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BACKGROUND
Quantum computing is one of the most transformative technologies of the present 
time. Prototypical quantum computers with 5-128 qubits are available or proposed  
from industry vendors like IBM, Google, Rigetti, etc.

Variational quantum-classical algorithms need to be explored to gain the quantum 
advantage for various problems
- Limited number of qubits and connectivity
- The near-term devices are suffered from all kind of errors such as gate-error,                

decoherence, crosstalk, etc. 
- Therefore, quantum error correction are necessary for fault- tolerant computation. 

However, QECCs have prohibitively high physical qubit overhead.

QAOA
Quantum Approximate Optimization Algorithm (QAOA): the most promising algorithm for 
solving optimization problems.
But quantum advantage may be lost due to the accumulation of gate errors and 
decoherence.
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BACKGROUND
Gate Error, Decoherence and Crosstalk: (less gate number, lower gate depth are better)
- Quantum gates are error-prone. The qubits suffer from decoherence.
- The deeper circuit, more time to execute and gets affected by  decoherence. 
- More gates in the circuit also increase the accumulation of gate error. 
- Parallel gate operations on different qubits can affect each others performance which is known as 

crosstalk. 

CPHASE: A two-qubit unitary parametric quantum gate operating between a control and a target qubit. 
The CPHASE operations in a QAOA circuit are commutative i.e., the order of these CPHASE gates can be 
interchanged without affecting the output state of the quantum circuit. 

SWAP gates are added between two layers to meet the hardware constraints.
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Conventional compilers can optimize QAOA-circuits using efficient gate scheduling 
strategies utilizing the commutation properties of the gates. However, incorporating 
gate-reordering strategies in a compiler is not straight forward. 
- additional constraints need to be added 
- Time consuming.

Challenges:
Finding a mapping with higher reliability (less impacted by noise) is important to 
extract maximum performance from QAOA. 

Minimizing the depth/gate-count of the compiled circuit is crucial for QAOA 
applications. 

Methodologies for larger problem sizes for powerful quantum hardware with 200-500 
qubits) are absent nowadays.

Qubit Mapping:
(1)Selection of physical qubits (2) initial logical-to-physical qubit mapping (3) addition 
of SWAP gates to meet the hardware coupling constraints.
Each of these steps affects the quality of the compiled circuit i.e., depth, gate-count, 
and reliability.
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METHODOLOGIES
NAÏVE APPROACH 

A general-purpose compiler (qiskit compiler from IBM). Used for comparison of 
proposed methods.

QAIM 

Is an intelligent qubit allocation and initial mapping approach which applies to any 
circuit compilation

IP, IC, and VIC 

Using a backend compiler to add SWAP operations into the circuit with various target 
objectives.

Each of these methods has exclusive benefits and should be adopted based on the requirements of the target application. 
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Basic Steps
QAIM generates an initial logical-to-physical qubit mapping.

passed to the chosen compilation procedure à IP/IC or VIC.

IP/IC/VIC uses a backend compiler to generate the hardware compliant circuit.

IP passes a complete circuit description to the backend, IC and VIC send partial 
circuit descriptions in multiple iterations and stitch the compiled circuits at the 
end.



QAIM (Integrated Qubit Allocation and Initial Mapping)

QAIM combines the qubit allocation and initial mapping procedures in a single 
step and seeks to achieve three objectives:

1. Qubit allocation

2. Initial mapping

3. Achieving the first two objectives in a scalable way

QAIM uses efficient heuristics that exploit the following two:
Hardware Profiling

Program Profiling



QAIM
Hardware Profiling:

If the neighboring physical qubits have sparse connectivity, the 
logical qubits mapped to them may need to move frequently to 
meet the coupling constraint

To address this issue, the author defined connectivity strength:
The sum of its first and second neighboring qubits 
(For instance, qubit-0 pic, the connectivity strength of qubit-0 is 7 
(=2+5).

Program Profiling :

The program profile used in QAIM is similar to GreedyV. For any 
input QAOA-circuit, we calculate the number of CPHASE 
operations per logical qubit to create the program profile. 



