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Overarching Questions

* What kind of microarchitecture can keep up with the speed and
bandwidth of quantum processing technology?

« How do we build a reliable interface between classical
control/feedback signals and quantum data?

« Can we efficiently translate and synchronize machine pulses
from gate instructions?
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Overview

* We will explore classical and quantum control of qubits, pulse
generation and optimization, and calibration and verification.

* First, we will discuss constructing pulse sequences.

* Then we will discuss the progress and challenges in managing
the classical and scalable quantum datapath with timing,
energy, and bandwidth constraints.

 Finally, we will discuss translating quantum gates to hardware
pulses.
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General Pulse Compilation Flow

* As we know from Ch.2, qubits are controlled by analog pulses

« Compilation must translate device-independent high-level
guantum programs to device-dependent control pulses

 Similar to compiling programs written in C for both x86 and ARM
platforms.
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General Pulse Compilation Flow (cont)
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Figure 7.1: General flow for translating quantum gates to analog pulses.
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Motivation for Robust Quantum
Control

« Rapid state transfer
 High-fidelity gate operations
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Quantum Controls and Pulse Shaping

* Open and closed loop control
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Figure 7.2: Open-loop control (left) vs. closed-loop control for pulse shaping.
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Quantum Controls and Pulse Shaping
(cont)

« Current work on open-loop quantum system controllers

« Hamiltonians — optimality and reachability of pulses for different
quantum systems. We can express controllability criteria in terms of
structures in “Lie groups and Lie algebras[276] or in terms of graph

theoretical concepts [277, 278].”
* Numerical Optimal control theory:

best way of achieving given quan

with the most realistic circuit confl

» AKA open-loop coherent control

« Lyapunov-based controller deS|gr
quantum states.
» (seems like closed loop control?)
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Hamiltonian

* The Hamiltonian of a system is the sum of the kinetic energies
of all the particles, plus the potential energy of the particles
associated with the system.
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Lie Algebras/Groups and
controllability

* We need to first understand Lie groups and Lie algebras.

 Basically, we can over-simplify a Lie algebra to a reduction of a vector

space over a vector field by one dimension using a commuter. The
commuter can be any number of operations that achieve the same
result. This operation must also satisfy a few axioms listed in the
textbook, but not here. For example:

Perhaps the simplest nontrivial example of a Lie algebra is the set of vectors
in three dimensional space, R ?, with the cross product playing the role of the
commutator. If we choose a basis {1, ], l?} then the commutation relations
are given by

i X j =k, xk=1, kxi=]. (3.5)
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Lie Groups

» A defined point or vector space where units can be multiplied
and their inverses taken.
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Dynamical Lie Algebra

* This is the controllability criterion. The book describes it:

Theorem 3.2.1 The set of reachable states for system (3.1) is the connected
Lie group associated with the Lie algebra L generated by span,,,{—iH (u)}.
In ,sh,orti

R—d"
The Lie algebra £ is called the dynamical Lie algebra associated with
the system. This is always a subalgebra of u(n). In the case dim(L) =
n?> = dim(u(n)), which is equivalent to £ = u(n) and e = U(n), the
system is said to be controllable. In this case R = U(n), which means
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Quantum Controls and Pulse Shaping
(cont)

« Current work on open-loop quantum system controllers

« Hamiltonians — optimality and reachability of pulses for different quantu,
systems. We can expressed controllability criteria in terms of structures
in the “Lie groups and Lie algebras[276] or in terms of graph theoretical
concepts [277, 278].”

* Numerical optimal control theory: numerical methods to search for the
best way of achieving given quantum objectives in the shortest time
with the most realistic circuit configuration.

« AKA open-loop coherent control

» Lyapunov-based controller design: control input is determined by the
quantum states.
 (seems like closed loop control?)
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Coherent Control

* The goal is to control quantum interference by shaping the
behavior of pulses. (light or other forms of radiation)

 Very basically, coherent control is a method to transform a
quantum system from an initial state to a target state.
« The foundation for quantum gates.
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Quantum Controls and Pulse Shaping
(cont)

« Current work on open-loop quantum system controllers

« Hamiltonians — optimality and reachability of pulses for different
gquantum systems. We can express controllability criteria in terms of

structures in the “Lie groups and Lie algebras[276] or in terms of graph
theoretical concepts [277, 278]."

« Numerical Optimal control theory: numerical methods to search for the
best way of achieving given quantum objectives in the shortest time
with the most realistic circuit configuration.

* AKA open-loop coherent control

* Lyapunov-based controller design: control input is determined by the
gquantum states.
» (seems like closed loop control?)
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Control-Lyapunov Functions

 Lyapunov functions are used to determine whether a dynamical
system is asymptotically stable.

* In the quantum case and in the textbook’s citations, Lyapunov
functions can be used to determine whether a system with
control inputs is asymptotically controllable.

« Controllable -> stability with continuous feedback (not open-loop as our
textbook suggests)
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Any Questions on this part?

