EE 260 F : Quantum Computing Chapter
5 - Quantum Programming Languages

Presenter: Kuan-Chieh Hsu
Date: Apr/20/2021 (Tue.)

Recalls

- Probabillistic

- Qubit states are probabillistic, read measurement is irreversible
- Entangling

- Data A in one place may affect data B in another place.
- nho-cloning

- Qubit cannot be duplicated

. error-prone

- Fragility/ QC systems are susceptible to decoherence(i.e., spontaneous loss of
quantum information in cubits) and operational errors.

: [T RIVERSIDE

Chapter sections

« 51 Low-Level Machine Languages
- 0.2 High-Level Programming Languages
- 5.3 Program debugging and Verification

- Classical simulation
- Quantum property testing
- Formal logic

- 5.4 Summary

3 [Td RIVERSIDE

5.1 Low-Level Machine Languages

- The quantum assembly language (QASM) - one of earliest low-level
quantum languages.

. EX:
. qubit qO@ é
qubit g1 | @ —|H Sann
'H q0 ;
' CNOT g0, q1 | ql . A

'Measure q0 |
'Measure ql |

Figure 5.1: The QASM code and circuit diagram for creating an EPR pair with measurements.

EPR: entangled pairs of cubits
: [TH RIVERSIDE

5.1 Low-Level Machine Languages

. QASM'’s limitations:

repeat-until-success and non-trivial branching

- Other low-level machine languages:
» OpenQASM, ARTIQ
- Support loops, subroutine calls, barriers, and feedback control.

- OpenPulse
- Experiment out of pulses.

5 [TH RIVERSIDE

Chapter sections

- 5.1 Low-Level Machine Languages
- 5.2 High-Level Programming Languages
- 5.3 Program debugging and Verification

- Classical simulation
- Quantum property testing
- Formal logic

- 5.4 Summary

: [Td RIVERSIDE

5.2 High-Level Programming Languages

- Recall that there is a trade off between usability/programmability and
hardware quantum properties.

- Recall that due to the hybrid nature of host computer and guantum
processor, most languages are Domain-Specific Languages (DSL).

: [TH RIVERSIDE

5.2 High-Level Programming Languages

- Two types of quantum programming languages:

- Functional

- Mathematical, abstract, compact implémentation of algorithms
- Ex: Quipper, Quafl, LIQul|>, Q#

- Imperative

- Describes the steps of algorithms sequentially in greater detail. (Resource efficient)
- Ex: Scaffold, ProjectQ, Quil

8 [TH RIVERSIDE

5.2 High-Level Programming Languages

. NISQ systems evolves rapidly, so that any language will need to be
versatile enough to keep up with the fast rate of change in QC systems.

- Ex: Variational Quantum Eigen-solver (VQE) requires multiple rounds of
Interleaved classical-quantum processing. => language design/compilation
optimization challenges.

9 [TH RIVERSIDE

Chapter sections

- 5.1 Low-Level Machine Languages
- 0.2 High-Level Programming Languages

- 5.3 Program debugging and Verification
- Classical simulation
- Quantum property testing
- Formal logic

. 9.4 Summary

’ [Td RIVERSIDE

5.3 Program Debugging and Verification

- HW verification

- Problem of verifying that HW is capable of performing quantum logic operations
as intended by a program.

. SW verification

- Problem of verifying that a quantum program is bug-free and implements the
desired transformation.

: [TH RIVERSIDE

5.3 Program Debugging and Verification

- Verification approaches

- Application of:
- Classical simulation
» Quantum property testing
- Formal logic

Warning: those do not prevent/detect all types of errors nor scale well to large systems, but are
practical => gain some confidence of its success rate.

. [TH RIVERSIDE

- 5.3 Program Debugging and Verification

- (1) - tracing via classical simulation
- Informative, but exponentially large state space.

If we can efficiently simulate quantum computation on a classical

computer, then we have proven that this guantum computer does not
demonstrate quantum supremacy.

- And also noise simulation.
- Physical noise today is still limited.
- No known efficient methods to simulate the effects of noise.

; [TH RIVERSIDE

5.3 Program Debugging and Verification

- (1) - tracing via classical simulation

- EX:

- “Clifford gates” only algorithms can be simulated in polynomial time with only a few
qubits used.

- Shor's algorithm that contains T gates and Clifford gates - no sub-exponential time

y [TH RIVERSIDE

5.3 Program Debugging and Verification

- (2) - assertion via quantum property testing
- Property testing:

Definition 5.1 A property P for a set of objects X is a subset of X, that is, P C X". Let
d . X xX — [0,1] be a distance measure on X.

