
Circuit Compilation Methodologies for Quantum

Approximate Optimization Algorithm

Mahabubul Alam Abdullah Ash- Saki Swaroop Ghosh

CONTENT

BACKGROUND01

MOTIVATION 02

METHODOLOGIES03

PERFORMANCE EVALUATION04

CONTRIBUTIONS

05 CONCLUSTION

06

BACKGROUND
Quantum computing is one of the most transformative technologies of the present
time. Prototypical quantum computers with 5-128 qubits are available or proposed
from industry vendors like IBM, Google, Rigetti, etc.

Variational quantum-classical algorithms need to be explored to gain the quantum
advantage for various problems
- Limited number of qubits and connectivity
- The near-term devices are suffered from all kind of errors such as gate-error,

decoherence, crosstalk, etc.
- Therefore, quantum error correction are necessary for fault- tolerant computation.

However, QECCs have prohibitively high physical qubit overhead.

QAOA
Quantum Approximate Optimization Algorithm (QAOA): the most promising algorithm for
solving optimization problems.
But quantum advantage may be lost due to the accumulation of gate errors and
decoherence.

01

BACKGROUND
Gate Error, Decoherence and Crosstalk: (less gate number, lower gate depth are better)
- Quantum gates are error-prone. The qubits suffer from decoherence.
- The deeper circuit, more time to execute and gets affected by decoherence.
- More gates in the circuit also increase the accumulation of gate error.
- Parallel gate operations on different qubits can affect each others performance which is known as

crosstalk.

CPHASE: A two-qubit unitary parametric quantum gate operating between a control and a target qubit.
The CPHASE operations in a QAOA circuit are commutative i.e., the order of these CPHASE gates can be
interchanged without affecting the output state of the quantum circuit.

SWAP gates are added between two layers to meet the hardware constraints.

01

Conventional compilers can optimize QAOA-circuits using efficient gate scheduling
strategies utilizing the commutation properties of the gates. However, incorporating
gate-reordering strategies in a compiler is not straight forward.
- additional constraints need to be added
- Time consuming.

Challenges:
Finding a mapping with higher reliability (less impacted by noise) is important to
extract maximum performance from QAOA.

Minimizing the depth/gate-count of the compiled circuit is crucial for QAOA
applications.

Methodologies for larger problem sizes for powerful quantum hardware with 200-500
qubits) are absent nowadays.

Qubit Mapping:
(1)Selection of physical qubits (2) initial logical-to-physical qubit mapping (3) addition
of SWAP gates to meet the hardware coupling constraints.
Each of these steps affects the quality of the compiled circuit i.e., depth, gate-count,
and reliability.

02 MOTIVATION

METHODOLOGIES
NAÏVE APPROACH

A general-purpose compiler (qiskit compiler from IBM). Used for comparison of
proposed methods.

QAIM

Is an intelligent qubit allocation and initial mapping approach which applies to any
circuit compilation

IP, IC, and VIC

Using a backend compiler to add SWAP operations into the circuit with various target
objectives.

Each of these methods has exclusive benefits and should be adopted based on the requirements of the target application.

03

Basic Steps
QAIM generates an initial logical-to-physical qubit mapping.

passed to the chosen compilation procedure à IP/IC or VIC.

IP/IC/VIC uses a backend compiler to generate the hardware compliant circuit.

IP passes a complete circuit description to the backend, IC and VIC send partial
circuit descriptions in multiple iterations and stitch the compiled circuits at the
end.

QAIM (Integrated Qubit Allocation and Initial Mapping)

QAIM combines the qubit allocation and initial mapping procedures in a single
step and seeks to achieve three objectives:

1. Qubit allocation

2. Initial mapping

3. Achieving the first two objectives in a scalable way

QAIM uses efficient heuristics that exploit the following two:
Hardware Profiling

Program Profiling

QAIM
Hardware Profiling:

If the neighboring physical qubits have sparse connectivity, the
logical qubits mapped to them may need to move frequently to
meet the coupling constraint

To address this issue, the author defined connectivity strength:
The sum of its first and second neighboring qubits
(For instance, qubit-0 pic, the connectivity strength of qubit-0 is 7
(=2+5).

