
Floating Point (cont.) &
Sequential Circuits

Prof. Usagi

• We want to express both a relational number’s “integer” and “fraction” parts
• Fixed point

• One bit is used for representing positive or negative
• Fixed number of bits is used for the integer part
• Fixed number of bits is used for the fraction part
• Therefore, the decimal point is fixed

• Floating point
• One bit is used for representing positive or negative
• A fixed number of bits is used for exponent
• A fixed number of bits is used for fraction
• Therefore, the decimal point is floating —
depending on the value of exponent

2

Recap: “Floating” v.s. “Fixed” point

+/- Integer Fraction.
is always here

+/- Exponent Fraction
.Can be anywhere in the fraction

Recap: What’s 0.0004 in IEEE 754?

3

after x2 > 1?
0.0004 0.0008 0
0.0008 0.0016 0
0.0016 0.0032 0
0.0032 0.0064 0
0.0064 0.0128 0
0.0128 0.0256 0
0.0256 0.0512 0
0.0512 0.1024 0
0.1024 0.2048 0
0.2048 0.4096 0
0.4096 0.8192 0
0.8192 1.6384 1
0.6384 1.2768 1
0.2768 0.5536 0
0.5536 1.1072 1
0.1072 0.2144 0
0.2144 0.4288 0
0.4288 0.8576 0
0.8576 1.7152 1
0.7152 1.4304 1

after x2 > 1?
0.4304 0.8608 0
0.8608 1.7216 1
0.7216 1.4432 1
0.4432 0.8864 0
0.8864 1.7728 1
0.7728 1.5456 1
0.5456 1.0912 1
0.0912 0.1824 0
0.1824 0.3648 0
0.3648 0.7296 0
0.7296 1.4592 1
0.4592 0.9184 0
0.9184 1.8368 1
0.8368 1.6736 1
0.6736 1.3472 1
0.3472 0.6944 0
0.6944 1.3888 1
0.3888 0.7776 0
0.7776 1.5552 1
0.5552 1.1104 1

12

0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1

after x2 > 1?
0.1104 0.2208 0
0.2208 0.4416 0
0.4416 0.8832 0
0.8832 1.7664 1
0.7664 1.5328 1
0.5328 1.0656 1
0.0656 0.1312 0
0.1312 0.2624 0
0.2624 0.5248 0
0.5248 1.0496 1
0.0496 0.0992 0
0.0992 0.1984 0
0.1984 0.3968 0
0.3968 0.7936 0
0.7936 1.5872 1
0.5872 1.1744 1
0.1744 0.3488 0
0.3488 0.6976 0
0.6976 1.3952 1
0.3952 0.7904 0

Recap: Special numbers in IEEE 754 float

4

0 0000 0000 0000 0000 0000 0000 0000 000+0

1 0000 0000 0000 0000 0000 0000 0000 000-0

0 1111 1111 0000 0000 0000 0000 0000 000+Inf

1 1111 1111 0000 0000 0000 0000 0000 000-Inf

0 1111 1111 xxxx xxxx xxxx xxxx xxxx xxx+NaN

1 1111 1111 xxxx xxxx xxxx xxxx xxxx xxx-Nan

• Consider the following two C programs.

Please identify the correct statement.
A. X will print “We’re done” and finish, but Y will not.
B. X won’t print “We’re done” and won’t finish, but Y will.
C. Both X and Y will print “We’re done” and finish
D. Neither X nor Y will finish

5

Will the loop end?

X Y
#include <stdio.h>

int main(int argc, char **argv)
{
 int i=0;
 while(i >= 0) i++;
 printf("We're done! %d\n", i);
 return 0;
}

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=0.0;
 while(i >= 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}To know why — We need to figure out how “float” is handled in hardware!

Floating point adder

6

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < 0
D. The program will not finish since i will always be a positive non-zero number.
E. The program will not finish but raise an exception since we will go to NaN first.

7

Recap: Will the loop end? (one more run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

• Consider the following C program.

Why i stuck at 16777216.000?
A. It’s a special number in IEEE 754 standard that an adder will treat it differently
B. It’s a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard
C. It’s just the maximum integer that IEEE 754 standard can represent
D. It’s nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0
E. It’s nothing special, but just happened to be the case that 16777216.0 add anything will become

16777216.0

8

Why stuck at 16777216?

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

Poll close in

• Consider the following C program.

Why i stuck at 16777216.000?
A. It’s a special number in IEEE 754 standard that an adder will treat it differently
B. It’s a special number like +Inf/-Inf or +NaN/-NaN with special meaning in the IEEE 754 standard
C. It’s just the maximum integer that IEEE 754 standard can represent
D. It’s nothing special, but just happened to be the case that 16777216.0+1.0 will produce 16777216.0
E. It’s nothing special, but just happened to be the case that 16777216.0 add anything will become

16777216.0

9

Why stuck at 16777216?

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

What’s 16777216 special about?