QAIM Procedure
Procedure:

1. The logical qubits are sorted (descending order) 

2. The first logical qubit is assigned to the physical qubit with the 
highest connectivity strength. 

3. For the next logical qubit in the list, we check if any of its logical 
neighbors has ben already placed. 
Else;
we pick the unallocated physical qubit with the highest 
connectivity strength for allocation.

Example:



Instruction Parallelization (IP)

IP: To maximize gate parallelization, the authors formulated the problem as a 
binary bin-packing problem and use the first- fit decreasing greedy heuristic.

- Because paralleling instructions in the QAOA-circuit may help to reduce the circuit depth.

IP also utilizes the program profile used in QAIM to rank the CPHASE operations (in 
descending order.

After allocating physical qubits for the QAOA-circuit logical qubits using QAIM, we can go 
through the rest of the steps in the compilation procedure: SWAP insertion



IP

1. Create MOQ empty layers of bins (each bin representing a qubit). 

2. Take the operation from the sorted CPHASE list with the highest rank. 

3. Repeat Step − 2 until the list is empty.

4.  If unassigned CPHASE operations list is not empty, repeat from Step − 1 with 
this list.

Create the CPHASE layers



IP Example

1. The minimum number of required layers for this circuit (MOQ) for this example is 2 (a)(b)

2. The ranking of the CPHASE operations is shown in (c). In this example, cumulative operations for (2, 3) is ‘2 + 1 = 3’.

2. The sorted CPHASE operations (based on their ranks) are shown in Figure 4(d)

4. The CPHASE operations in this sorted list are assigned one-by-one to the available qubit bins in the 2 layers (e)
how to assign?

5.  In this example, the following CPHASE sequence is given as the input to the compiler (d) 

Create the CPHASE layers



Incremental Compilation (IC)

The authors proposed  an incremental approach (IC) to compile QAOA circuits.

- The logical-to-physical qubit mapping changes with every added SWAP operation. Those 
are the dynamic changes.
- In IP, all the layers are formed at the same time and the complete circuit is passed to 

the backend for compilation. IC can greatly take advantage of these dynamic changes .

In IC, the circuit layers are formed one-at- a-time and partial circuits are 
compiled with single CPHASE layers. The partial circuits are stitched at the end 
to construct the whole circuit. 



IC Steps and Example
1. CPHASE operations are sorted in ascending order based on the distance between their control and target qubits for 

the initial logical-to-physical mapping.

2. A partial circuit is compiled with this layer and the initial mapping. The final mapping after SWAP insertion is saved.

3. The final mapping is set as the initial mapping. We repeat S tep − 1 until all the CPHASE operations are assigned to 
different layers and the corresponding partial circuits are compiled.

4.   Stitch all the compiled partial circuits.



Variation-aware IC (VIC)

Taking Variability into Consideration:

- To prioritize operations that may be executed with higher reliability during layer 
formation to maximize the success probability of the circuit.

VIC: To incorporate such strategy in IC, distance measurements between various 
qubits need to reflect the success probabilities of the intended operations. 
The higher the success rate, the lower the distance.



PERFORMANCE EVALUATION

. 

1. Evaluation Metrics

2. Approximation Ratio Gap:

3. QAIM vs. GreedyV⋆ /NAIVE 

4. IC/IP vs. QAIM 

5. VIC vs. IC 

6. Hardware Validation 

7. Impact of Packing Density
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Evaluation Metrics
Circuit depth:

A higher-depth circuit is more susceptible to decoherence errors

Gate-count:

A lower gate-count generally translates to less accumulation of gate errors.

Compilation time:

the time taken by the compiler to generate the hardware compliant circuit.

Success probability:

To quantify performance benefits with variation-aware compilation strategies.



Approximation Ratio Gap 
The author proposed to a novel method that called Approximation Ratio Gap (ARG), to 
compare the performance of compiled QAOA-circuits on actual hardware.

- The conventional method to judge the quality of the compiled QAOA-circuits are time consuming.