Program Profiling :

The program profile used in QAIM is similar to GreedyV. For any
input QAOA-circuit, we calculate the number of CPHASE
operations per logical qubit to create the program profile.

QAIM Procedure
Procedure:

1. The logical qubits are sorted (descending order)

2. The first logical qubit is assigned to the physical qubit with the
highest connectivity strength.

3. For the next logical qubit in the list, we check if any of its logical
neighbors has ben already placed.
Else;
we pick the unallocated physical qubit with the highest
connectivity strength for allocation.

Example:

Instruction Parallelization (IP)

IP: To maximize gate parallelization, the authors formulated the problem as a
binary bin-packing problem and use the first- fit decreasing greedy heuristic.

- Because paralleling instructions in the QAOA-circuit may help to reduce the circuit depth.

IP also utilizes the program profile used in QAIM to rank the CPHASE operations (in
descending order.

After allocating physical qubits for the QAOA-circuit logical qubits using QAIM, we can go
through the rest of the steps in the compilation procedure: SWAP insertion

IP

1. Create MOQ empty layers of bins (each bin representing a qubit).

2. Take the operation from the sorted CPHASE list with the highest rank.

3. Repeat Step − 2 until the list is empty.

4. If unassigned CPHASE operations list is not empty, repeat from Step − 1 with
this list.

Create the CPHASE layers

IP Example

1. The minimum number of required layers for this circuit (MOQ) for this example is 2 (a)(b)

2. The ranking of the CPHASE operations is shown in (c). In this example, cumulative operations for (2, 3) is ‘2 + 1 = 3’.

2. The sorted CPHASE operations (based on their ranks) are shown in Figure 4(d)

4. The CPHASE operations in this sorted list are assigned one-by-one to the available qubit bins in the 2 layers (e)
how to assign?

5. In this example, the following CPHASE sequence is given as the input to the compiler (d)

Create the CPHASE layers

Incremental Compilation (IC)

The authors proposed an incremental approach (IC) to compile QAOA circuits.

- The logical-to-physical qubit mapping changes with every added SWAP operation. Those
are the dynamic changes.
- In IP, all the layers are formed at the same time and the complete circuit is passed to

the backend for compilation. IC can greatly take advantage of these dynamic changes .

In IC, the circuit layers are formed one-at- a-time and partial circuits are
compiled with single CPHASE layers. The partial circuits are stitched at the end
to construct the whole circuit.

IC Steps and Example
1. CPHASE operations are sorted in ascending order based on the distance between their control and target qubits for

the initial logical-to-physical mapping.

2. A partial circuit is compiled with this layer and the initial mapping. The final mapping after SWAP insertion is saved.

3. The final mapping is set as the initial mapping. We repeat S tep − 1 until all the CPHASE operations are assigned to
different layers and the corresponding partial circuits are compiled.

4. Stitch all the compiled partial circuits.

Variation-aware IC (VIC)

Taking Variability into Consideration:

- To prioritize operations that may be executed with higher reliability during layer
formation to maximize the success probability of the circuit.

VIC: To incorporate such strategy in IC, distance measurements between various
qubits need to reflect the success probabilities of the intended operations.
The higher the success rate, the lower the distance.

PERFORMANCE EVALUATION

.

1. Evaluation Metrics

2. Approximation Ratio Gap:

3. QAIM vs. GreedyV⋆ /NAIVE

4. IC/IP vs. QAIM

5. VIC vs. IC

6. Hardware Validation

7. Impact of Packing Density

04

Evaluation Metrics
Circuit depth:

A higher-depth circuit is more susceptible to decoherence errors

Gate-count:

A lower gate-count generally translates to less accumulation of gate errors.

Compilation time:

the time taken by the compiler to generate the hardware compliant circuit.

Success probability:

To quantify performance benefits with variation-aware compilation strategies.

Approximation Ratio Gap
The author proposed to a novel method that called Approximation Ratio Gap (ARG), to
compare the performance of compiled QAOA-circuits on actual hardware.

