Classical Simulation of
Quantum Computation
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Definition

*Classical simulation of a quantum system

*the techniques for efficiently simulating quantum circuits on a classical computer
*Quantum simulation

*a branch of quantum technology that studies the structures and

properties of electronic or molecular systems



Strong vs Weak Simulation

Definition 9.1  Strong simulation aims to calculate the probabilities of the output measurement
outcomes efficiently with high accuracy using a classical computer.
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Definition 9.2 Weak simulation aims to sample once from the output distribution efhciently
using a classical computer.
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- They are different

- Strong simulation — weak simulation



Distance Measures

Definition 9.3  The 7otal/ variation distance between p and ¢ is defined as
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The total variation distance, which takes value between 0 and 1, measures the worst probability

discrepancy between a sample from p and a sample from ¢, i.e., dryv(p, ¢) = maxyeq | Pr,[x] —
Pr,[x]|.



Distance Measures

Definition 9.4 The ¢, distance between p and ¢ is defined as
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The £, distance, which takes value between 0 and /2, is related to the total variation distance

by de, (. q) < 2drv(p.q) < Vdde, (p.9).



Distance Measures

Definition 9.5  'The Hellinger distance between p and g is defined as
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The Hellinger distance, which take value between 0 and V2, is related to the total variation
distance by dfy(p.q) < 2dtv(p.q) < 2du(p.q).



Distance Measures

Definition 9.6  The #race distance between two mixed states p and o is defined as
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‘The trace distance, which takes value between 0 and 1, can be viewed as the quantum analogue
of the total variation distance, in that Dy calculates the maximum probability that two states p
and o can be discriminated by measurements.



Distance Measures

Definition 9.7  The Hilbert—Schmidt distance between p and o is defined as

Dus(p.0) = |lp—ollr = tr ((p— 0)?)""*.

where || - ||F is also called the Frobenius norm. The Hilbert—Schmidt distance is the quan-
tum analogue of the £, distance. It relates to the trace distance by Dys(p,0) < 2 D (p,0) <

Vd Dus(p,0).



Distance Measures

Definition 9.8 'The Bures distance between p and o is defined as

Dg(p,0) = 2(1 — F(p,0)))"/?,

where F(p,0) = || /p+/o]|1 is the fidelity between the two mixed states p and o. The Bures

distance is the quantum analogue of the Hellinger distance. It relates to the trace distance by
Dg(p,0) < 2Dx(p, 0) < 2Dg(p, 0).



Simulation Techniques covered

*Density Matrices: the Schrodinger picture

*Stabilizer Formalism: the Heisenberg picture

*Tensor Network

*Graphical Models




Density Matrices: the Schrodinger
picture

‘Through time, a quantum state is evolved to another by some unitary transformation U

time

¥ (©0) — ¥ (1)) = U |y(0)) .

Probability of an outcome x (U=U,, ... U, U,)
p(x) =|(x|U|0...0) R

- weak simulation vs strong simulation
- # of qubits 2"

- # of multiplications O(2?") and then summing them
- time cost = O (m22")



Stabilizer Formalism: the Heisenberg
picture

time

A(0) — A(t) = UTA(0)U

Definition 9.9 A quantum gate is a stabilizer gate it it is generated from the Clifford group
S = (CNOT, H, S). In other words, it is a product of g € S.

For example, all Pauli gates belong to this set: X = HZH,Y = iXZ, Z = SS. Notice that
a stabilizer gate S conjugates a gate from the Pauli group back to the Pauli group: SP; ST = P;
up to a phase factor, where P;, P; € P.

Definition 9.10 A state is a stabilizer state if it can be prepared from |00. .. 0) using stabilizer
gates.

Definition 9.11 A quantum circuit is called a stabilizer circuit if it is made of stabilizer gates
applied on input state |00. .. 0), and measurements in the computational basis.



Stabilizer Formalism: the Heisenberg
picture

Definition9.12  |¢) is stabilized by a quantum circuit U, if U |¢) = |¢).

Theorem 9.13  Gottesman—Knill theorem [362] states that there exists classical algorithm that

stmulates any stabilizer circuit in po/ynomia/ time.

In simulation, we do not need to keep track of the amplitudes of state vector anymore;
rather we can keep track of the stabilizer operators. Let us now examine how to update the
stabilizer group when applying a quantum gate:
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Tensor Network
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Figure 9.1: Graphical representation of tensors and their mathematical definitions.



Tensor Network

* Qubit state: vector — 1-d tensor.

* Single-qubit gate: 2 x 2 matrix (i.e., qubit input index (column) and qubit output index
(row)) — 2-d tensor.

* Two-qubit gate: instead of a 4 x 4 matrix, we can index an entry by 4 indices, namely
the qubit 1 input, the qubit 1 output, the qubit 2 input, and the qubit 2 output — 4-d
tensor.



Tensor Network
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Figure 9.2: Converting from a quantum circuit to a tensor network.




Tensor Network Contraction
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Figure 9.3: Contracting two rank-2 tensors, A and B, is equivalent to the matrix multiplication
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Tensor Network Contraction
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Figure 9.4: Part of a generic tensor network, consisting of ten rank-4 tensors and four rank-1
tensors.
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Tensor Network Contraction
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Figure 9.5: First strategy of contraction that results in two rank-12 tensors and four rank-1 ten-
sors. Then contracting the two rank-12 tensors involves contracting 5 edges at once, by summing
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Figure 9.6: Second strategy of contraction that results in five rank-6 tensors and four rank-1
tensors. Then contracting the five rank-6 tensors involves contracting from left to right 2 edges
at a time, by summing over 22 terms four times.




Tensor Network -> Undirected Graphical
Models
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Figure 9.7: Converting from a quantum circuit, to a tensor network, then to an undirected

-graphical model. Note on bottom-right panel is the reduced graph using a technique called -

variable elimination.




Undirected Graphical Models
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Figure 9.8: In the undirected graphical model, diagonal gates have simplified graph components
with fewer indices to sum over.



QUESTIONS & COMMENTS?