* My answer:

-

l' It’s science

-
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Closed-Loop Control

 Closed loop control for quantum systems has been approached
in two ways:

» Learning-based control
« Optimization problems

 Learning algorithms to find optimal parameters for desired performance
» Gradient Algorithms (e.g. gradient descent)
* Non-convex/concave optimization with many local maxima/minima (optima)
« Numerical methods take too long
« Stochastic Algorithms
» Genetic Algorithm
+ Differential Evolution

» Feedback-based control
* Quantum-applied feedback controllers
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Quantum Optimal Control

* What are we optimizing?
« Control Pulses
* How are we optimizing?

» Textbook explains one numerical method:
« Gradient Ascent Pulse Engineering (GRAPE)

* What are the inputs and outputs of our optimizer?
* Quantum instructions
» Optimized control pulses
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Quantum Optimal Control (cont)
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Figure 7.1: General flow for translating quantum gates to analog pulses.
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GRAPE

« System Hamiltonian (overall system energy as a function of
time)

H() =H, + ) Hio).

=3

- Time dependent Hamiltonian operators  H (1) = w; (1t )JH;).
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GRAPE (cont)

* H(t) approximates the target Unitary .

« So what is the purpose of Quantum Optimal Control?
 To find the control fields (inputs) so that we can accurately approximate
H(t) !
* How does the system Hamiltonian help approximate the
Unitary?
* First, discretize the system.

* Then, perform ‘piecewise-constant approximation to get the time-
iIndependent Hamiltonian
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GRAPE (cont)

 \WWhat does this look like?

» Evolve a Quantum system from time 0 to time j... I = [ + /8{

* Then, for each timestep j we can determine a set of constant control
fields where m is the number of control fields.

 Then we can approximate the time-independent Hamiltonian with those
control inputs: m

Hj — 'HO —-— Z ll,'.j le.
i=1

* And the Unitary operation at each timestep j can be realized by:

—iH ;81

U,

J

—
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GRAPE (cont)

* Now that we have the Unitary operation at each time step on
the interval [t0, j], we can apply the ‘piecewise-constant
approximation’ method to get the target Unitary matrix:

« So where is the GR in GRAPE?

 GRAPE performs gradient descent search over the space of possible
control field parameters that approximate the targeted Unitary within
specified error constraints.
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Mathematical Wizardry of GRAPE

* [f we know the input state of the computation to be
performed.... GRAPE can optimize a control pulse that works
for the particular input state. The book claims that we can
approximate a U that does not resemble the true unitary matrix.
However, we still achieve, with a considerable degree of fidelity:

|‘7,/()(lf> = ('r l‘.‘lfin) ~ U I‘.Ilin) .
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Constraints of GRAPE Parameter
Estimation

* The amplitude of each control field (u) must be minimized or the
set of control fields must be normalized so that we can use it in
practice.

* We can’t make a light beam with infinite intensity...

« Each control parameter needs to form a smooth pulse over time

* i.e. we can minimize the difference between one control parameter at
N IS ,
time j and time j + 1 Yo g iy — w4l

* Pulse time needs to be limited

* Long pulses = long programs = much higher risk of quantum
decoherence.
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Was this Quantum Optimal Control?

« Sort of... This was a specific method of quantum optimal control using a
learning-based method.

* The example is really limited, and does not work with more than 4
qubits because of the amount of time it takes to calculate the those
optimal control parameters.

 There are several other methods, some more robust and ‘better’ than
this one.

« Daoyi Dong — Differential Evolution (msMS-DE) proposed in “Learning Based

Quantum Robust Control: Algorithm, Applications, and Experiments”
published in 2020.

« Scalability of quantum optimization is terrible these days, we can only
do optimized pulse shaping for a small number of qubits — future work,
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Compilation For Variational Algorithms

* How are large quantum programs compiled?

« Take a small set of quantum gates, synthesize a quantum program
(generate quantum instructions) using those gates, apply quantum
optimal control to each gate to generate the shaped pulses, and then
concatenate all pulses to accomplish the computation.

« SUPER LONG COMPILE TIMES

« Use a lookup table for simple quantum gates! - short and constant
compile times
« NOT OPTIMAL (long pulses)

 What should be done?

 Partial compilation.
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Partial Compilation

* Use a hybrid approach:
» Use lookup tables AND quantum optimal control methods

* | guess the best compromises are when neither party gets what they
want.
« Slow compile times AND non-optimal pulses ®
 Or faster compile times and more optimal pulses

« Works for ‘variational’ quantum algorithms — each iteration of
the algorithm only changes slightly. So we use QOC to
optimize/recompile the changes to the gates. It's less expensive
than recompiling the entire circuit

4%
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Summary

* Generating pulses from quantum programs
* Math Magic
* Various optimizations for pulse shaping

« GRAPE
* Pulse Compilation
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Any Questions?

s THANKS FOR" ~
YOUB'A'ITENTIIIN .

| CLAPAND DONTASKS
ANY/QUESTION, PLEASE!
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