- The conventional method to judge the quality of the compiled QAOA-circuits are time consuming.

- Sampling the output of the circuit a finite number of time to calculate the approximation ratio
of the given cost function (r0).

- Running the circuit on the target hardware and calculate the approximation ratio (rh) using the
formula {100 ∗ (r0-rh)/r0} as the approximation ratio gap or ARG.

- The lower ARG, the better, it indicates a performance closer to the noiseless scenario.

Problem sets:

Choosing 20-qubit ibmq 20 tokyo, 15-qubit ibmq 16 melbourne, and a hypothetical 36-qubit grid
(6x6) architectures as the target hardware..

Randomly chosen (up to 36-nodes) erdos-renyi random graphs (with varied edge
probabilities)

Regular graphs (with a varied number of edges/node) are used for the validation
purpose

QAIM vs. GreedyV⋆ /NAÏVE
Varying Connectivity:
Edge probability from 0.1 to 0.6; edges/node from 3 to 8 (for regular graphs) and randomly picked
50 20-node graphs.

For sparse graphs , QAIM performs considerably better than both the NAIVE and
GreedyV⋆ approach.

For dense graphs, all these three approaches perform similarly.

QAIM vs. GreedyV⋆ /NAÏVE

Varying Problem Size:

By picking 3-regular graphs with the number
of nodes varying between 12 to 20

For smaller problem sizes both GreedyV⋆
and QAIM performed better than NAIVE.

IC/IP vs. QAIM

Result: both IP and IC generated
circuits with significantly smaller
depths than the QAIM-only
approach and the differences were
more pronounced for dense graphs.

BUT IP circuits have almost
identical gate-counts to QAIM.

To quantify benefits of IP and IC
over QAIM-only compilation

VIC vs. IC

VIC adds variation awareness to IC
with the goal to increase the success
probability of the compiled circuits.

Result:
VIC showed an 80% better success
probability over IC on average for the
random graphs.

The improvement in the success
probability is found to be quite smaller for
the regular graphs (where layers were
heavily packed

Performance Summary

On average, 45% reduction in the compilation
time has been achieved using IP over the NAIVE
approach.

IC and VIC both provided similar performance in
reducing depth (by ≈53%), gate-count (by ≈23%),
and compilation time (by ≈15%).

VIC and IC show similar performance, but VIC
offers higher success probability than IC (b)(c)

Hardware Validation

The authors used the proposed strategies to
compile the circuit and used the results to
calculate their corresponding ARG’s

Result: VIC (+QAIM), IC (+QAIM), and IP (+QAIM) all
provided smaller ARG values compared to the QAIM-
only circuits (b)

The results reflect the improvement in the
compiled circuits in terms of depth, gate-count,
and success probability.

Impact of Packing Density
The mean depth:
the depth tends to decrease with an increase in the packing limit at first. However, when it went beyond 11, it
went up again.

The gate count:
It is found to increase with packing limit as shown in (b)

The compilation time:
Packing more operations reduces the total number of circuit layers as well as the number of required SWAPs
or permutation layers, so the compilation time decreases.

CONCLUSION

The author present four novel methodologies to compile QAOA circuits.

The methodologies can be integrated with any conventional compiler to improve
the quality of the compiled QAOA- circuits.

The author validate performance improvement through experiments on real
quantum devices from IBM. And demonstrate up to ≈53.0% reduction in circuit-
depth, ≈23% reduction in gate- counts and ≈45% reduction in compilation time over
a NAIVE approach. We also demonstrate up to ≈25.8%.

05

CONTRIBUTIONS
Presented a novel Qubit Allocation and Initial Mapping (QAIM).

Proposed a greedy heuristic for Instruction Parallelization (IP) to reduce the circuit
depth and execution time.

Proposed an Incremental Compilation (IC) technique that reduces the need for added
SWAP operations utilizing the dynamic changes

Proposed a Variation-aware Incremental Compilation (VIC) technique that enhances
compiled circuit success probability

Present detailed comparative analysis of the proposed methodologies in terms of circuit
quality metrics.

06

THANKS | Q&A

