
OPTIMIZING QUANTUM SYSTEMS–AN
OVERVIEW
Chapter 4

Yongshan Ding and Frederic T. Chong

Speaker: Mariana M G Duarte

OUTLINE

• OVERVIEW

• 4.1 STRUCTURE OF QUANTUM COMPUTER SYSTEMS

• 4.2 QUANTUM-CLASSICAL CO-PROCESSING

• 4.3 QUANTUM COMPILING

• 4.4 NISQ VS. FT MACHINES

OVERVIEW

• Key idea: optimizing quantum computing at a systems level

• This chapter describes the layers of a quantum computer system

• Remarkable developments: theory of quantum algorithms and the implementation of
quantum hardware in the past few years

• But there are still formidable challenges lying ahead

OVERVIEW

• Enormous gap: resources required by the algorithms, and resources available
today

• Need to learn to execute large quantum algorithms under highly-constrained
conditions

• Very important: optimize for the resource consumption and success rate of a
quantum program

• Via sharing of information throughout the software-hardware stack

• For example: this information can be the characteristics of the target application

and the underlying hardware

OVERVIEW

• A big part of Quantum computer systems research in the NISQ (noisy
intermediate-scale quantum computer) era will be focused in vertical integration
across the systems layers (software- hardware co-design)

• A family of techniques across many layers will be needed

• Each and every optimization will play a vital role in enabling practical quantum
computing

• Indeed, this is the emphasis of the book

OUTLINE

• OVERVIEW

• 4.1 STRUCTURE OF QUANTUM COMPUTER SYSTEMS

• 4.2 QUANTUM-CLASSICAL CO-PROCESSING

• 4.3 QUANTUM COMPILING

• 4.4 NISQ VS. FT MACHINES

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• Key components in QC Systems

• “Quantum computing is at a similar stage of development as classical computing in
the 1950s”

• Today’s QC systems consist three layers in quantum computer architecture:

• application layer

• systems software layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• application layer

• systems software layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• application layer

• systems software layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• application layer

• systems software

layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• application layer

• systems software

layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• application layer

• systems software

layer

• hardware layer

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• Today’s classical computer systems manage hardware and software through
layering abstractions

• Each layer hides some implementation details and expose a manageable set of
controls for the next layer

• In contrast, the development of quantum computer systems is still at its nascent stage

• This means that resources are very scarce
• Researchers are motivated to break abstractions and pay for efficiency with

greater software complexity

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS
• Even classical computing is backsliding a bit toward less abstraction as the

end of Dennard scaling* puts pressure on architectures to become more efficient

• A functional quantum computer requires a enormous amount of attention to the
isolation and control over many qubits

• The experience and lessons we learn about how to manipulate qubits in NISQ
computers, will pave the way for larger fault-tolerant quantum devices in the
future

* Dennard Scaling suggested that as transistors get smaller their power density stays constant, so that the
power use stays in proportion with area.

4.1 STRUCTURE OF QUANTUM COMPUTER
SYSTEMS

• It is expected that, in the NISQ era
• A QC toolchain must break the traditional abstraction layers
• Use aggressive optimizations throughout the full systems stack

• The key to successful execution of quantum algorithms on NISQ devices is to
selectively share information across layers of the stack such that programs
can use the limited qubits most efficiently

OUTLINE

• OVERVIEW

• 4.1 STRUCTURE OF QUANTUM COMPUTER SYSTEMS

• 4.2 QUANTUM-CLASSICAL CO-PROCESSING

• 4.3 QUANTUM COMPILING

• 4.4 NISQ VS. FT MACHINES

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• An important variation of quantum computing systems is their use as
specialized hardware accelerators within a classical computation

• This hybrid co-processing approach will likely be the dominant structure of
quantum systems for the foreseeable future

• While quantum computers are currently small and unreliable, a great way
to exploit their abilities is to adopt a hybrid model which leverages both quantum and
classical computation

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Almost all useful algorithms require some amount of classical pre-processing
or post-processing

