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8 Noise Mitigation and Error Correction

Classical Computers
• Intel Xeon Phi
• 100 errors per billion device hours (114,077 years) due to 

radiation
Quantum Computers
• IBM Q Melbourne device (with 14 qubits)
• Average single-qubit gate error rate is 4.7x10-3. 
• Average two-qubit gate error is 9.46x10-2

• Qubit decoherence (loss of information in a qubit)
• Phase/Spin decoherence average 60𝜇𝑠
• Amplitude decoherence average 50𝜇𝑠
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Quantum Computers are 
sensitive and noisy



Overview
• 8.1 Characterizing Realistic Noises (What is noise and how do we define/measure it?)

• 8.1.1 Measurement of Decoherence
• 8.1.2 Quantum-State Tomography
• 8.1.3 Randomized Benchmarking

• 8.2 Noise Mitigation Strategies (What are some strategies to decrease noise?) 
• 8.2.1 Randomized Compiling
• 8.2.2 Noise-Aware Mapping
• 8.2.3 Crosstalk-Aware Scheduling

• 8.3 Quantum Error Correction (What are ways to correct for when errors do occur?)
• 8.3.1 Basic principles of QEC
• 8.3.2 Stabilizer  Codes
• 8.3.3 Transversality and Eastin-Knill Theorem
• 8.3.4 Knill’s Error Correction Picture

• 8.4 Summary, Outlook, Further Reading
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8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
First we need to understand how to quantitatively study noise
• Environmental noise causes a probability distribution 

• 𝜌 = ∑! 𝑝!|𝜓!⟩⟨𝜓!|
• 𝜌 is called the density matrix of a quantum state

• We care about the “distance” between the results in 2 scenario ideal and noisy
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8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
• How do we measure “distance” between the ideal and noisy scenarios?
• 2 ways to measure distance between two state (i.e. 𝜌 and 𝜎)

• Fidelity: 𝐹 𝜌, 𝜎 = 𝜌 𝜎 !
"

• Trace Distance: D#$ 𝜌, 𝜎 = !
"

𝜌 − 𝜎 !

• 2 ways quantifying noise of a process (i.e.𝒰 and ℰ)
• Average Error Rate: 𝑟 𝒰, ℰ = 1 − ∫𝑑𝜓 ⟨𝜓 𝑈%ℰ 𝜓 𝑈 𝜓⟩

• 𝒰 is ideal and ℰ is noisy
• Dimond Distance: 𝐷 𝒫,𝒬 = sup

&

!
"

𝒫⨂ℐ − 𝒬⨂ℐ !

• Measures the worst case difference between two channels (𝒫 and 𝒬) based on single shot 
measurement
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8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
• What about qubits? How reliable are they?
Qubit decoherence (loss of information)
• 𝑻𝟏 is called the “spin-lattice relaxation time”
• As time goes on, a qubit is more likely to undergo energy 

loss
• a.k.a Amplitude Dampening noise or “𝑇! coherence time”

• 𝑻𝟐 is called the “spin-spin relaxation time”
• The loss of information without the loss of energy
• a.k.a. Phase Dampening Noise or “𝑇" coherence time”. 
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8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
Quantum State Tomography 
• The goal of quantum state tomography [310, 311] is to reconstruct an unknown 

quantum state 𝜌 based on the outcomes from a series of measurements. 
• First obtain a probability distribution of measurement outcomes 𝑝, by sampling 

repeatedly. Use estimator 𝑝 to reconstruct 𝜌.
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8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
Randomized Benchmarking
• Randomized benchmarking emphasizes on gate errors by applying a 

long sequence of gates and postponing measurements to the very 
end.
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𝑝 = Pr 𝐸|𝒞, 𝜌



