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OVERVIEW

•  Key idea: optimizing quantum computing at a systems level


• This chapter describes the layers of a quantum computer system


• Remarkable developments: theory of quantum algorithms and the implementation of 
quantum hardware in the past few years 


• But there are still formidable challenges lying ahead




OVERVIEW

•  Enormous gap: resources required by the algorithms, and resources available 
today


• Need to learn to execute large quantum algorithms under highly-constrained 
conditions


• Very important: optimize for the resource consumption and success rate of a 
quantum program 

• Via sharing of information throughout the software-hardware stack

• For example: this information can be the characteristics of the target application 

and the underlying hardware



OVERVIEW

• A big part of Quantum computer systems research in the NISQ (noisy 
intermediate-scale quantum computer) era will be focused in vertical integration 
across the systems layers (software- hardware co-design)


• A family of techniques across many layers will be needed 


• Each and every optimization will play a vital role in enabling practical quantum 
computing


• Indeed, this is the emphasis of the book
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4.1 STRUCTURE OF QUANTUM COMPUTER 
SYSTEMS

• Key components  in QC Systems 


• “Quantum computing is at a similar stage of development as classical computing in 
the 1950s”


• Today’s QC systems consist three layers in quantum computer architecture:

• application layer

• systems software layer

• hardware layer
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4.1 STRUCTURE OF QUANTUM COMPUTER 
SYSTEMS

• Today’s classical computer systems manage hardware and software through 
layering abstractions


• Each layer hides some implementation details and expose a manageable set of 
controls for the next layer


• In contrast, the development of quantum computer systems is still at its nascent stage

•  This means that resources are very scarce
• Researchers are motivated to break abstractions and pay for efficiency with 

greater software complexity



4.1 STRUCTURE OF QUANTUM COMPUTER 
SYSTEMS
• Even classical computing is backsliding a bit toward less abstraction as the 

end of Dennard scaling* puts pressure on architectures to become more efficient

• A functional quantum computer requires a enormous amount of attention to the 
isolation and control over many qubits


• The experience and lessons we learn about how to manipulate qubits in NISQ 
computers, will pave the way for larger fault-tolerant quantum devices in the 
future


* Dennard Scaling suggested that as transistors get smaller their power density stays constant, so that the 
power use stays in proportion with area.



4.1 STRUCTURE OF QUANTUM COMPUTER 
SYSTEMS

• It is expected that, in the NISQ era
• A QC toolchain must break the traditional abstraction layers
• Use aggressive optimizations throughout the full systems stack


• The key to successful execution of quantum algorithms on NISQ devices is to 
selectively share information across layers of the stack such that programs 
can use the limited qubits most efficiently
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4.2 QUANTUM-CLASSICAL CO-PROCESSING

• An important variation of quantum computing systems is their use as 
specialized hardware accelerators within a classical computation


• This hybrid co-processing approach will likely be the dominant structure of 
quantum systems for the foreseeable future


• While quantum computers are currently small and unreliable, a great way 
to exploit their abilities is to adopt a hybrid model which leverages both quantum and 
classical computation 



4.2 QUANTUM-CLASSICAL CO-PROCESSING

•  Almost all useful algorithms require some amount of classical pre-processing 
or post-processing


• Most promising example is in quantum chemistry, where Variational Quantum 
Eigensolver (VQE) algorithms perform a kind of heuristic search by iterating 
between a quantum machine and a classical supercomputer



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• We start from the best-known configuration of electrons from a classical 
computer and estimate the energy of that configuration using the quantum 
machine 

• This estimate is then given back to a classical computer to guide its search toward 
a configuration with lower energy


• In this way, the quantum machine acts as an accelerator for the energy 
modeling part of the computation 



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Great advantages in co-processing:

• First, it avoids the “innovator’s dilemma” by leveraging an initial guess 

derived from classical technology, rather than directly competing with that 
technology


• Second, hybrid algorithms break a long program into multiple iterations 
of short programs, which allows us to effectively utilize the limited number of 
instructions a quantum machine can reliably execute



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Third, it allows us to pick classically challenging problems (ex: chemical 
compounds) 

• In order to determine which orbitals the electrons are in, Nature only uses n 

electrons to “model” n electrons, classical computers require combinatorially kn 

bits, but quantum computers only need kn qubits


• Fourth, classically-computed ground state energy can be significantly higher than 
experimentally-observed values, even for small compounds

• If our hybrid approach can get closer to experimental values, then the 

quantum machine compute something not computable classically!



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Even as quantum machines scale, quantum algorithms are likely to be 
specialized, making the quantum device a very domain-specific 
accelerator 

• Most practical applications will still require a combination of general classical and 
specialized quantum processing to be useful


• Traditional quantum algorithms can be statically compiled with a high level of 
optimization using known input parameters



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• With hybrid algorithms, some of a quantum program’s input parameters can 
change each iteration

• For example, a compiler may spend hours optimizing for quantum instructions that 

include quantum rotations for specific input angles to solve a chemistry 
problem, but now we find that the angles change every iteration


• This suggests that we need a partial compilation strategy in which programs 
are optimized for unchanging parameters, but then quickly re-optimized each 
iteration for parameters that change



4.2 QUANTUM-CLASSICAL CO-PROCESSING

• Hybrid algorithms also require more thought to be given to hardware and 
software communication mechanisms between quantum and classical 
hardware 


