.6976
1.3952
0.7904

O 00 - 000 0 ~~000 - —- =200 O s

Recap: Special numbers in IEEE 754 float

+0 n 0000 0000 geloleloXolololoNolololoXolololoNol0lolo N0 0l0,
-0 n W[ofeloXeloleled 0000 0000 0000 0000 0000 000

(ki 0000 0000 0000 0000 0000 000
(ki 0000 0000 0000 0000 0000 000

+Inf n

Will the loop end?

- Consider the following two C programs.

#include <stdio.h> #include <stdio.h>
int main(int argc, char s*xxargv) int main(int argc, char s*xxargv)
{ {
int 1=0; float 1=0.0;
while(i >= Q) i++; while(i >= 0) i++;
printf("wWe're done! %d\n", 1); printf("wWe're done! %f\n",1i);
return 9; return 0;
¥ . . .
To know why — We need to figure oql} how “float” is handled in hardware!

Please identify the correct statement.
A. X will print “We're done" and finish, but Y will not.
B. Xwon't print "We're done” and won't finish, but Y will.

C. Both X and Y will print “We're done" and finish
D. Neither X nor Y will finish

Floating point adder

Sign | Exponent Fractuon Sign | Experent Fraction

N Comgarec
Small ALJ
experents
Exponent
difference l I
Yy Y
Co 1= l ~Co 1D (D
\ Y Shilt smaller
Contral »-| Shift right numMber right
T — s
ik T '
\/
Big ALU e
¥ 4 Ll
SE—) c 1 \ - 0 1
Increment or e .
S decremant —» Snift Ie} or right Normalize

| Roundng hardware Round

- :

Sign | Exponent Fraction

Recap: Will the loop end? (one more run)

- Consider the following C program.

#include <stdio.h>

int main(int argc, char xxargv)

{
float 1=1.0;
while(i > 0) i++;
printf("We're done! %f\n",1i);
return 0;

Iy

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < O
E.

ne program will not finish but raise an exception since we will go to NaN first.

7

Why stuck at 167772167

- Consider the following C program.

#include <stdio.h>

int main(int argc, char *xxargv)

{
float 1=1.0;
while(i > 0) i++;
printf("We're done! %f\n",1i);
return 0;

s
Why istuck at 16777216.0007?

A. It's a special number in IEEE 754 standard that an adder will treat it differently

It's a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard

. It's just the maximum integer that IEEE /754 standard can represent

It's nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0

It's nothing special, but just happened to be the case that 16777216.0 add anything will become
16777216.0

moOoOw

Why stuck at 167772167

- Consider the following C program.

#include <stdio.h>

int main(int argc, char *xxargv)

{
float 1=1.0;
while(i > 0) i++;
printf("We're done! %f\n",1i);
return 0;

Iy

Why istuck at 16777216.0007?
A. It's a special number in IEEE 754 standard that an adder will treat it differently
B. It's a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard
C. It's just the maximum integer that IEEE 754 standard can represent

D. It's nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0

E. It's nothing special, but just happened to be the case that 16777216.0 add anything will become
16777216.0

What's 16777216 special about?

0 B[EE 0000 0000 0000 0000 0000 000 I 0 B iEEEEEEM 0000 0000 0000 0000 0000 000

16777216 — 1 O %k 22* Sign | Exponent Fraction Sign | Exponent Fraction
I ; To add 1.0 = 1.0 *20
\l// Compare
Small ALU
exponents
: Can you think of some other numbers
to this number, you Exponent : : . .
h hift 24 bi s singl l would result in the same situation®
Co 1 Da—o l (0 1) —=Co 1)
L Shift smaller
Control) - Shift right number right
10000 0000 0000 0000 0000 000 >> 24 == Y1 0000 0000 0000 0000 0000 000
— even worse — programmer never know N o
| LT Big ALU
A good programmer heeds to know You're essentially adding O to 16777216

these kinds of | C
"hardware features” to avoid bugs! 10

Will the loop end? (last run)

- Consider the following C program.

