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Computing on “Bits"”



Conventional Digital Circuits Implement Boolean Algebra

- Bits — {0, 1}: The only two possible values in inputs/outputs

- Basic operators

« AND (¢)—a-b
- returns 1 only if both aand b are 1s
- otherwise returns O

- OR(+)—a+b
- returns1ifaorbis
- returns O if none of them are 1s

- NOT (') — &'
- returnsOifais
- returns1ifais O




Truth tables

- A table sets out the functional values of logical expressions on
each of their functional arguments, that is, for each
combination of values taken by their logical variables

AND OR
A B A B
0 0 0 0 0 0
0 1 0 0 1 1 5 1
1 0 0 1 0 1
1 1 1 1 1 1 1 O




Derived Boolean operators

- NAND — (a + b)’

- NOR— (a + b)’

+ XOR—(a+b)e(a"+b)orab’ + ab

- XNOR—(a+Db') (a’ + b) or ab + a’b’
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Boolean operators their circuit “gate” symbols

~ represents where we take a
compliment value on an input

~ represents where we take a
compliment value on an output
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We can make everything NAND!

Original NAND




We can also make everything NOR!
Original
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Truth tables

- A table sets out the functional values of logical expressions on
each of their functional arguments, that is, for each
combination of values taken by their logical variables

Reversible
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Two concepts before talking about
“"Qubits”



Reversible computation

- Second law of thermodynamics — Irreversible bit operation
consumes energy Reversible Gate | Boolean Circuit Notation Truth Table
- Reversible gates NOT gatc x X NOT(x)

10) 5 [1)

1) ~— |0}
00) + |00)

¥ 01) — [01)
CNOT gate |
X2 x) 6 x7 10) — |11}
_ [1) — 10}
000) — |000)

001) +» |001)

010) +— |010)
X| —r— Xj

OLl) — |O11)
Toffoli gate x> AL X; 011

| - 100) — [100)
x3 —P— AND (x). x7) D x; .
101) — |101)

[10Y — |111)
[Ty — 110}




Randomized Computation

- Two forms
- An algorithm takes random inputs
- An algorithm make random choices

- Notation of random bits
. xp) = % |10) + % | 1) (1) x; has 50% probability to be 0, 50% to be 1

. |xxy) = <100) +5101) + <10y + 0| 11) (2

- Conditional probability
. For case (2), if we observed as x; O

. |xxy)(given x; = 0) = == |00) +5|01) = | 00) + = | 01)
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Now, quantum computing



Qubit System

. ‘ W) = ZbE{O,l}” ap ‘ b)
- a—amplitude of the basis bit-string 5

- (Y, can be any complex numbers

2 _
. Zbe{o,l}n‘%‘ =1

- amplitudes (as being possibly negative) can either accumulate
(constructively) and cancel (destructively)

- Probability distribution across bs is called the superposition of
all bit strings

- The correlation between bits is called entanglement of qubits
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Measure the Qubit system

- Upon measurement, the state of the system “collapses” to the
single classical definite value and can no longer revert to the
superposition as it was before

- Meas(|y)) = | D)

_ Loy 4L
.Forll/f>—ﬁ|0>+ﬁ\1> |
PriMeas(|y)) = |0)] = PriMeas(|y)) = |1)] =5
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Feynman's Sum-Over-Path Approach

- The final amplitude is given by adding the contributions from all
paths; and

- The contribution from a path is given by multiplying the
coefficients along the path.
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Interference prevention — Entangled Ancilla Qubit

X1: |0—H .
X2+ 10) C— H—

- Bell state — After the first H gate and CNOT gate, we arrive at

_ L 1
\X1?Cz>—ﬁ\()()>+\/5 L1)

- The other qubit is guaranteed to be measured in the same state as the first
- This “correlation” between the two qubits are called guantum entanglement.
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Architecture constraints of Quantum Computers

- Probabillistic outcomes
- a quantum program is intrinsically probabilistic

- a good quantum program will make sure the desired bit-strings are
observed with much higher probability compared to the undesired
ones

- a quantum program may need thousands of shots before
meaningful statistics

- No copying of qubits
- Qubit-qubit interactions
- Analog noises
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Principles of Quantum Computing



Superposition

- Amplitude distribution

o
. V)= (,3) where a, B € C and |«|? + |B]? = 1.