- Sampling  the output of the circuit a finite number of time to calculate the approximation ratio 
of the given cost function (r0). 

- Running  the circuit on the target hardware and calculate the approximation ratio (rh) using the 
formula {100 ∗ (r0-rh)/r0} as the approximation ratio gap or ARG. 

- The lower ARG, the better, it indicates a performance closer to the noiseless scenario.



Problem sets:

Choosing 20-qubit ibmq 20 tokyo, 15-qubit ibmq 16 melbourne, and a hypothetical 36-qubit grid 
(6x6) architectures as the target hardware..

Randomly chosen (up to 36-nodes) erdos-renyi random graphs (with varied edge 
probabilities)

Regular graphs (with a varied number of edges/node) are used for the validation 
purpose



QAIM vs. GreedyV⋆ /NAÏVE
Varying Connectivity:
Edge probability from 0.1 to 0.6; edges/node from 3 to 8 (for regular graphs) and randomly picked 
50 20-node graphs.

For sparse graphs , QAIM performs considerably better than both the NAIVE and 
GreedyV⋆ approach.

For dense graphs, all these three approaches perform similarly. 



QAIM vs. GreedyV⋆ /NAÏVE

Varying Problem Size:

By picking 3-regular graphs with the number 
of nodes varying between 12 to 20

For smaller problem sizes both GreedyV⋆
and QAIM performed better than NAIVE.



IC/IP vs. QAIM

Result: both IP and IC generated 
circuits with significantly smaller 
depths than the QAIM-only 
approach and the differences were 
more pronounced for dense graphs.

BUT IP circuits have almost 
identical gate-counts to QAIM.

To quantify benefits of IP and IC 
over QAIM-only compilation 



VIC vs. IC

VIC adds variation awareness to IC 
with the goal to increase the success 
probability of the compiled circuits.

Result: 
VIC showed an 80% better success 
probability over IC on average for the 
random graphs.

The improvement in the success 
probability is found to be quite smaller for 
the regular graphs (where layers were 
heavily packed



Performance Summary 

On average, 45% reduction in the compilation 
time has been achieved using IP over the NAIVE 
approach. 

IC and VIC both provided similar performance in 
reducing depth (by ≈53%), gate-count (by ≈23%), 
and compilation time (by ≈15%).

VIC and IC show similar performance, but VIC 
offers higher success probability than IC (b)(c)



Hardware Validation

The authors used the proposed strategies to 
compile the circuit and used the results to 
calculate their corresponding ARG’s 

Result: VIC (+QAIM), IC (+QAIM), and IP (+QAIM) all 
provided smaller ARG values compared to the QAIM-
only circuits (b)

The results reflect the improvement in the 
compiled circuits in terms of depth, gate-count, 
and success probability.



Impact of Packing Density
The mean depth:
the depth tends to decrease with an increase in the packing limit at first. However, when it went beyond 11, it 
went up again.

The gate count:
It is found to increase with packing limit as shown in (b)

The compilation time:
Packing more operations reduces the total number of circuit layers as well as the number of required SWAPs 
or permutation layers, so the compilation time decreases.



CONCLUSION

The author present four novel methodologies to compile QAOA circuits. 

The methodologies can be integrated with any conventional compiler to improve 
the quality of the compiled QAOA- circuits. 

The author validate performance improvement through experiments on real 
quantum devices from IBM. And demonstrate up to ≈53.0% reduction in circuit-
depth, ≈23% reduction in gate- counts and ≈45% reduction in compilation time over 
a NAIVE approach. We also demonstrate up to ≈25.8%.
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CONTRIBUTIONS
Presented a novel Qubit Allocation and Initial Mapping (QAIM). 

Proposed a greedy heuristic for Instruction Parallelization (IP) to reduce the circuit 
depth and execution time.

Proposed an Incremental Compilation (IC) technique that reduces the need for added 
SWAP operations utilizing the dynamic changes

Proposed a Variation-aware Incremental Compilation (VIC) technique that enhances 
compiled circuit success probability 

Present detailed comparative analysis of the proposed methodologies in terms of circuit 
quality metrics.
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