10

16777216 = 1.0 * 224

0 10010111 0000 0000 0000 0000 0000 000 0 0111 1111 0000 0000 0000 0000 0000 000

To add 1.0 = 1.0 *20

 to this number, you
have to shift 24 bits —

1 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 000 >> 24 == 0

You’re essentially adding 0 to 16777216
 — even worse — programmer never know

A good programmer needs to know
these kinds of

“hardware features” to avoid bugs!

Can you think of some other numbers
would result in the same situation?

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be something < 0
C. The program will not finish since i will always be a positive non-zero number.
D. The program will not finish since i will end up staying at some special FP32 presentation
E. The program will not finish but raise an exception since we will go to NaN first.

11

Will the loop end? (last run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i+=i;
 printf("We're done! %f\n",i);
 return 0;
}

Poll close in

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be something < 0
C. The program will not finish since i will always be a positive non-zero number.
D. The program will not finish since i will end up staying at some special FP32 presentation
E. The program will not finish but raise an exception since we will go to NaN first.

12

Will the loop end? (last run)

#include <stdio.h>

int main(int argc, char **argv)
{
 float i=1.0;
 while(i > 0) i+=i;
 printf("We're done! %f\n",i);
 return 0;
}

0 1111 1111 0000 0000 0000 0000 0000 000

Recap: Demo — Are we getting the same numbers?

13

#include <stdio.h>

int main(int argc, char **argv)
{
 float a, b, c;
 a = 1280.245;
 b = 0.0004;
 c = (a + b)*10.0;
 printf("(1280.245 + 0.0004)*10 = %f\n",c);
 c = a*10.0 + b*10.0;
 printf("1280.245*10 + 0.0004*10 = %f\n",c);
 return 0;
}

• More on floating points, data types
• Introduction to sequential circuit
• Finite State Machines

14

Outline

More on floating points

15

16

Other floating point formats

+/- Exponent (8-bit) Fraction (23-bit)32-bit float

64-bit double +/- Exponent (11-bit) Fraction (52-bit)

Floating Point Bit
Depth

Largest value Smallest value Decimal digits of
precision

64-bit double 1.80 × 10308 2.23 × 10-308 ~ 16

32-bit Float 3.4028237 × 1038 1.175494 × 10-38 ~ 7

16-bit Float 6.55 × 104 6.10 × 10-5 ~ 3

Revisit: Demo — Are we getting the same numbers?

17

#include <stdio.h>

int main(int argc, char **argv)
{
 double a, b, c;
 a = 1280.245;
 b = 0.0004;
 c = (a + b)*10.0;
 printf("(1280.245 + 0.0004)*10 = %lf\n",c);
 c = a*10.0 + b*10.0;
 printf("1280.245*10 + 0.0004*10 = %lf\n",c);
 return 0;
}

• Consider the following C program.

Please identify the correct statement.
A. The program will finish since i will end up to be +0
B. The program will finish since i will end up to be -0
C. The program will finish since i will end up to be something < 0
D. The program will not finish since i will always be a positive non-zero number.
E. The program will not finish since i will reach +inf and stay at +inf.

18

Will the loop end? — if we use double

#include <stdio.h>

int main(int argc, char **argv)
{
 double i=1.0;
 while(i > 0) i++;
 printf("We're done! %f\n",i);
 return 0;
}

Poll close in

Recap: Floating point adder

19

20

Other floating point formats

+/- Exponent (8-bit) Fraction (23-bit)32-bit float

64-bit double +/- Exponent (11-bit) Fraction (52-bit)

+/- Exp (5-bit) Fraction (10-bit)16-bit half added in 2008

Floating Point Bit
Depth

Largest value Smallest value Decimal digits of
precision

64-bit double 1.80 × 10308 2.23 × 10-308 ~ 16

32-bit Float 3.4028237 × 1038 1.175494 × 10-38 ~ 7

16-bit Float 6.55 × 104 6.10 × 10-5 ~ 3

• Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?
① Using less-precise data types allows the same number of transistors to deliver more results

simultaneously
② Using less-precise data types + numerical methods can reach the same precision with shorter

latency
③ Using less-precise data types allows the hardware to support more applications
④ Using less-precise data types helps to lower the hardware cost in delivering the same

computation throughput
A. 0
B. 1
C. 2
D. 3
E. 4

21

Why float-16?
Poll close in

• Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?
① Using less-precise data types allows the same number of transistors to deliver more results

simultaneously
② Using less-precise data types + numerical methods can reach the same precision with shorter

latency
③ Using less-precise data types allows the hardware to support more applications
④ Using less-precise data types helps to lower the hardware cost in delivering the same

computation throughput
A. 0
B. 1
C. 2
D. 3
E. 4

22

Why float-16?

Can you tell the difference?

23

Higher resolution

But we all can tell they are our mascots!

How about this?

