Extension Framework for File
Systems in User Space

2019 USENIX Annual Technical Conference (ATC)

Ashish Bijlani and Umakishore Ramachandran
Georgia Institute of Technology

Presenter: Yu-Chia Liu
Date: 1/21/2020

File System in Kernel Level

) PrOS User Applications h !
_ S— L. User
Native performance GNU C Library space
General purpose I P S =
System call interface)
. COnS Directory
. Inode cache Virutal file system
Cause kernel panic when system tacha
crashed
T > Kernel
| ess f|ex|b|||ty Individual file systems > depliy
More difficult to develop/debug/
maintain Buier cache
Device drivers
_J

http://www.cs.montana.edu/~andrew.hamilton/cs560/VES/Arch.html

UNIVERSITY OF CALIFORNIA
Extreme Storage & Computer Architecture Lab

http://www.cs.montana.edu/~andrew.hamilton/cs560/VFS/Arch.html

File Systems in User Space (FUSE)

struct fuse_lowlevel_ops ops {
o P ro S .lookup = handle_lookup,
.access = NULL,

.getattr = handle_getattr,

* FleX|b|I|ty file.pdf .setattr = handle_setattr,
.open = handle_open,
* Easy to Develop/Debug/Maintain readdir - handie_resddir
. g .write = handle_write,
* SpeC|aI|Zed T /v}lrr]ngrehanadnleri..v.me

.getxattr = handle_getxattr,

Finder.app libfuse .-rename = handle_rename,
.symlink = handle_symlink,
l T l T flush = NULL,
- Cons }
libc libc
-+ Poor Performance 5 y 5 3
i i i i User Ke e |
——————— S e EE— ,
o | Kemel Switches
\ ! \ |
-
. FUSE
VES HFS
NFS

https://blogs.dropbox.com/tech/2016/05/going-deeper-with-project-infinite/

UNIVERSITY OF CALIFORNIA
Extreme Storage & Computer Architecture Lab

https://blogs.dropbox.com/tech/2016/05/going-deeper-with-project-infinite/

FUSE Performance

“cd linux-4.18; make tinyconfig; make -j4”
- Intel i5-3350 quad core, Samsung 850 EVO NVMe SSD, 16 GB RAM
- Linux 4.11.0, Ubuntu 16.04.4 LTS, LibFUSE commit # 386b1b, StackFS w/ EXT4

w U
0 O

-0 splice_write

39.74 Opts Enabled
-0 splice_move

30.91 -0 max_write=128K
I28 57% overhead!
entry_timeout > 0

-0 splice_read
Native (EXT4) FUSE attr _timeout > 0

Time (sec)
N
(&)

13
0

UNIVERSITY OF CALIFORNIA

Performance Breakdown

.
. .
.....

- # of Requests Received by FUSE

400K B Regular B Optimized
350K
300K -
2 250K
S 200K
g VFS issues getxattr()
« 190K for each write() for

100K
50K -
0K -

reading security labels

UNIVERSITY OF CALIFORNIA

5 UCKIVERSIDE

ExtFUSE

- Extension framework for FUSE
ibExt 5 FUSE User Daemon ib >
A thin extension that can handle requests e handiers) ﬁﬂ’%
In kernel -> Avoid context switches EtFUSE lookup() FUSE | Apps
Library 1 opend H Library
close()
-+ Share data between FUSE daemon Userspace. | ak ______ - L-—J
and extensions using eBPF maps R === v ey VS
Cache metadata in the kernel | O . O] |®
EE’;:::::|£I::: ExtFUSE DRIVER r QUEUE w
lookup() |~ — 49. lookup() ‘g < lookup rFUSE
o;ft.?ft() °Pff‘0 <___open DRIVER
close() Ex:;::on close() 6 cl.(.);;e J
'O

Lower File system

- = pFast Path - - -pSlow Path [_JUnmodified COJModified _INew <__JInterface

Figure 1: Architectural view of the EXTFUSE framework. The
components modified or introduced have been highlighted.

I% UNIVERSITY OF CALIFORNIA

Extreme Storage & Computer Architecture Lab

eBPF?

