
Extension Framework for File 
Systems in User Space

2019 USENIX Annual Technical Conference (ATC) 

Ashish Bijlani and Umakishore Ramachandran 
Georgia Institute of Technology 

Presenter: Yu-Chia Liu 
Date: 1/21/2020



• Pros
• Native performance
• General purpose

• Cons
• Cause kernel panic when system 

crashed
• Less flexibility
• More difficult to develop/debug/

maintain

2

File System in Kernel Level

http://www.cs.montana.edu/~andrew.hamilton/cs560/VFS/Arch.html

http://www.cs.montana.edu/~andrew.hamilton/cs560/VFS/Arch.html


• Pros
• Flexibility
• Easy to Develop/Debug/Maintain
• Specialized

• Cons
• Poor Performance

3

File Systems in User Space (FUSE)

https://blogs.dropbox.com/tech/2016/05/going-deeper-with-project-infinite/

Kernel 
Switches

https://blogs.dropbox.com/tech/2016/05/going-deeper-with-project-infinite/


• “cd linux-4.18; make tinyconfig; make -j4”
• Intel i5-3350 quad core, Samsung 850 EVO NVMe SSD, 16 GB RAM
• Linux 4.11.0, Ubuntu 16.04.4 LTS, LibFUSE commit # 386b1b, StackFS w/ EXT4

4

FUSE Performance



• # of Requests Received by FUSE

5

Performance Breakdown



• Extension framework for FUSE
• A thin extension that can handle requests 

in kernel -> Avoid context switches

• Share data between FUSE daemon 
and extensions using eBPF maps
• Cache metadata in the kernel

6

ExtFUSE



• Extended Berkeley Packet Filtering
• Allows to running user space programs inside the kernel
• Avoid unnecessary copies to the user space
• Use the key-value maps as meta-data caches

7

eBPF?

http://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html

http://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html


• BPF code can proactively cache/invalidate meta-data in kernel
• BPF code can perform customized filtering or permission checks
• BPF code can directly forward I/O requests to lower FS in kernel

8

Advantages of Using eBPF



9

ExtFUSE Performance
• “cd linux-4.18; make tinyconfig; make -j4”

• Intel i5-3350 quad core, Samsung 850 EVO NVMe SSD, 16 GB RAM
• Linux 4.11.0, Ubuntu 16.04.4 LTS, LibFUSE commit # 386b1b, StackFS w/ EXT4



• # of Requests Received by FUSE

10

Performance Breakdown



11

Filebench microbenchmarks



12

Real-world Applications



• ExtFUSE framework safely executes “thin” file system handlers in the kernel

• Developers can use ExtFUSE to
• Cache metadata requests
• Directly pass I/O requests to lower FS
• Insert custom security checks in the kernel

13

Conclusion



• The things I do not like:
• Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems

14

Personal Opinions



15

5.7 K lines of code changes!



• The things I do not like:
• Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems
• Absence of comparison to other novel user space file systems

16

Personal Opinions



17



• The things I do not like:
• Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems
• Absence of comparison to other novel user space file systems
• Inconsistent results from the paper, conference slides and slides from other talks

18

Personal Opinions



19

https://events19.linuxfoundation.org/wp-content/uploads/2017/11/When-eBPF-Meets-FUSE-Improving-Performance-of-User-File-Systems-Ashish-Bijlani-Georgia-Tech.pdf

https://events19.linuxfoundation.org/wp-content/uploads/2017/11/When-eBPF-Meets-FUSE-Improving-Performance-of-User-File-Systems-Ashish-Bijlani-Georgia-Tech.pdf


• The things I do not like:
• Too many new/modified lines of code for FUSE/ExtFUSE/User space file systems
• Absence of comparison to other novel user space file systems
• Inconsistent results from the paper, conference slides and slides from other talks

• The things I like:
• The Design is modular, extendable and compatible with FUSE
• Identification of Optimization opportunities
• Consider the balance between safety and performance
• Built on the top of state-of-the-arts (FUSE and eBPF)

20

Personal Opinions



Thanks for Your Attention!

21



• Kernel Space vs. User Space

22

Discussions



• Generality or Specialization

23

Discussions