24

• Not all applications require “high precision”
• Deep neural networks are surprisingly error tolerable

25

Other floating point formats

+/- Exponent (8-bit) Fraction (23-bit)32-bit float

64-bit double +/- Exponent (11-bit) Fraction (52-bit)

+/- Exp (5-bit) Fraction (10-bit)16-bit half added in 2008

• Recent processors/GPUs/accelerators start to provide native support less-precise data
types (16-bit floating point). How many of the following are possible reasons explaining
such a move?
① Using less-precise data types allows the same number of transistors to deliver more results

simultaneously
② Using less-precise data types + numerical methods can reach the same precision with shorter

latency
③ Using less-precise data types allows the hardware to support more applications
④ Using less-precise data types helps to lower the hardware cost in delivering the same

computation throughput
A. 0
B. 1
C. 2
D. 3
E. 4

26

Why float-16?

Mixed-precision

27

Google’s Tensor Processing Units

28

https://cloud.google.com/tpu/docs/system-architecture

https://cloud.google.com/tpu/docs/system-architecture

EdgeTPU

29

30

How to efficiently express colors?
• Since human eyes can only see 7 million colors, which of the
following would be the most efficient way to express the color
of a pixel?
A. 8-bit character
B. 16-bit short integer
C. Three 8-bit characters
D. 32-bit integer
E. 32-bit float

Poll close in

31

How to efficiently express colors?
• Since human eyes can only see 7 million colors, which of the
following would be the most efficient way to express the color
of a pixel?
A. 8-bit character
B. 16-bit short integer
C. Three 8-bit characters
D. 32-bit integer
E. 32-bit float

• Transistors
• Boolean algebra
• Basic gates
• Logic functions and truth tables
• Canonical forms (SOP and POS)
• Two-level logic minimization
• Kmaps
• Decoders
• Multiplexers (behavior and how to implement logic functions with them)
• Adders, subtractors, and other ALU components
• All above are “combinational circuits”!

32

Summary of what we have seen so far

Introduction on Sequential
Circuits

33

• Combinational logic
• The output is a pure function of its current inputs
• The output doesn’t change regardless how many times the logic is
triggered — Idempotent

• Sequential logic
• The output depends on current inputs, previous inputs, their history

34

Recap: Combinational v.s. sequential logic

Sequential circuit has memory!

• A Combinational logic is the implementation of a
Boolean Algebra function with only Boolean Variables as their
inputs

• A Sequential logic is the implementation of a
Finite-State Machine

35

Recap: Theory behind each

• What do we need to implement this timer?
• Set an initial value/“state” of the timer
• “Signal” the design every second
• The design changes its “state” every time we received the signal
until we reaches “0” — the final state

36

Count-down Timer

10 9 8 7 6 5

43210
Reset

signal

display = 0:09

display = 0:10

Finite-State Machines

37

• FSM consists of
• Set of states
• Set of inputs, set of outputs
• Initial state
• Set of transitions

• Only one can be true at a
time

• FSM representations:
• State diagram
• State table

38

Finite State Machines

Reset

10 9 8 7 6 5

43210

signal signal signal signal signal

signal
signalsignalsignalsignalsignal

display = 0:09display = 0:10 display = 0:08 display = 0:07 display = 0:06display = 0:05

display = 0:04display = 0:03display = 0:02display = 0:01

display = 0:00

Current
State

Next State
Signal

0 1
10 10 9
9 9 8
8 8 7
7 7 6
6 6 5
5 5 4
4 4 3
3 3 2
2 2 1
1 1 0
0 0 0

• Mars rover has a binary input x. When it receives the input
sequence x(t-2, t) = 001 from its life detection sensors, it
means that the it has detected life on Mars and the output y(t)
= 1, otherwise y(t) = 0 (no life on Mars).

• This pattern recognizer should have
A. One state because it has one output
B. One state because it has one input
C. Two states because the input can be 0 or 1
D. More than two states because ….
E. None of the above

39

Life on Mars
Poll close in

• Mars rover has a binary input x. When it receives the input
sequence x(t-2, t) = 001 from its life detection sensors, it
means that the it has detected life on Mars and the output y(t)
= 1, otherwise y(t) = 0 (no life on Mars).

• This pattern recognizer should have
A. One state because it has one output
B. One state because it has one input
C. Two states because the input can be 0 or 1
D. More than two states because ….
E. None of the above

40

Life on Mars

• Lab 3 due 4/30
• Watch the video and read the instruction BEFORE your session
• There are links on both course webpage and iLearn lab section
• Submit through iLearn > Labs

• Midterm on 5/7 during the lecture time, access through iLearn
• No late submission is allowed — make sure you will be able to take that at the time
• Covers: Chapter 1, Chapter 2, Chapter 3.1 — 3.12, Chapter 3.15 & 3.16, Chapter 4.1—
4.9

• Midterm review next Tuesday will reveal more information (e.g., review on key concepts,
test format, slides of a sample midterm)

• Lab 4 is up — due after final (5/12). Would rely on the content from today &
Thursday’s lecture

• Check your grades in iLearn
41

Announcement

つづく

Electrical
Computer
Engineering

Science 120A