8.1 Characterizing Realistic Noises 
(What is noise and how do we define/measure it?)
Randomized Benchmarking
• Interleaved Randomized Benchmarking
• Now if we compare the RB decay of this interleaved RB sequence 

with that of the original standard RB sequence
• We expect to obtain the effect of noise from the extra application of 
𝐺, and thus bound the fidelity of 𝐺. 
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(1) Randomized compiling
(2) Noise-Aware Mapping
(3) Crosstalk-Aware Scheduling
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(1) Randomized compiling
• Utilize East & Hard Gates
• Easy gates: The gates that can be implemented with relatively high precision 

or low resource cost (𝐺# )
• Hard gates: any other gates (𝑈#)
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(1) Randomized compiling
• Utilize East & Hard Gates
• Easy gates: The gates that can be implemented with relatively high precision 

or low resource cost 
• Hard gates: any other gates

• Inserts random gates into a quantum circuit, and averages over 
many of those independently sampled random circuits. 
• “[329] demonstrated that the randomized transformation can be 

viewed as a scrambling of noise on the quantum circuit “
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(2) Noise-Aware Mapping
• Adjust for noisy equipment
• Use heuristics to optimize for specific program input, physical 

machine size and physical topology. 
• Take daily variations into account and optimize to increase the 

probability of correct program output
• Princeton [228] and GATech [229] observing from IBM daily 

calibration data that qubits and links between qubits vary 
substantially in their error rate. 
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(3) Crosstalk-Aware Scheduling
• Crosstalk is when a signal transmitted on one circuit or channel 

creates an undesired effect in another circuit or channel
Ways to decrease crosstalk
• (1) Connectivity Reduction
• (2) Qubit Frequency Tuning
• (3) Coupler Tuning
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(3) Crosstalk-Aware Scheduling
(1) Connectivity Reduction
• Simply build with sparse connections between qubits
• Works by building devices with sparse connections between qubits, 

hence reducing the number of possible crosstalk channel
• This greatly increases the circuit mapping and re-mapping overhead 

for executing a logical circuit 
• Increases the need for an intelligent scheduler to serialize operations
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(3) Crosstalk-Aware Scheduling
(2) Qubit Frequency Tuning
• Relies on actively tuning qubit frequencies to avoid crosstalk, 

featured in some prototypes [333] and by Google [334]. 
• Software can decide when to schedule an instruction and which 

frequency to operate the instruction at. 
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8.2 Noise Mitigation Strategies 
(What are some strategies to decrease noise?) 
(3) Crosstalk-Aware Scheduling
(3) Coupler Tuning
• A third class builds not only frequency-tunable qubits but also 

tunable couplers between qubits, termed “gmon” architectures 
[337]. 
• A different subset of connections are activated (via flux drives to the 

couplers) at different time steps. 
• As such, a schedule for when to activate couplers is needed. For 

instance, Google proposes a tiling pattern in [66]. 
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
What is Quantum Error Correction (QEC)?
• A way to  systematically detect and correct a quantum error

• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)
• Stabilizer Codes

• Implementing Logical operations fault-tolerantly 
• Transversality and Eastin-Knill Theorem
• Knill’s Error Correction Picture
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• Quantum Error vs. Classical Error

• Classical: 0 → 1

• Quantum: 0 𝑋 𝑔𝑎𝑡𝑒
→ 𝜖 0 + 1 − 𝜖|1⟩where 𝜖 is the error
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• 2 Key Concepts that make quantum error correction possible
• (1) Redundant Encoding

• Use redundant encoding of information
• Thus, noise in certain parts of the system can be tolerated and not effect the whole 

system
• (2) Digitizing Quantum Error. 

• Digitize quantum errors since we know how to deal with digitized errors 
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)
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• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• QECC is a mapping from 𝑘 logical qubits to 𝑛 physical qubits.
• 𝑛 > 𝑘

• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• QECC is a mapping from 𝑘 logical qubits to 𝑛 physical qubits.
• 𝑛 > 𝑘
• 0$ = 000 (0$ for logical qubit)
• 1$ = |111⟩ (1$ for logical qubit) 

• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• QECC is a mapping from 𝑘 logical qubits to 𝑛 physical qubits.
• 𝑛 > 𝑘
• 0$ = 000 (0$ for logical qubit)
• 1$ = |111⟩ (1$ for logical qubit) 
• probability 𝑝 one of the physical qubits flipped and we got 0$ = 001
• Can be corrected i.e. through majority rule



