EE260 (F): Quantum Computing & Computer Architectures

Hung-Wei Tseng

Brief History of Quantum Computing

- 1959 Richard Feynman states the possibility of using quantum effects for computation
- 1980 Paul Benioff published paper on quantum Turing machines
- 1981 Feynman urged the world to build a quantum computer. "Nature isn't classical...and if you want to make a simulation of nature, you'd better make it quantum mechanical..."
- 1993 an international group of six scientists, showed that perfect quantum teleportation is possible
- · 1994

— Dan Simon showed another computational problem that a quantum computer has an exponential advantage over any classical computers. —Peter Shor discovered a quantum algorithm, which allows a quantum computer to factor large integers exponentially much faster than the best known classical algorithm. Shor's can theoretically break many of the Public-key cryptography systems in use today

Brief History of Quantum Computing

- 2009 Yale created first solid-state quantum processor, a 2-qubit superconducting chip
- 2011
 - scientists from Australia and Japan made a breakthrough in quantum teleportation, successfully transferring quantum data with full transmission integrity
 D-Wave announced first commercial quantum annealer
- 2012 the first quantum teleportation from one macroscopic object to another was reported by scientists at the University of Science and Technology of China
- 2013 Google announced that it was launching the Quantum AI Lab
- 2014 Edward Snowden showed the NSA is running a \$79.7 million research program titled "Penetrating Hard Targets", to develop a quantum computer capable of breaking vulnerable encryption
- 2015 NASA publicly displayed the world's first fully operational quantum computer, D-Wave Systems
- * 2017 IBM Research scientists successfully "broke the 49-qubit simulation barrier"
- 2018 IBM, Intel, and Google each reported testing quantum processors containing 50, 49, and 72 qubits
- 2019 Google announced it had achieved quantum supremacy marking a huge milestone in the advancement of practical quantum computing

ch program titled king vulnerable encryption computer, D-Wave Systems h barrier" ontaining 50, 49, and 72

Quantum Computer

 A computer exploits its internal states through special quantum mechanical properties such as superposition and entanglement

Categories of Quantum Computers

- Analog
- Digital Gate Based
- Measurement-based

Analog QC

- Gradually evolves the state of a quantum system using quantum operations that smoothly change the system such that the information encoded in the final system corresponds to the desired answer with high probability.
- When the restriction is lifted and the system is allowed to interact with the thermal environment, it is referred to as "quantum annealing"
- Whether or not existing quantum annealing devices achieve universal quantum computation or any quantum speedup remains unclear.

Digital QC

- Information is encoded onto a discrete and finite set of quantum bits (qubits)
- Quantum operations are broken down to a sequence of a few basic quantum logic gates.
- More sensitive to noise from the environment than an analog QC — lead to the cost of error correction

Measurement-based QC

- Initializes a number of qubits in the cluster state.
- The computation process involves measuring (in some measurement basis) some of the qubits in the cluster state.
- The output of the computation is the measurement bit-string outcome and the remaining state of the qubits that are not measured.
 - possibly conditioned on the outcomes of previous measured qubits

Quantum Computer Architecture

Regarding QPUs

- A hardware accelerator for modern computers not a replacement
- The host processor controls every move of a QPU
- A well-isolated physical system
 - Encodes a sufficiently large number of qubits
 - Controls these gubits with extremely high speed and precision in order to carry out computation
 - Must reliably address and control qubits and correcting errors.

System Stack

Computer Systems in 1950s

Algorithms

Assembly Language, Circuit Synthesis

Devices (Vacuum Tubes)

Quantum Computer Systems

Algorithms

Quantum DSL, Compilation, Unitary Synthesis, Pulse Shaping, Noise Mitigation, Error Correction

Devices (Qubits)

Quantum Technologies

- Quantum Computer Systems
 - Quantum Algorithms
- Quantum Programming Languages
 - Quantum Compilation
 - Unitary Synthesis
- Microarchitecture and Pulse Control
 - Quantum Hardware

What the class is going to cover?

A "study-group" of

Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum Computers. Yongshan Ding and Frederic T. Chong. Synthesis Lectures on Computer Architecture

- Free download through UCR VPN by accessing https:// doi.org/10.2200/S01014ED1V01Y202005CAC051
- Also three research papers
- Each of us should signup for exact one presentation throughout the quarter
 - Sign up for your presentation slot https:// calendar.google.com/calendar/u/0/selfsched? sstoken=UUpRMXREUIVDM3FwfGRIZmF1bHR8OWFIMjZ mODk4OWYwMjEwMWNIYmZhMGE3MzEyMjgwNTI
 - Please do as soon as you can! We need the first presenter next Tuesday!

Quantum Computer Systems

Research for Noisy Intermediate-Scale Quantum Computers

> Yongshan Ding Frederic T. Chong

Schedule — on the website

→ C ■ escalab.org/classes/ee260f-2021sp/								
🍘 Extreme Storage & Computer Architecture 🖌 Customize 🐟 4 🛡 0 🕂 New 🖉 Edit Page								
	Schedule and	d Slides						
		Topic	Reading					
	3/30/2021	Intro	Ding/Chong Chapter 1					
	4/1/2021		Ding/Chong Chapter 2					
	4/6/2021		Ding/Chong Chapter 3					
	4/8/2021							
	4/13/2021		Ding/Chong Chapter 4					
	4/15/2021							
	4/20/2021		Ding/Chong Chapter 5					
	4/22/2021							
	4/27/2021		Ding/Chong Chapter 6	<u>https</u>	<u>://wwv</u>	v.esca	ab.org	/cl
	4/29/2021							

asses/ee260f-2021sp/

cid=dWNyLmVkdV82N2FianBmNXFya3Nvb25uYmQyamlkcWZuNEBn 91cC5jYWxlbmRhci5nb29nbGUuY29t

- You should try your best to prepare for the presentation
 - Check https://www.escalab.org/classes/ee260f-2021sp/ for slides and the topic of the week
 - Send me your slides after your presentation
- Starting from week 2, we will meet ever Tuesday and meet on Thursday only when necessary (e.g., the presentation of a chapter cannot finish in one lecture) • Subscribe to the calendar for the most up-to-date meeting schedule
 - https://calendar.google.com/calendar/u/1? cid=dWNyLmVkdV82N2FianBmNXFya3Nvb25uYmQyamlkcWZuNEBncm91cC5jYWxlb mRhci5nb29nbGUuY29t
- You should try to ask questions
- You should think about what research can be done along the line of topics learned • from this quarter
 - Turn in a 2-page research proposal at the end of the quarter

Questions?