• Most promising example is in quantum chemistry, where Variational Quantum
Eigensolver (VQE) algorithms perform a kind of heuristic search by iterating
between a quantum machine and a classical supercomputer

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• We start from the best-known configuration of electrons from a classical
computer and estimate the energy of that configuration using the quantum
machine

• This estimate is then given back to a classical computer to guide its search toward
a configuration with lower energy

• In this way, the quantum machine acts as an accelerator for the energy
modeling part of the computation

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Great advantages in co-processing:

• First, it avoids the “innovator’s dilemma” by leveraging an initial guess

derived from classical technology, rather than directly competing with that
technology

• Second, hybrid algorithms break a long program into multiple iterations
of short programs, which allows us to effectively utilize the limited number of
instructions a quantum machine can reliably execute

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Third, it allows us to pick classically challenging problems (ex: chemical
compounds)

• In order to determine which orbitals the electrons are in, Nature only uses n

electrons to “model” n electrons, classical computers require combinatorially kn

bits, but quantum computers only need kn qubits

• Fourth, classically-computed ground state energy can be significantly higher than
experimentally-observed values, even for small compounds

• If our hybrid approach can get closer to experimental values, then the

quantum machine compute something not computable classically!

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Even as quantum machines scale, quantum algorithms are likely to be
specialized, making the quantum device a very domain-specific
accelerator

• Most practical applications will still require a combination of general classical and
specialized quantum processing to be useful

• Traditional quantum algorithms can be statically compiled with a high level of
optimization using known input parameters

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• With hybrid algorithms, some of a quantum program’s input parameters can
change each iteration

• For example, a compiler may spend hours optimizing for quantum instructions that

include quantum rotations for specific input angles to solve a chemistry
problem, but now we find that the angles change every iteration

• This suggests that we need a partial compilation strategy in which programs
are optimized for unchanging parameters, but then quickly re-optimized each
iteration for parameters that change

4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Hybrid algorithms also require more thought to be given to hardware and
software communication mechanisms between quantum and classical
hardware

• IBM was the first to make a physical quantum machine accessible via the cloud

• The IBM machines, however, are heavy for hybrid computation, as the batch
queue interface is really designed for stand-alone quantum programs and the latency
to couple with classical computation is long

OUTLINE

• OVERVIEW

• 4.1 STRUCTURE OF QUANTUM COMPUTER SYSTEMS

• 4.2 QUANTUM-CLASSICAL CO-PROCESSING

• 4.3 QUANTUM COMPILING

• 4.4 NISQ VS. FT MACHINES

4.3 QUANTUM COMPILING

• A quantum compiler aims to efficiently express a high-level quantum
program using instructions that a quantum machine recognizes and
natively supports, balancing practical architectural constraints

• A quantum algorithm is implemented in a quantum domain-specific language
(QDSL)

• Translates the high-level program into quantum assembly code (QASM)

• Accomplished with a series of transformations and optimizations on a

quantum intermediate representation (QIR) of a program

4.3 QUANTUM COMPILING

• A number of architectural constraints must be satisfied:

• Instruction set:

• There are some quantum instructions that are supported

• In most cases, this instruction set is “Clifford+T” gates, that consists of

• CNOT (controlled-NOT) gate

• X (NOT) gate

• H (Hadamard) gate

• T gate

• Common set for most gate-based NISQ machines, and large-scale FT machines

• Some NISQ compilers choose to target directly the physical analog pulses

for improved hardware control

4.3 QUANTUM COMPILING

• Qubit communication

• A quantum algorithm is hardly interesting if it can be implemented with only single-

qubit gates, as two-qubit gates (or multi-qubit gates) provides the
entangling power between qubits

• Two-qubit gates are implemented by qubit-qubit interaction/communication
• Qubit communication has different meanings in the NISQ vs. the FT contexts

4.3 QUANTUM COMPILING

• In a NISQ machine, not all qubits can directly interact with each other, two
qubits interact by moving closer to one another via a chain of swap gates until
they are directly connected hence allowed to interact

• The time to complete a swap chain is proportional to the length of the chain

• In FT machines, qubit interactions are accomplished through fault-tolerant
operations depending on the error correcting codes