8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
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• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• Locate bit flip by using two-bit operators 

• Z Gate: 8 𝑍 0 → |0⟩
𝑍 1 → −|1⟩

• Suppose 𝜓 = |100⟩ instead of expected |000⟩

• 𝜓 = 100 → 𝑍𝑍𝐼 = −|100⟩
• 100 → 𝐼𝑍𝑍 = |100⟩

• |000⟩ would produce (+1, +1) ∴ no bits flipped
• |100⟩ would produce (-1, +1) ∴ first bit flipped
• |010⟩ would produce (-1, -1) ∴ second bit flipped
• |001⟩ would produce (+1, -1) ∴ third bit flipped



8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Basic Principles of QEC
• Quantum Error Correction Codes (QECC)

• Check Matrix Formalism: create a set of qubit operations using the 
stabilizer formalism, with enough permutations sequences of 
eigenvalues to determine which qubit is flipped
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𝜓 = 0 0 0
𝑍𝑍𝐼
𝐼𝑍𝑍

1 1 0
0 1 1

𝑍𝑍𝑍𝑍𝐼𝐼𝐼𝐼
𝑍𝑍𝐼𝐼𝑍𝑍𝐼𝐼
𝑍𝐼𝑍𝐼𝑍𝐼𝑍𝐼

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

𝜓 = |0 0 0 0 0 0 0 0⟩



8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Basic Principles of QEC
• Stabilizer Codes

𝐶 𝑆 = 𝜓⟩ ∈ ℋ, 𝑠. 𝑡. ℊ 𝜓 = 𝜓 ∀ℊ ∈ 𝑆}

• The proof of this theorem can be found in [86]. 
• Effectively, if a Pauli error anti-commute with a stabilizer, then the 

stabilizer can detect and correct an occurrence of the error.
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Implementing Logical operations fault-tolerantly 

• Transversality and Eastin-Knill Theorem
• Transversality

• For each error correction code, there is a class of gates whose logical gate operations (i.e., 
encoded gates) are easy to implement fault-tolerantly, namely the transversal quantum 
gates.

• Impose restriction of one qubit to make a gate into a transversal gate
• Eastin-Knill Theorem

• No-go theorem 
• "No quantum error correcting code can have a continuous symmetry which acts 

transversely on physical qubits".
• In other words, no quantum error correcting code can transversely implement a universal 

gate set. 
• Can be circumvented by using gate teleportation, a.k.a. “Knill’s error correction picture“
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8.3 Quantum Error Correction 
(What are ways to correct for when errors do occur?)
• Implementing Logical operations fault-tolerantly 
• Knill’s Error Correction Picture

• Way to get around Eastin-Knill Theorem
• Quantum Teleportation: Technique for transferring quantum 

information from a sender at one location to a receiver some 
distance away.
• Quantum Gate Teleportation: Quantum gate teleportation is where 

quantum gates are applied to quantum states via quantum 
teleportation.
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8.4 Summary, Outlook, Further Reading
• Defining/Measuring Noise

• Fedelity, 
• Trace distance, 
• Average error rate, 
• Dimond Distance

• Mitigating Noise
• Randomized compiling, 
• Noise aware mapping, 
• crosstalk-aware scheduling

• Error Correction
• Quantum Error Correctio codes, 
• stabilizer codes, 
• Transversality and Eastin-Knill Theorem, 
• Knill’s Error Correction Picture
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8.4 Summary, Outlook, Further Reading
• Physical Noise Mitigation

• composite pulses [298], dynamical decoupling [347]
• Scalability remains a challenge 

• characterize realistic quantum noises [328, 348], classically simulate quantum noises [349–351] 
• Quantum error correction (QEC)

• The capstone of QEC is the theorem called “threshold theorem” [352] states that once physical error 
rate is less than a certain threshold, we can preform quantum computation accurately with only a 
moderate increase in circuit size. Details of the theorem [23, 25, 86] 

“In the near term, numerous efforts have been put in designing low-overhead quantum 
error correction codes adapted to different noise models and program characteristics, as 
well as aiming to reduce the cost of magic state distillation protocols.”
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Questions?
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