#include <stdio.h>

int main(int argc, char *xxargv)

{
float 1=1.0;
while(i > @) i+=i;
printf("We're done! %f\n",1i);
return 0;

¥

Please identify the correct statement.
A. The program will finish since i will end up to be +0
The program will finish since i will end up to be something < O
ne program will not finish since i will always be a positive non-zero number.
ne program will not finish since i will end up staying at some special FP32 presentation
ne program will not finish but raise an exception since we will go to NaN first.

moOoOw

1

Will the loop end? (last run)

- Consider the following C program.

#include <stdio.h>

int main(int argc, char xxargv)

{
‘,T,rl,giz (izi . 83 =1 n 1111111171 goelololoXolololoXolololoXolololoXo o oloXNe o]0
printf("We're done! %f\n",1i);
return 0;

Iy

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be something < O
C. The program will not finish since i will always be a positive non-zero number.
E.

ne program will not finish but raise an exception since we will go to NaN first.

12

Recap: Demo — Are we getting the same numbers?

#include <stdio.h>

int main(int argc, char sxxargv)
{
float a, b, c;
a = 128@ 245;
b 0.0004;
C (a + b)*l@ 0;
pr1ntf("(128@ 245 + 0.0004)%10 = %f\n",c);
C = a*x10.0 + bx*x10.0;
printf("1280.245%10 + 0.0004%x10 = %f\n",c);
return 0;

13

Outline

- More on floating points, data types
- Introduction to sequential circuit
- Finite State Machines

14

More on floating points

Other floating point formats

32-bit float .. Exponent (8-bit) Fraction (23-bit)

64-bit double Exponent (11-bit) Fraction (52-bit)

Floating Point Bit
Depth orecision

64-bit double 1.80 x 10308 2.23 x 10-308 ~ 10

Largest value Smallest value

32-bit Float 3.402823/ x 1038 1175494 x 10-38 ~/

16

Decimal digits of

Revisit: Demo — Are we getting the same numbers?

#include <stdio.h>

int main(int argc, char sxxargv)

{
double a, b, c;
a = 1280.245;
b = 0.0004;
c = (a + b)*l@ 0:

pr1ntf("(128@ 245 + 0.0004)%10 = %1f\n",c);
C = ax10.0 + bx10.0;

printf("1280.245%10 + 0.0004%x10 = %1f\n",c);
return 0;

17

Will the loop end? —If we use double

- Consider the following C program.

#include <stdio.h>

int main(int argc, char *xxargv)

{
double 1=1.0;
while(i > Q) i++;
printf("We're done! %f\n",1i);
return 0;

¥

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < O
E.

ne program will not finish since i will reach +inf and stay at +inf.

18

Recap: Floating point adder

Sign | Exponent Fraction Sign | Exponent Fraction

N Compare
Small ALU
exponents

Exponent

difference ¢ I
Yy Y Y
Co 1)t = 0 1) ’—>< 0 1)

v Shift smaller

Control | Shift right

number right

N
Big ALU Add
*

—Co_1) | (1)

Increment or —#=| Shift left or right

decrement Normalize
=1 Rounding hardware Round
P 1 i

Sign | Exponent Fraction

Other floating point formats

16-bit half =75 Exp (5-bit) [RGB 3] addedin 2008
32-bit float .. Exponent (8-bit) Fraction (23-bit)

64-bit double Exponent (11-bit) Fraction (52-bit)

Floating Point Bit
Depth orecision

64-bit double 1.80 x 10308 2.23 x 10-308 ~ 10

Largest value Smallest value

32-bit Float 3.402823/ x 1038 1175494 x 10-38 ~/

16-bit Float 0.55 x 104 6.10 x 10-° ~ 3

20

Decimal digits of

Why float-16?

- Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?

® Using less-precise data types allows the same number of transistors to deliver more results
simultaneously

@ Using less-precise data types + numerical methods can reach the same precision with shorter
latency

Using less-precise data types allows the hardware to support more applications

Using less-precise data types helps to lower the hardware cost in delivering the same
computation throughput

® ©

moow»
AwN = O

21

Why float-16?

- Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?

Using less-precise data types allows the same number of transistors to deliver more results
simultaneously

@ Using less-precise data types + numerical methods can reach the same precision with shorter

latency

® Using less-precise data types allows the hardware to support more applications
@ Using less-precise data types helps to lower the hardware cost in delivering the same

moow»
AwN = O

computation throughput

22

Can you tell the difference?