4.3 QUANTUM COMPILING

• With today’s technology, building large-scale quantum machines with all-to-all qubit
connectivity is shown to be extremely challenging

• The latest effort from IonQ offers a machine with eleven fully connected qubits
using trapped-ion technology

• Superconducting machines, for instance by IBM and Rigetti, typically have much
lower connectivity

4.3 QUANTUM COMPILING

• Hardware noise

• Minimize errors caused by hardware noise

• Typically include memory errors (caused by decoherence of qubits) and gate errors
(caused by imprecise control of gates)

• In general, the longer the program runs, the higher the chance that the qubits
experience decoherence

• The more gates are applied, the lower the chance that the program succeeds
at the end

4.3 QUANTUM COMPILING
• In today’s technology, a two-qubit gate proves be challenging, hence it is one of

the dominant sources of error

• A compiler normally aims to express a quantum program in

• fewer qubits

• fewer number of gates

• shorter circuit depth

• More advanced noise-aware compilers have also been proposed

• In NISQ machines, some qubits are more robust then others, so picking the

longer-lived qubits to perform important computation can improve the overall
success rate

4.3 QUANTUM COMPILING

• Available parallel control

• Depending on the technology that implements the qubits, a compiler can be

constrained by the available parallelism

• The parallelism limitation is usually the consequence of hardware control
mechanism, or error mitigation protocols

• Some error mitigation protocols dictate that no parallel gates are allowed
when they are physically located close to each other, reducing crosstalk
errors between them

• At its core, the quantum compiler passes a high-level quantum program through
a series of optimizations, for the target hardware, balancing different
architectural constraints

OUTLINE

• OVERVIEW

• 4.1 STRUCTURE OF QUANTUM COMPUTER SYSTEMS

• 4.2 QUANTUM-CLASSICAL CO-PROCESSING

• 4.3 QUANTUM COMPILING

• 4.4 NISQ VS. FT MACHINES

4.4 NISQ VS. FT MACHINES

• Quantum compiling in the context of NISQ and FT era can be drastically different

• Notably, quantum compiling in the NISQ era tends to be more dynamic

• For NISQ applications, with hybrid/interleaved classical and quantum processing

• Quantum circuits are parameterized with the parameters optimized by a classical

algorithm

• Traditional model of compiling static quantum programs once would not work
well in the NISQ context

4.4 NISQ VS. FT MACHINES

• Another difference is in the topology of the architecture and the model for
resolving two-qubit interactions

• As a result, communication costs will differ

• In the context of a NISQ machine, the most frequently used approach to resolve a
long-distance two-qubit gate is to move one qubit closer to the other through a
chain of swaps

4.4 NISQ VS. FT MACHINES

• In a F T machine, we can resolve long-distance interactions between logical qubits
through a process called braiding (i.e., movement and transformation of qubits)

• Braiding has very different cost models than swapping

• Braids can extend to arbitrary length and shape in constant time, given that

they never cross other braids

• Latency (i.e., time cost) of a swap chain is proportional to the length of the chain

4.4 NISQ VS. FT MACHINES

• A third difference is the choice of instruction set:

• Quantum circuit synthesis has been largely done with Clifford+T gate set, due to its

algebraic structures

• Although that is a reasonable choice for FT machines (as Clifford gates are
straight- forward to implement fault-tolerantly for stabilizer error correction
codes)

• It is not the ideal choice for NISQ machines

• For example, NISQ machines suffer on two-qubit gates such as CNOT gates

4.4 NISQ VS. FT MACHINES
• It remains an open problem in discovering optimal device or application-

adapted synthesis algorithms

• Last but not least, quantum compiling in the presence of noise has been
under-studied

• Are among the challenges in quantum computer systems:

• Integrating noise-awareness in circuit synthesis

• gate scheduling

• qubit mapping

• pulse synthesis

• compiler validation

OPTIMIZING QUANTUM SYSTEMS–AN
OVERVIEW
Chapter 4

Yongshan Ding and Frederic T. Chong

Speaker: Mariana M G Duarte

Questions?