Extended Berkeley Packet Filtering

Allows to running user space programs inside the kernel
Avoid unnecessary copies to the user space

Use the key-value maps as meta-data caches

User space Kernel

reject

| eBPF
eBPF LLVM eBPF load Verifier
program Clang bytecode
JIT
compiler

'

> tracepoints

reqgister

event config

per-event data, native code
statistics, etc < .‘ perf_events

http://seahorn.github.io/seahorn/crab/static%20analysis/linux %20extensions/ebpf/2019/07/04/seahorn-ebpf.html

UNIVERSITY OF CALIFORNIA

Extreme Storage & Computer Architecture Lab

http://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html

Advantages of Using eBPF

. BPF code can proactively cache/invalidate meta-data in kernel
+ BPF code can perform customized filtering or permission checks
- BPF code can directly forward I/O requests to lower FS in kernel

Metadata Map Key Map Value Caching Operations Serving Extensions Invalidation Operations

Inode <nodelD, name> fuse_entry_param lookup, create, mkdir, mknod lookup unlink, rmdir, rename

Attrs <nodelD> fuse_attr_out getattr, lookup getattr setattr, unlink, rmdir

Symlink <nodelD> link path symlink, readlink readlink unlink

Dentry <nodelD> fuse_dirent opendir, readdir readdir releasedir, unlink, rmdir, rename
XAttrs <nodelD, label> xattr value open, getxattr, listxattr getattr, listxattr close, setxattr, removexattr

Table 4: Metadata can be cached in the kernel using eBPF maps by the user-space daemon and served by kernel extensions.

UNIVERSITY OF CALIFORNIA

Extreme Storage & Computer Architecture Lab

ExtFUSE Performance

- “cd linux-4.18; make tinyconfig; make -j4”
- Intel i5-3350 quad core, Samsung 850 EVO NVMe SSD, 16 GB RAM
- Linux 4.11.0, Ubuntu 16.04.4 LTS, LibFUSE commit # 386b1b, StackFS w/ EXT4

40 Overhead
Optimized Latency: 28.57%
— 30
] . D EXtFUSE Latency: 2.16%
o %0 Only 2.16% overhead! ExtFUSE Memory: 50MB
£

'y
o

- . (worst case)
| Cached: lookup, attr, xattr

Native Optimized ExtFUSE Passthrough: read, write

0 :

UNIVERSITY OF CALIFORNIA

Performance Breakdown

.
. .
.....

- # of Requests Received by FUSE

M Optimized B ExtFUSE

300K
‘2 250K |
§ 200K — No read/
< 150K - —Very-few— NI M- —Very few— ~ write() reqs

SOK.-/, /-

OK— . - B .
VA
S % % % 2 2% % %% 2 3% % B %
= 2 5 9 R B 2 oz B 9% B o =
= o ° 2 o 5 * = 7 5 © o &
c = 3 = % 2 % = T B o % ®
©° S« @7 = ® =~ = ®©
- S
-

UNIVERSITY OF CALIFORNIA

. UCKIVERSIDE

NS AllOpt 553 EXT4 Z22)

50 -

02 AR
40< o1 ..
301 oo —

L

SSSS SIS

1131131181

]
-ry
1
i
1
i
1
]

st s

OOUSCIAOODUDOUUNERN OO
:) y

SESUESHEUEY

Y 118 7% \
NV 20 78 N
RW (1th,1f)
_70 == 70 _ = =
8 60 V| 6o
— 50 - N 50 4 ~. 378 N
x N 78 |-
— 40 - 328 40 1 3278 SN2
v 857 3278 82
g 301 N | 30 \ 7 8
810 104 N 78 s:’
0 ‘=== . w—{ S 4 0 === . @ . S /8 . N=4
7 7, v v, 7 <l N 7 <, N v, 7 7, N 7
< - 1 <, < <, < 1 < - 1
SR (1th,1f) SR (32th,32f) SW (1th,1f) SW (32th,32f)

Figure 6: Throughput(ops/sec) for EXT4 and FUSE/EXTFUSE Stackfs (w/ xattr) file systems under different configs (Table 5) as measured
by Random Read(RR)/Write(RW), Sequential Read(SR /Write(SW) Filebench [48] data micro-workloads with 10 Sizes between 4KB-1MB
and settings Nth: N threads, Nf: N files. We use the same workloads as in [50].

Config File System Optimizations

opt [50] FUSE 128K Writes, Splice, WBCache, MItThrd
MDOpt EXTFUSE 0pt + Caches lookup, attrs, xattrs
Allopt EXTFUSE MDOpt + Pass R/Wregs through host FS

A . Table 5: Different Stackfs configs evaluated. NIVERSITY OF CALIFORNIA

: CKIVERSI

B Real-world Applications

.
.
......

App Stats CPU (%) Latency (ms)
Name OBBSize D P D P

Disney Palace Pets 5.1 374MB 20 29 2235 1766
Dead Effect 4 1.1GB 20.5 3.2 8895 4579

Table 7: App launch latency and peak CPU consumption of sdcard
daemon under default (D), and passthrough (P) settings on Android

for two popular games. In passthrough mode, the FUSE driver never
forwards read/write requests to user space, but always passes them

through the host (EXT4) file system. See Table 5 for config details.

