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Outline



• Encode information into a small number of qubits


• Build up entanglement and interference during the algorithm


• Design a final measurement
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Quantum processing
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Quantum circuit

Fig. 1: A typical quantum circuit implementation of a quantum algorithm.




• Query model


‣ Black-box function (oracle)


• Query complexity


‣ Def — # of queries required by the algorithm
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Quantum parallelism

Fig. 2: An oracle that computes f(x).




• Searching problem


‣ Find  such that 


• Period-finding problem


‣ Find  such that  for all  (from 0…0 to 1…1)


• Collision problem


‣ Find  such that 

x f(x) = 1

p f(x) = f(x + p) x

x, y f(x) = f(y)
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Practical examples



Fig. 2: An oracle that computes f(x).


• Quantum query algorithm


‣ Can pass several inputs at once


‣           


• Classical query algorithm


‣ Single input at a time

∑
i

|xi⟩ ∑
i

(−1) f(xi) |x⟩

7

Quantum query algorithm v.s. Classical query algorithm



•         


• XOR oracle ( )


‣ transform a quantum state from  to 


• Phase oracle ( )


‣ transform a quantum state from  to , where 

 mod 2 is the inner product of the two bit-strings

f : {0,1}n {0,1}m

Of

|x⟩ ⊕ |y⟩ |x⟩ ⊕ |y ⊕ f(x)⟩

O±
f

|x⟩ ⊕ |y⟩ |x⟩ ⊕ (−1) f(x)⋅y |y⟩

f(x) ⋅ y = ∑
i

f(x)iyi
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Quantum oracles
input qubits (input registers)|x⟩
output qubits (output registers or ancilla)|y⟩



1. Device-independent computational complexity

① Time complexity — unitary transformation U is related to the number 

of gates of the smallest circuit that implements U.

② Query complexity — number of times an algorithm needs to query a 

given black-box function (oracle) to solve a problem. 

Def of P: all decision problems solvable by a polynomial-size uniform circuit 
family deterministically.

Def of BPP: all decision problems solvable by a 

polynomial-size uniform random circuit family with

high probability.
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Complexity (Costs)

P: polynomial time

BPP:  bounded-error  

probabilistic polynomial time



Def of BQP: all decision problems solvable by a polynomial-size uniform 
quantum circuit family with high probability. 
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Computational complexity

BQP: bounded-error  quantum 

polynomial time



2.   Device-dependent implementation cost

① Precision





Worst-case success rate of a quantum circuit under qubit decoherence and gate noise: 





② Resource cost

• Qubit count (circuit width)

• Gate count

• Circuit depth

• Communication cost

• Spacetime volume   ( )

D(UnoisyρinU†
noisy, UidealρinU†

ideal)

Psuccess = ∏
g∈G

(1 − ϵg) ⋅ ∏
q∈Q

(1 − ϵq)

#qubits × time
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Implementation cost

 is avg. gate error rateϵg
 is captured by modeling   


during idle or gate time

(* in Ch 2.3.3)

ϵq T1, T2

(1)

(2)



• Deutsch-Josza algorithm


• Bernstein-Vazirani algorithm


• Some caveats:

1. No existing applications for these problems.

2. No fair comparison between classical functions and quantum 

algorithms

3. Many examples can be made more efficient with randomized 

algorithms
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Gate-based quantum algorithms



• Problem statement: Given an oracle implementing a function          

 which is promised to be either constant or balanced. We want to determine 

whether it is constant or balanced.


• Classical solution: The worst-case requires to query  times, covering 

inputs for more than half of the domain  in order to determine whether  is 

constant or balanced.

f : {0,1}n

{0,1}

2n−1 + 1

{0,1}n f
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Deutsch-Josza Algorithm



• Quantum solution:


① 


②  


③

|0⟩⊕n

| + ⟩⊕n =
|0⟩ + |1⟩

2
…

|0⟩ + |1⟩

2
=

1

2n ∑
x∈{0,1}n

|x⟩

1

2n ∑
x∈{0,1}n

(−1) f(x) |x⟩
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Deutsch-Josza Algorithm

Fig. 3: Quantum circuit for 

Deutsch-Josza algorithm.
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Fig. 4: Feynman path diagram for Deutsch–Josza algorithm. 


cancels out∑
x∈{0,1}n

(−1) f(x)

Speedup over classical algorithm by (2n−1 + 1)



• Problem statement: Given an oracle access to            and a 

promise that the function  mod , where  is a secret string that 

the algorithm is trying to learn.

• Classical solution: Brute-force to find out the answer by giving  inputs.


• Quantum solution: Can do this in just one query.

f : {0,1}n {0,1}

f(x) = s ⋅ x =
n

∑
i=1

si ⋅ xi 2 s

n
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Bernstein-Vazirani Algorithm



• The state of -th qubit depends on : 

if  then qubit  is 

if  then qubit  is 

i si
si = 0 i | + ⟩
si = 1 i | − ⟩
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Bernstein-Vazirani Algorithm

Fig. 5: Quantum circuit for 

Bernstein–Vazirani algorithm. 




1. Variational Quantum Eigensolver (VQE)


2. Quantum Approximate Optimization Algorithm (QAOA) 
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NISQ quantum algorithms



• 


• Find the lowest eigenvalue


• Guess & check

⟨ψ |H |ψ⟩ ≥ E0
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Variational Quantum Eigensolver

Fig. 6: Illustration of a 
variational quantum.

H: hermitian matrix



• Can be applied to MaxCut/Clustering problem


•
 , where  are 

the Pauli Z matrix for -th and -th vertex.

H =
1
2 ∑

edges i,j

(I − ZiZj) Zi, Zj

i j
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Quantum Approximate Optimization Algorithm

Fig. 7: A MaxCut of a graph.



• Quantum computing provides an entirely new way of solving 
computational problems efficiently (exponential speedup).


• Large gate-based algorithms have shown practical potential of quantum 
computers.

‣ Shor’s algorithm 

‣ Grover’s  algorithm


• In the short-term, quantum devices are still limited in fidelity and size and 
are not fault tolerant.


• One of the biggest challenges of the NISQ era is to develop algorithms 
that run on NISQ computers. 
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Summary
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Q&A