S =alo+pin=a(g)+5(;) = (5)

- A d-dimensional qubit system is defined as a superposition of
d basis states

. W)= |0) +ar[l)+-+ag-y|d—1)
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Composition

- The joint state of two separate quantum systems
V) = [Yo) ® Y1) TTa,ﬁma, ) ® b)),

where |a;) ® |b;) can often be shortened as |a;by )
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Example 2.4  'The four basis states of the two-qubit system are

00) = |0} ® |0) = 01) = 10) ® [1) =

o OO =

-_o QO

[10) = |1} & |0) = A1) =1 @ [1) =

0
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Example 2.5 Let’s take a look at the example of two generic qubits. Suppose the first qubit is
[Yo) = a0 |0) + o |1) and the second qubit is [y/1) = Bo |0) + B1|1), then their joint state is:

e () (o
) = |Yo) ® [¥1) = (ao)@’( O) = . (,8(1)) - a?ﬂ:)
: b1 1P
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Measurement

. When we measure a qubit | y) = a|0) + /| 1)we observe
the basis state 0) with probability | o \zand the basis state 1)
with probability | 3|

- The process of measurement is irreversible and probabilistic

- the state |y) collapses into one of the two basis states (0) or 1))
- the original quantum superposition cannot be recovered

- outcome is related to the latitude of the guantum state— global
phase (longitude) does not matter
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Initial State Readout Final State | Probability

1
0
1 1) 50% |+:,=%(|0;.+|1)). |-) = },_(0}—I1}
0 0) 50% o )
) =1-)
1 | 1) 50%
) == [00) + -+ |11) " " >
= + —
AN 2 11 | 1) 50%
00 00) a2
) = a[00) + B[01) + y[10) + 4[11) " " g
w) = al00) + B|01) + y[10) + 5|11
10 10) 7|2
11 11) 0|2
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Measurement Basis = Initial State | Readout | Final State | Probability

{+), 9} ) = [+) + +) 100%
(+) , |9} =) - ) 100%

+ +) 50%
{1+, 9} ) =0) i | <0

+ +) 50%
{+) , 9} ) = [1) . . <o
(60} ) b 1b;) [(bily) |2

1 I
10y +11}). |-) = —=

o~
V2 vV

+) =

(0} —11)).

27



For instance, for the computational basis measurement, we take M, = |0) (0| and M, = [1) (1.
Upon measurement, we obtain the outcome “i” with probability

Prlobserve i] = |M; |) [> = (v | M, M;|y) .

which results in a quantum state

M;|y) M; V) |
MV Sy M) My

<
||
|
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Quantum Gates

- Transformation through gates must be reversible and
determ i n iStiC Quantum Gate = Circuit I'orm Matrix I'orm Truth Table ALl

Properties
: . I 0 O} = |0)
Identity gate (1) / {= ( )
b L 1)~ 1)
0 | 0) — 1) Y2=y2=72
Not gate (X) X X=( ) : : ! . Y g
L0 |> — m) ==pXYZ =,
| ! | YT o
iy = — (0 47 1), |—=i) = —(|0) —i |1 . 0 - 0} = [£) XY=-YX=iZ,
= U0+ =0 = 200 =HID Ty gate ) LT J r=(: ) J |
\' [ o
1) = =i YZ - ZY - iX,
L0 0} — |0
Z gate (Z) —Z| 7= ( W) ZX=-XZ=1iY
v 1) — —|1)
: 0) v |0) 2 _
Phase gate (S) — S S= ([N ‘".') 0+ 10; St
LA 1) — i 1)
T gate (T) T T 0= 10 E=s
gate ( S - ( _ im) . : e i
0 ol 1y ei|1) | TATT = e SX,
d d 1T | 1 | 0)— +:’ H? = /,
Hadamard gate (H) H H= qor (] —l) \ L X =HZH.
I'/' = ’ /




For example, when a qubit is in a superposition state |{/) = « |0) 4+ B |1) then the opera-
tion applies to each of the basis states, e.g.,

H|Y)=a(H|0) +B(H 1) =al|+)+p|-) =
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Example 2.12 It is usually convenient to include generic single-qubit rotation gates (e.g.,
Ry, Ry, R, gates) along the Pauli axes in our gate set. We write Ry(f) to indicate a rotation
of # angle about the x-axis. Several of the gates we've already discussed are just examples of the
R () gates, specifically the Z, S, and T gates which rotate by a , %, and 7 angle, respectively.
Formally, the rotation gate can be written in their matrix forms as follows:

e O I
6 6 ( COS 3 1.51112)

Ry(f) =cos=1 —isin=X = 2 )
> 2 —I sin 5 COS 5

) . f
4 ¢ cos 3 —sins
Ry(O) =cos—=1 —isin=Y = 2
. 2 sin ,

f\)lq: Nlm .