* Anobjectx € X ise—farfrom Pifd(x,y) <eforally € P.
* Anobject x € X is e-close to P if there exists y € P such that d(x, y) > e.

Definition 5.2 An algorithm is an e-property tester of P if it accepts x € X with probability
of at least 2/3 if x € P or rejects x € X with probability of at least 2/3 if x is e-far from P.

’ [TH RIVERSIDE

5.3 Program Debugging and Verification

- (2) - assertion via quantum property testing
- Property testing:

Dull¥), 160 = 119} (W1~ 19) 1 11 = VI~ [(DI9 P.

Ideally, we want to find an algorithm that tests for a property (that is a e-tester) using a
small number of copies only in terms of €, regardless of d. When this is not possible, we attempt
to minimize the dependency on d.

; [TH RIVERSIDE

5.3 Program Debugging and Verification

- (2) - assertion via quantum property testing
- Property testing:

1esting if a state |Vr) is equal to another known state |@).
Testing if two unknown (possibly mixed) states, p and o, are equal

Testing if a pure state |) is an entangled state.

; [TH RIVERSIDE

5.3 Program Debugging and Verification

- (2) - assertion via quantum property testing
- Testing properties of qguantum dynamics

For two d -dimensional unitary operators U, V, we define the worst-case distance over
all possible pure states as:

Dax(U, V) = ma D.(U ¥y -V I|y)) = max 1= (w|UTV[¢) |2

For two d-dimensional unitary operators U, V', we define the average-case distance as:
1
V2

where ||M||2 = \/dl Zg}'=1 |M;|? is the 2-norm, and (U, V) = %tr(U“V) is the
Hilbert—Schmidt inner product.

Dog(U.V) = —=[lA® A" = B® BT|[= V1- (U V)]2,

18

[TH RIVERSIDE

5.3 Program Debugging and Verification

. (3) - proofs via formal verification

- Deduct the behavior of guantum circuits directly from their descriptions.
- QWire
- Feynman-path sum

+ Quantum Hoare logic
- ReVerC

- Key challenge is to define useful correctness properties that a theorem prover
can handle more scalably.

; [TH RIVERSIDE

Chapter sections

- 5.1 Low-Level Machine Languages
- 0.2 High-Level Programming Languages
- 5.3 Program debugging and Verification

- Classical simulation
- Quantum property testing
- Formal logic

« 5.4 Summary

0 [Td RIVERSIDE

5.4 Summary

- Quantum programming language is still in development.

- Practically, guantum programing languages are essential in converting
theoretical descriptions of algorithms to practical implementations that
are both correct, efficient, and adapted for specific applications.

. [T RIVERSIDE

Q&A

- Thank you for your listening.

, [TH RIVERSIDE

Discussion

- Show a few code examples with bugs to show what kinds of bugs we
may have.

. Reference:

. Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs,
ISCA 19

- Walk through the distance definition with numbers

. [Td RIVERSIDE

https://quantumarchitectureprinceton.github.io/publications/statistical-assertions.pdf
https://quantumarchitectureprinceton.github.io/publications/statistical-assertions.pdf

QC bug types

- Typel: incorrect quantum initial values

- TypeZ2: incorrect operations and transformations

- Type3: incorrect compositions of operations using iteration
- Typed: Incorrect composition of operations using recursion
- Typed: incorrect composition of operations using mirroring
- Type6: incorrect classical input parameters

’ [T RIVERSIDE

Buggy Code Example

- Shor's algorithm

Jo T Jo Dr
TypeZ2: incorrect operations and transformations
d; U — qdi 1C o1 B Ho1H A

Figure 3: Decomposition of a simple QC program. Time

Table 1: Correct and incorrect code for rotation decomposition. Using the Scaffold language [17] as an example, we code out
Figure 3’s controlled operation U, where U is a rotation in just one axis. Because only one axis is needed, we can drop either

operation A or C, paying attention to the sign on the angles. Reordering the lines of code or signs results in a rotation in the
wrong direction.