Higher resolution

S \v/

But we all can tell they are our mascots!

23

How about this?

Other floating point formats

16-bit half =75 Exp (5-bit) [RGB 3] addedin 2008

32-bit float Exponent (8-bit) Fraction (23-bit)
64-bit double Exponent (11-bit) Fraction (52-bit)

- Not all applications require “high precision”
- Deep neural networks are surprisingly error tolerable

25

Why float-16?

- Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?

Using less-precise data types allows the same number of transistors to deliver more results
simultaneously

@ Using less-precise data types + numerical methods can reach the same precision with shorter
latency

® Using less-precise data types allows the hardware to support more applications

Using less-precise data types helps to lower the hardware cost in delivering the same
computation throughput

A. O
B. 1
D. 3
E. 4

26

Mixed-precision

Double Precision Results

Max Flops (GFLOPS)

Fast Fourier Transform (GFLOPS)

Matrix Multiplication (GFLOPS)
Molecular Dynamics (GFLOPS)
S3D (GFLOPS)

Single Precision Results

Max Flops (GFLOPS)

Fast Fourier Transform (GFLOPS)

Matrix Multiplication (GFLOPS)
Molecular Dynamics (GFLOPS)

S3D (GFLOPS)

\CHERL!

253.38
132.60
249.57
105.26
SRAT

Tesla T4

8073.26
660.05
3290.94
572.91
99.42

Tesla V100

7072.86
1148.75
5920.01
908.62

227.85

Tesla V100
14016.50
2301.32
13480.40
997.61
434,78

Tesla P100

4736.76
756.29
4256.08
402.96
161.54

Tesla P100

9322.46
1510.49
8793.33
480.02
295.20

27

LT LT T

SPECIFICATIONS

GPU Architecture NVIDIA Turing
EIZ:S;A Turing Tensor 220

NVIDIA CUDA® Cores 2,560
Single-Precision 8.1 TFLOPS

(FP16/FP32) 65 TFLOPS

INT8 130 TOPS

INT4 260 TOPS

GPU Memory 16 GB GDDRé
300 GB/sec

ECC Yes

e e

System Interface x16 PCle Gen3

Form Factor Low-Profile PCle

Thermal Solutian Passive

Compute APls

CUDA, NVIDIA TensorRT",
ONNX

Google’s Tensor Processing Units

4 4

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute power in a TPU

chip. Each MXU is capable of performing 16K multiply-accumulate operations in each cycle. While the MXU inputs and
outputs are 32-bit floating point values, the MXU performs multiplies af reduced bfloat16 precision.|Bfloat16 is a 16-bit
floating point representation that provides better training and model accuracy than the IEEE half-precision

representation. https://cloud.google.com/tpu/docs/system-architecture

28

https://cloud.google.com/tpu/docs/system-architecture

EdgelPU

TensorFlow model Ll EAFCHT) Frozen graph

> TensorFlow model

32-bit float numbers Quantization .pb file

aware training

or

CONVERT /

/ Post-training TensorFlow Lite Converter
quantization

TensorFlow Lite COMPILE Edge TPU model DEPLOY
S > o Coral Hardware
8-bit fixed numbers tflite file

Figure 1. The basic workflow to create o model for the Edge TPU

29

How to efficiently express colors?

- Since human eyes can only see 7 million colors, which of the
following would be the most efficient way to express the color
of a pixel?

A. 8-bit character

B. 16-bit short integer

C. Three 8-bit characters Open the;oor u;o.o.m Pp——
D. 32-bit integer 7,000,000 colors Q- ey v e e
E 32_b|t f|Oat The human eye can see 7,000,000 colors. Some of

these are eyesores. Certain colors and color
relationships can be eye irritants, cause headaches,
and wreak havoc with human vision. Other colors and
color combinations are soothing.

www.colormatters.com » color-and-vision » color-and-... *

Color & Vision Matters

How to efficiently express colors?

