
Chapter 10: Concluding Remarks
Yu-Chia Liu
5/25/2021



• Quantum Computers can be Digital
• Effective Error-Mitigation Techniques
• Achieving Greater Efficiency by Breaking Abstractions
• In Need for a New Systems Stack

• Noise Mitigation and Error Correction
• Quantum Programming Languages
• Automated Compilation
• Quantum-Classical Co-Processing
• Scalable Software & Hardware Verification

• Last But not Least… Simulations

2

Outline



• Quantum computing can be viewed as an analog enterprise, with its 
exponentially complex superposition and probabilistic outcomes of 
measurement

• The digital discipline is accomplished through quantum error correction codes 
and the measurement of error syndromes through ancilla qubits (scratch 
qubits) 

• Operations on error-corrected qubits can be viewed as digital rather than 
analog, and only a small number of universal operations are needed for 
universal quantum computation
• Hadamard gate (H gate)
• Pi/8-phase gate (T gate)
• Controlled-Not gate (CNOT gate)

• Quantum error correction codes have historically required enormous overhead

3

Quantum Computers can be Digital



• High physical error rates in quantum devices can lead to high error-
correction overhead

• Physical error-mitigation techniques promise to make devices more reliable 
and make low-overhead error-correction code possible

• Those techniques rely on examining the physical basis of the error
• Combining noisy qubits to generate less noisy qubits at the physical level
• Using qubits to control the noise source

• Possible error correction on applications’ side
• For example, Generalized Superfast [1], an encoding of quantum chemistry problems, can 

correct for a single qubit error

4

Effective Error-Mitigation Techniques



• Compilation tools will play a critical role for practical quantum computation
• But those tools have to break traditional abstractions and be customized for 

machine device characteristics in a manner never before seen in classical 
computing
• Compilers can target not only a specific program input and machine size, but the condition 

of each qubit and link between qubits
• Instead of compiling to an instruction set, compilers can directly target a set of analog 

control pulses
• Instead of using binary logic to target two-level qubits, compilers can target an n-ary logic 

composed of qudits

5

Breaking Abstractions



• Quantum computing is at a similar stage of development as classical 
computing in the 1950s

• The systems stack for practical quantum computation
1. An architecture with error-correction, error-mitigation and application-level fault-tolerance
2. An expressive programming language
3. An automated compilation and memory management framework
4. An Integrated quantum-classical co-processing scheme
5. Scalable software and hardware verification

6

In Need for a New Systems Stack



• Two classes of strategies for information protection and error reduction in 
quantum system

• Characterizing Realistic Noises
• State and process tomography
• Randomized benchmarking

• Noise Mitigation Strategies
• Randomized compiling
• Noise-Aware Mapping
• Crosstalk-Aware Scheduling

• Quantum Error Correction
• A way to systemically detect and correct a quantum error

• Redundant Encoding
• Digitizing Quantum Error

7

Noise Mitigation and Error Correction



• Low-Level Machine Languages
• Quantum Assembly Language (QASM)
• A direct translation from a quantum circuit to a sequential description instructions for 

executing a quantum program
• Sequential QASM language suffers from its limitation on modeling complex classical control

• High-Level Programming Languages
• Represent complex classical and quantum information processing in quantum algorithms
• Designing a language that enables programmers to exploits these quantum properties on 

real hardware while maintaining usability remains challenging
• Balancing between abstraction and detail is key

• Exposing device specifics helps programmers write more efficient code
• But it dramatically increases the complexity of the language

• Because of the hybrid nature of classical and quantum information processing, most 
existing quantum programming languages are Domain-Specific Languages (DSLs)

8

Quantum Programming Languages



• A quantum compiler aims to translate, transform and optimize a high-level quantum program into native 
instructions that a quantum machine recognizes and natively supports, balancing practical architectural 
constraints

• For a program to be realizable on a given hardware, a number of architectural constraints must be satisfied:
• Instruction set
• Qubit communication
• Hardware noise
• Available parallel control

• Circuit Synthesis and Compilation
• Unitary synthesis focuses on exactly or approximately expressing arbitrary unitary transformations in a sequence of elementary 

gates.
• The goal of gate scheduling is to utilize commutation relations to determine the ordering of the operations and to use circuit 

equivalence to simplify quantum programs
• Qubit mapping is to strategically assign the variables in a quantum program to the qubits available in the system.

• Pulse Compilation
• In the NISQ era and beyond, we will need to orchestrate the simultaneous quantum operations on hundreds or thousands of qubits
• Classical and quantum control of qubits
• Pulse generation and optimization
• Calibration and Verification

9

Automated Compilation



• Quantum computing hardware is currently envisioned to be a hardware accelerator 
for classical computers

• Classical processing and classical control play vital roles in quantum computing
• A quantum algorithm generally involves classical pre- or post-processing
• Efficient classical controls are needed for running the algorithm on hardware

• Advantages:
• It sidesteps the “innovator’s dilemma” by leveraging an initial guess derived from classical 

technology, rather than directly competing with that technology.
• Hybrid algorithms break a long program into multiple iterations of short programs, which allows us 

to effectively utilized the limited number of instructions a quantum machine can reliably execute.
• It allows us to pick small but classically challenging problems that can be represented in a small 

number of quantum bits.
• We have a clear measure of success, as we know that classically-computed ground state energy 

can be significantly higher than experimentally-observed values.

10

Quantum-Classical Co-Processing



• Hardware Verification
• Refers to the problem of verifying that hardware is capable of performing quantum logic operations 

as intended by a program
• At a basic level, the behavior of quantum devices can be characterized through quantum tomography
• As machine becomes larger, we will need a system-level approach

• Software Verification
• Refers to the problem where we want to verify that a quantum program is bug-free and implements 

the desired transformation
• The purpose of software verification is typically two-fold:

• High-level programs are bug-free
• Compiler transformations preserve logical equivalence

• Three useful verification approaches
• Tracing via classical simulation
• Assertion via quantum property testing
• Proof via formal logic

11

Scalable Software & Hardware Verification



• Once we have functional quantum computers, we may be able to use 
quantum algorithms to implement theorem provers and constraint solvers

• However, always be bootstrapping from simulator to hardware, from 
hardware to larger hardware.
• Leading Techniques:

• Density matrices
• Stabilizer formalism
• Graphical models

• It allows us to execute a quantum program and verify its correctness even when no 
quantum hardware is available

• It also sheds light on the not-so-well-understood computational power boundary between 
classical computers and quantum computers

12

Last But not Least… Simulations



• [1] Setia, Kanav, et al. "Superfast encodings for fermionic quantum 
simulation." Physical Review Research 1.3 (2019): 033033.

13

References