UNIVERSITY OF CALIFORNIA

- UCKIVERSIDE

Conclusion

ExtFUSE framework safely executes “thin” file system handlers in the kernel

Developers can use ExtFUSE to
Cache metadata requests
Directly pass I/O requests to lower FS
Insert custom security checks in the kernel

UNIVERSITY OF CALIFORNIA

Personal Opinions

- The things | do not like:
- Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems

UNIVERSITY OF CALIFORNIA

Component Version Loc Modified Loc New

FUSE kernel driver 4.11.0 312 874
FUSE user-space library 3.2.0 23 84
EXTFUSE user-space library - - 581

Table 3: Changes made to the existing Linux FUSE framework to
support EXTFUSE functionality.

5.7 K lines of code changes!

File System Functionality Ext Loc
StackFS [50] No-ops File System 664
BindFS [35] Mirroring File System 792
Android sdcard [24] Perm checks & FAT Emu 028
MergerFS [20] Union File System H86
LoggedFS [16] Logging File System 748

Table 6: Lines of code (Loc) of kernel extensions required to adopt
EXTFUSE for existing FUSE file systems. We added support for
metadata caching as well as R/W passthrough.

15

Personal Opinions

- The things | do not like:
- Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems
- Absence of comparison to other novel user space file systems

UNIVERSITY OF CALIFORNIA

eBPF.JEXTFUSE is not the first system to use eBPF for safe
extensibility. eXpress DataPath (XDP) [27] allows apps to

insert eBPF hooks in the kernel for faster packet process-
ing and filtering. Amit et al. proposed Hyperupcalls 4] as
eBPF helper functions for guest VMs that are executed by
the hypervisor. More recently, SandFS [7] uses eBPF to pro-
vide an extensible file system sandboxing framework. Like

EXTFUSE, it also allows unprivileged apps to insert custom
security checks into the kernel.

FUSE. File System Translator (FiST) [55] is a tool for
simplifying the development of stackable file system. It pro-
vides boilerplate template code and allows developers to only
implement the core functionality of the file system. FiST
does not offer safety and reliability as offered by user space
file system implementation. Additionally, it requires learning
a slightly simplified file system language that describes the
operation of the stackable file system. Furthermore, it only
applies to stackable file systems.

Narayan et al. [34] combined in-kernel stackable FiST
driver with FUSE to offload data from I/O requests to user

space to apply complex functionality logic and pass processed
results to the lower file system. Their approach is only ap-

17

plicable to stackable file systems. They further rely on static

per-file policies based on extended attributes labels to en-
able or disable certain functionality. In contrast, EXTFUSE
downloads and safely executes thin extensions from user file
systems in the kernel that encapsulate their rich and special-
1zed logic to serve requests in the kernel and skip unnecessary
user-kernel switching.

Personal Opinions

The things | do not like:
- Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems

- Absence of comparison to other novel user space file systems
Inconsistent results from the paper, conference slides and slides from other talks

UNIVERSITY OF CALIFORNIA

» x
2 n AN AlOpt » “cd linux-4.17; make tinyconfig; make -j4”
™ :
o 10% | x S 400K M Regular B Optimized " ExtFUSE
™M
2 = s 300K "
10"t 7
4 E | Veryfew |[Jlil Verv f
e o 200K — H-H— YE'YTew
0107 g I J} getattr()s QWi _J | getxattr()s
— yd L] Yy
§1°2T #* 100K Va i Va
4 Q
& 10!} oK ‘8- 9BF . R
* C Q0 R L Q9 B c 9 B B P ;
10° %%‘%‘%’&%“}%%?‘%%9%:\.
Sy, @ 2 %2 %% ° %% x3sg o0
3 4‘» °o4_0 ° % e 7 © 2 = 2%
’>4, 4;%)3 L JLINUX

Kernel Compile

B Optimized B ExtFUSE

No read/
write() regs

100K getattr ()S | getxattr()s

https://events19.linuxfoundation.org/wp-content/uploads/2017/11/When-eBPF-Meets-FUSE-Improving-Performance-of-User-File-Systems-Ashish-Bijlani-Georgia-Tech.pdf

Personal Opinions

The things | do not like:
-+ Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems
- Absence of comparison to other novel user space file systems

Inconsistent results from the paper, conference slides and slides from other talks

The things | like:

-+ The Design is modular, extendable and compatible with FUSE
|dentification of Optimization opportunities
Consider the balance between safety and performance
Built on the top of state-of-the-arts (FUSE and eBPF)

UNIVERSITY OF CALIFORNIA

Thanks for Your Attention!

Discussions

-+ Kernel Space vs. User Space

IIIIIIIIII OF CALIFORNIA

, UCKIVERSIDE

Discussions

- Generality or Specialization

IIIIIIIIII OF CALIFORNIA

, UCKIVERSIDE