Correct, operation A unneeded Correct, operation C unneeded Incorrect, angles flipped
Rz(q1,+angle/2); // C CNQOT(g0,q1); Rz(q1,-angle/2):
CNOT(g9,q91); Rz(q1,-angle/2); // B CNOT(q0,q1);
Rz(ql,-angle/2); // B CNOT(q0,q1); Rz(ql,+angle/2) ;
CNOT(q0,q1); Rz(ql,+angle/2); // A CNOT(q0,ql);
Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D

- [TH RIVERSIDE

Buggy Code Example

- Type 2 bug defense: assertion checks for unit testing

O 00 N O W b W BN e

B0 O N OV DO bt el Gl Bk Bk Bed ek ek e e
L = e A L L

#include "QFT.scaffold"”
#define width 4 // number of qubits
int main () {

// initialize quantum variable to 5
gbit reglwidth];
for (int i=0; i<width; i++) (

PrepZ (reglil, (i+1)%2); // €b0101

}

// precondition for QFT:
assert_classical (reg, width, 5);

QFT (width, reg);

// postcondition for QFT &
// precondition for iQFT:

assert_superposition (reg, width);
iQFT (width, reg);

// postcondition for iQFT:
assert_classical (reg, width, 5);

Listing 1: Test harness for quantum Fourier transform.

20

[TH RIVERSIDE

Buggy Code Example

- Possible type3 bugsinline 8 - 11:

- Indexing errors in loops, bit shifting errors, endian confusion, rotation angles

1| // outputs b <= a+b, where a is a ‘width' bit constant integer
2(// b is an integer encoded on ‘width' qubits in Fourier space

3l module cADD (

4 const unsigned int c_width, // number of control qubits

5 gbit c¢trl6, gbit ctrll, // control qubits

. const unsigned int width, const unsigned int a, qgbit b[]

1) |

8 for' . Cintibaindx=midth=1: “biindx>=@: =biandx=—-)

9 for - (“int azindx=b_indx; a_indx>=0; a_indx=~) {

10 1f (. .fa>>a-indx) & 1)Y f /Zf shift out bits in constant a

11 double angle = M_PI / pow (2, b_indx-a_indx); // rotation angle
12 switch (c_width) {

13 case 0: Rz (b[b_indx], angle); break;

14 case 1: cRz (ctrl®, b[b_indx], angle); break;

15 case 2: ccRz (ctrlo, ctrll, b[b_indx], angle); break;
16 3333}

Listing 2: Controlled adder subroutine using QFT.

27

[TH RIVERSIDE

Buggy Code Example

'- Possible type4 bugs in line 15:

- Accidentally use ctr1 twice instead of ctrlO

’ 1| // outputs b <= a+b, where a is a ‘width' bit constant integer
2(// b is an integer encoded on ‘width' qubits in Fourier space
3l module cADD (
4 const unsigned int c_width, // number of control qubits
5 gbit c¢trl®6, qbit ctrll, // control qubits
b const unsigned int width, const unsigned int a, qgbit b[]
1)«
8 for (int b_indx=width-1; b_indx>=9; b_indx--) {
9 for (int a_indx=b_indx; a_indx>=0; a_indx--) {
10 if ((a>>a_indx) & 1) { // shift out bits in constant a
11 double angle = M_PI / pow (2, b_indx-a_indx); // rotation angle
12 switch (c_width) {
13 case 0: Rz (b[b_indx], angle); break;
14 case 1: cRz (ctrl®, b[b_indx], angle); break;
15 case 2: ccRz (ctrlo, ctrll, b[b_indx], angle); break;
16| 33333

Defense: assertion checks for

entangled intermediate states

Listing 2: Controlled adder subroutine using QFT.

28

[TH RIVERSIDE

Buggy Code Example

- Possible typeb bugs:

- Due to entanglement effect, garbage collection in quantum computing needs:
- Undo any entanglement between qubits - perform reverse operations in backward order,

It is also called: uncomputation

// outputs b <= a+b, where a is a ‘width' bit constant integer

1

2(// b is an integer encoded on ‘width' qubits in Fourier space

3| module cADD (

4 const unsigned int c_width, // number of control qubits

5 gbit c¢trl6, gbit ctrll, // control qubits

f const unsigned int width, const unsigned int a, gbit b[]

71) {

8 for (int b_indx=width-1; b_indx>=0; b_indx--) {

9 for (int a_indx=b_indx; a_indx>=0; a_indx--) {

10 if ((a»>a_indx) & 1) { // shift out bits in constant a

11 double angle = M_PI / pow (2, b_indx-a_indx); // rotation angle
12 switch (c_width) {

13 case 0: Rz (b[bh_indx], angle); break;

14 case 1: cRz (ctrl®, bl[b_indx], angle); break;

15 case 2: ccRz (ctrlo, ctrll, b[b_indx], angle); break;
16| 3333}

Listing 2: Controlled adder subroutine using QFT.

29

[T RIVERSIDE

Property tester

https://arxiv.org/pdf/1310.2035.pdf

’ [TH RIVERSIDE