R.(6 A,el 92 e’ 0
z()—CObz —isingZ = N

31



Example2.13 Two-qubit gates take two qubits as inputs. They typically have an “entangling”
effect—the operation applied to one qubit is dependent on the state of the other qubit, in
other words, they are conditional gates. Among the most common two-qubit operations are
the controlled-not gate (or CNO'T gate), and the controlled-phase gate (or CZ gate), as shown
in Table 2.5.

In the example, the CNOT gate is a two-input two-output gate which performs a NOT
operation on the second (target) qubit only when the first (control) qubit is |1). Similarly for
CZ gate, if the control qubit is |1), then we apply a Z gate to the target qubit. But looking at
the truth table of the CZ gate, we notice that, in fact, it makes no distinction between the first
and the second qubits—a phase is accumulated for the |11) basis. Hence, the CZ gate has a
symmetric circuit symbol. One can in fact implement a CNO'T gate with a CZ gate and vice
versa. For example, CNOT is equivalent to a CZ gate with two Hadamard gates on both sides,

since HZH = X:
&
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Table 2.5: Example measurement outcomes by MeasZ on initial state |y/).

Quantum Gate Circuit Form Matrix Form Truth Table
00) — |00)
1 0 0 O
0I) — |01
CNOT gate 1 CNOT = g (1) g (l) > )
<> 10) > [11)
0O 0 I O
11) — |10)
00) — |00)
I 0 0 O
0O 1 0 0 01) — (0]
CZ gate I CZ={0o 0 1 o ) )
10) — [10)
0 0 0 -1
1) > —|11)
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Qubit Technologies



General Design Philosophy

- scalable system with well-characterized qubits
- ability to initialize qubits (e.g., prepare in computational basis)
- stabillity of qubits (i.e., long decoherence times)

- support for a universal instruction set (e.g., single qubit gates
and CNOT gate) for arbitrary computation

- ability to measure qubits (e.g., readout in computational basis)
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Trapped lon Qubits

. Optical Qubits
. Hyperfine Qubits

P
D |1> P ............
Optical
(103 Hz)
S—&@ 1)  Microwave
S —@— [0) o |O>\(IO'0H2)

Figure 2.6: State transitions for two common types of trapped ion qubits: the optical qubit and
the hyperfine qubit.
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Measuring Qubits

v/2r =20 MHz v/2m =20 MHz

369 nm (811.9 THz)

S 1) 2811 1

0) 0

Figure 2.7: Measurement outcome is observed by state-dependent flourescence.
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Single-Qubit Gate: Raman or Microwave Transition

2P/ 12.1 GHz

O
’S 1/2 1) C ,u-wavc)
®

10) 10)

Figure 2.8: Single qubit gates via Raman transition or microwave transition.
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Loading Qubits

RF Voltage Ground

"

Ground . . RF Voltage

Vv

I'(:

“ v :><<:

Figure 2.9: Schematics for a RF Paul trap.
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| a—y \
| =, \
—— (—.|—(
Figure 2.10: Schematics for a trapped ion QPU. After initialized from the optical source on the

left, the laser are split into independently modulated beams, and then focused on the HOA trap
on the right, providing individual controls over the array of ions in the trap.
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Superconducting Qubits

V V
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Figure 2.11: Types of superconducting qubits. Left: Circuit diagram for charge qubits (when
Ej < Ec) and transmon qubit (when E; > E¢), consisting of capacitor C and Josephson
junction J. Center: Circuit diagram for a c-shunted flux qubit, where a junction is shunted
with a number of junctions. Right: Circuit diagram for a phase qubit with current bias /.
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Figure 2.12: Left: Qubit frequencies as a function of external magnetic flux. The first three lev-
els of the transmon, wy; and w,,, are plotted. Right: Circuit diagram for a frequency-tunable
(asymmetric) transmon qubit (highlighted in black), consisting of a capacitor and two asym-
metric Josephson junctions. Highlighted in gray are two control lines: the external magnetic
flux control ¢ and microwave voltage drive line V() for each transmon qubit.
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Figure 2.13: Two-qubit interactions for two capacitively coupled transmons. Left: Two-qubit
gates are implemented with resonance of qubit frequencies. Shown here are how qubit frequen-
cies are tuned for / SWAP gate and CZ gate. Right: Circuit diagram of two capacitively coupled
transmon qubits.
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