- Since human eyes can only see 7 million colors, which of the
following would be the most efficient way to express the color

of a pixel?
A. 8-bit character
B. 16-bit short integer

C. Three 8-bit characters

D. 32-bit integer
E. 32-bit float

7,000,000 colors

The human eye can see 7,000,000 colors. Some of
these are eyesores. Certain colors and color
relationships can be eye irritants, cause headaches,
and wreak havoc with human vision. Other colors and
color combinations are soothing.

www.colormatters.com » color-and-vision » color-and-... *

Color & Vision Matters

Open the door to color in 3 minutes

rrafoem your Duoness, your home, OToe, web ¢
ricad an sk o tha s er of the C

Summary of what we have seen so far

- Transistors

- Boolean algebra

- Basic gates

- Logic functions and truth tables

. Canonical forms (SOP and POS)

- Two-level logic minimization

- Kmaps

- Decoders

- Multiplexers (behavior and how to implement logic functions with them)
- Adders, subtractors, and other ALU components
- All above are “combinational circuits”!

32

Introduction on Sequential
Circuits

Recap: Combinational v.s. sequential logic

- Combinational logic
- The output is a pure function of its current inputs

- The output doesn't change regardless how many times the logic is
triggered — ldempotent

- Sequential logic
- The output depends on current inputs, previous inputs, their history

Sequential circuit has memory!

34

Recap: Theory behind each

- A Combinational logic is the implementation of a

Boolean Algebra function with only Boolean Variables as their
INnputs

- A Sequential logic is the implementation of a
Finite-State Machine

35

OMI0] Count-down Timer

- What do we need to implement this timer?
- Set an initial value/"state” of the timer
- "Signal” the design every second

- The design changes its “state” every time we received the signal
until we reaches "0" — the final state

signal

N D ammy ~— A ~— A

9 3 7 6 5
display = 0:09

&Qv /
{ 2 3 4
— ")

display = O:

Finite-State Machines

Finite State Machines

signal signal signhal signal signal
A A A A

9 8 7 6 5

10 display = 0:09 display = 0:08 display = 0:07 display = 0:06 display = 0:05

« FSM consists of
. Set of states

S £ £ Reset display = 0:01 display = 0:02 display = 0:03 display = 0:04
» Set O INputs, set o1 outputs 1 2 3 a &
sigha

- Initial state -— - ¥

Set of t " s.i&gnal signal signal signal Signal
« o€l O ransitions

- Only one can be true at a Current N Srate

time State >

10

RN
@)

- FSM representations:
- State diagram
. State table

O=DNWRLPRITONOWWO
O - NWPkKMOIO N OO
OO -~ NWPkrAOIOLO N O O©ED

38

Life on Mars

- Mars rover has a binary input x. When it receives the input
seguence x(t-2,t) = 001 from its life detection sensors, it
means that the it has detected life on Mars and the output y(t)
=1, otherwise y(t) = O (no life on Mars).

- This pattern recognizer should have

A. One state because it has one output

B. One state because it has one input

C. Two states because the input can be O or 1
D. More than two states because ...

E. None of the above

39

Life on Mars

- Mars rover has a binary input x. When it receives the input
seguence x(t-2,t) = 001 from its life detection sensors, it
means that the it has detected life on Mars and the output y(t)
=1, otherwise y(t) = O (no life on Mars).

- This pattern recognizer should have

A. One state because it has one output

B. One state because it has one input

C. Two states because the input can be O or 1

D. More than two states because

E. None of the above

40

Announcement

- Lab 3 due 4/30

- Watch the video and read the instruction BEFORE your session

- There are links on both course webpage and iLearn lab section

- Submit through iLearn > Labs

- Midterm on 5/7/ during the lecture time, access through iLearn

- No late submission is allowed — make sure you will be able to take that at the time

- Covers: Chapter 1, Chapter 2, Chapter 3.1 — 3.12, Chapter 3.15 & 3.16, Chapter 4.1—
4.9

- Midterm review next Tuesday will reveal more information (e.g., review on key concepts,
test format, slides of a sample midterm)

- Lab 4 is up — due after final (5/12). Would rely on the content from today &
Thursday'’s lecture

- Check your grades iniLearn

41

Electrical
Computer
Engineering