• IBM was the first to make a physical quantum machine accessible via the cloud


• The IBM machines, however, are heavy for hybrid computation, as the batch 
queue interface is really designed for stand-alone quantum programs and the latency 
to couple with classical computation is long
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4.3 QUANTUM COMPILING

• A quantum compiler aims to efficiently express a high-level quantum 
program using instructions that a quantum machine recognizes and 
natively supports, balancing practical architectural constraints


• A quantum algorithm is implemented in a quantum domain-specific language 
(QDSL)


• Translates the high-level program into quantum assembly code (QASM)

•  Accomplished with a series of transformations and optimizations on a 

quantum intermediate representation (QIR) of a program



4.3 QUANTUM COMPILING

• A number of architectural constraints must be satisfied:

• Instruction set:


• There are some quantum instructions that are supported 

• In most cases, this instruction set is “Clifford+T” gates, that consists of 


• CNOT (controlled-NOT) gate 

• X (NOT) gate 

• H (Hadamard) gate

• T gate


• Common set for most gate-based NISQ machines, and large-scale FT machines 

• Some NISQ compilers choose to target directly the physical analog pulses 

for improved hardware control



4.3 QUANTUM COMPILING

• Qubit communication 

• A quantum algorithm is hardly interesting if it can be implemented with only single-

qubit gates, as two-qubit gates (or multi-qubit gates) provides the 
entangling power between qubits


• Two-qubit gates are implemented by qubit-qubit interaction/communication
• Qubit communication has different meanings in the NISQ vs. the FT contexts




4.3 QUANTUM COMPILING

• In a NISQ machine, not all qubits can directly interact with each other, two 
qubits interact by moving closer to one another via a chain of swap gates until 
they are directly connected hence allowed to interact


• The time to complete a swap chain is proportional to the length of the chain


• In FT machines, qubit interactions are accomplished through fault-tolerant 
operations depending on the error correcting codes




4.3 QUANTUM COMPILING

• With today’s technology, building large-scale quantum machines with all-to-all qubit 
connectivity is shown to be extremely challenging


•  The latest effort from IonQ offers a machine with eleven fully connected qubits 
using trapped-ion technology


• Superconducting machines, for instance by IBM and Rigetti, typically have much 
lower connectivity



4.3 QUANTUM COMPILING

• Hardware noise

• Minimize errors caused by hardware noise


• Typically include memory errors (caused by decoherence of qubits) and gate errors 
(caused by imprecise control of gates)


• In general, the longer the program runs, the higher the chance that the qubits 
experience decoherence

• The more gates are applied, the lower the chance that the program succeeds 
at the end



4.3 QUANTUM COMPILING
• In today’s technology, a two-qubit gate proves be challenging, hence it is one of 

the dominant sources of error

• A compiler normally aims to express a quantum program in 

• fewer qubits

• fewer number of gates

• shorter circuit depth 


• More advanced noise-aware compilers have also been proposed

• In NISQ machines, some qubits are more robust then others, so picking the 

longer-lived qubits to perform important computation can improve the overall 
success rate



4.3 QUANTUM COMPILING

• Available parallel control

• Depending on the technology that implements the qubits, a compiler can be 

constrained by the available parallelism


• The parallelism limitation is usually the consequence of hardware control 
mechanism, or error mitigation protocols


• Some error mitigation protocols dictate that no parallel gates are allowed 
when they are physically located close to each other, reducing crosstalk 
errors between them















•  At its core, the quantum compiler passes a high-level quantum program through 
a series of optimizations, for the target hardware, balancing different 
architectural constraints
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4.4 NISQ VS. FT MACHINES

• Quantum compiling in the context of NISQ and FT era can be drastically different


•  Notably, quantum compiling in the NISQ era tends to be more dynamic

• For NISQ applications, with hybrid/interleaved classical and quantum processing

• Quantum circuits are parameterized with the parameters optimized by a classical 

algorithm


• Traditional model of compiling static quantum programs once would not work 
well in the NISQ context



4.4 NISQ VS. FT MACHINES

• Another difference is in the topology of the architecture and the model for 
resolving two-qubit interactions


• As a result, communication costs will differ


• In the context of a NISQ machine, the most frequently used approach to resolve a 
long-distance two-qubit gate is to move one qubit closer to the other through a 
chain of swaps



4.4 NISQ VS. FT MACHINES

• In a F T machine, we can resolve long-distance interactions between logical qubits 
through a process called braiding (i.e., movement and transformation of qubits)


•  Braiding has very different cost models than swapping

• Braids can extend to arbitrary length and shape in constant time, given that 

they never cross other braids

• Latency (i.e., time cost) of a swap chain is proportional to the length of the chain



4.4 NISQ VS. FT MACHINES

• A third difference is the choice of instruction set:

• Quantum circuit synthesis has been largely done with Clifford+T gate set, due to its 

algebraic structures


• Although that is a reasonable choice for FT machines (as Clifford gates are 
straight- forward to implement fault-tolerantly for stabilizer error correction 
codes)


• It is not the ideal choice for NISQ machines

• For example, NISQ machines suffer on two-qubit gates such as CNOT gates



4.4 NISQ VS. FT MACHINES
• It remains an open problem in discovering optimal device or application-

adapted synthesis algorithms


• Last but not least, quantum compiling in the presence of noise has been 
under-studied


• Are among the challenges in quantum computer systems:

• Integrating noise-awareness in circuit synthesis 

• gate scheduling

• qubit mapping

• pulse synthesis

• compiler validation
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Questions?


