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Why Quantum Computing is hard?

- Now we can build NISQ(Noisy Intermediate-Scale Quantum)

- We have imperfect control over qubits
- Fragile state ( to 0> state)
- Device noise

. Qubits are error-prone
- Intermediate-scale qubits (50- few hundreds)
- Simulation cost by brute force
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Hard to scale up qubits

2.79 x 10’ Simple quantum volume (SQV) =
(# of qubits) x (# of gates per qubit)
%
o < NISQ+ (w/ AQEC) SQV = 1.12 x 10°
@
Q _ Coge :
o 436x10° < NIsQ+(w/AQEC)sQV=3.4x10° 1 SQ)V/ s limited when we have more cubits
E'; NISQ target SQV = 10’
o NISQ target SQV = 10° 2. AQEC(= error correction) can boost up SQV
1000 l
40 78 100 1000
# of qubits
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Error correction in classical computing

- |nitial bit — suppose you have one bit to send
- 0&1
- The channel has noise to disturb the data (bit)

- This can be mitigated by repeating bits by encoding

.- 0->000
- 1->111
- We can correct one-bit error by majority vote  prob. for bit error p < 1:
909> 008 no error) multi-bit error prob. = 3p?(1-p)+p3=3p?-2p3

- 001 -> 000 (error on 1st bit / bit flip 0->1)
- 010 -> 000 (error on 2nd bit / bit flip 0->1)
- 011 -> 111 (error on 1st bit [ bit flip 1->0)

- 100 -> 000 (error on 1st bit / bit flip 0->1)
- 101 -> 111 (error on 2nd bit / bit flip 1-> 0)
- 110 -> 111 (error on 1st bit / bit flip 1->0)

- 111 ->111 (no error)

<pwhenp<0.5
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Error correction in classical computing

- nkd =[31,3]
- 3 bit
- T ecoding bit
- 3bit can be corrected with code distance 1 (d= 2t+1)
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General Qubit state

Bloch sphere representation of a ==

qubit. The probability amplitudes for
the superposition state,

1Y) = a|0) + B|1), are given by

y
= cos<§> and 8 = ¢ sin(g)
2 2
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Errors in Qubits
- Bit flip

- Error channel where (p = without error)
. al0> + b|1> —> b|O> + a|1>

Bit flip channel
1 0 0 1

0 1 1 0

: [TH RIVERSIDE




Errors in Qubits
- Phase flip

- Error channel where (p = without error)
. al0> + b|1> —> a|0> - b|1>

Phase flip chan 1el 0 i o

0 -1
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Errors in Qubits
- Bit-phase flip

- Error channel where (p = without error)
- al0> + b|1> —> -bi|0> + ail|1>

i 0

Bit-phase flip ch lneIO 0 ,
—l1
Ea pf"o 1}E1= T '1_p[ )
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Pauli equation

These matrices are usually represented as

X:%:[o 1]’

1 0
0 —i
Y: = ,
i L 0|
Z:azzll 0
0 —1|

The Pauli matrices are involutory, meaning that the square of a Pauli matrix is the identity matrix.

I?=X’=Y?=2%= iXYZ=1

N N ) B () Y O N

The single-qubit coherent error process described in equation (5) can be expanded in the above

basis as follows
U(00,69) |¢) = arl |) + axX [¢) + azZ |Y) + oy |¢) (7)

where oy x vy z are the expansion coefficients. By noting that the Pauli Y-matrix is equivalent (up
to a phase) to the product X Z, this expression can be further simplified to

U(60,69) ) = arll |[¢) + axX [¢) + azZ ) + axzXZ[Y) . (8)
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Quantum error types

As a result of the digitisation of the error there are two fundamental quantum error-types that
need to be accounted for by quantum codes. Pauli X-type errors can be thought of as quantum

bit-flips that map X |0) = |1) and X |1) = |0). The action of an X-error on the general qubit state
1S

X[¢) =aX|0)+BX|1) =all)+5]0). (9)

The second quantum error type, the Z-error, is often referred to as a phase-flip and has no classical
analogue. Phase-flips map the qubit basis states Z |0) = |0) and Z |1) = — |1), and therefore have
the following action on the general qubit state

Zp) =az0) +BZ1) = a|0) - B|1). (10)
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How to correct bit flip error?

|0>L = | 000)
|1>L = |111)

This works against bit flips: oy = ( (1) (1) )

1000), = |010)

7@y, = )

Can measure “which bit is different?” This measurement is a
projection onto one of four 2-d spaces, generated by the vectors:

{/000),[111)} ~ {]100),]011)}
{010),]101)}  {[001),|110)}

Possible answers: none, bit 1, bit 2, bit 3.
Applying o to incorrect bit corrects error.

I_C‘A.
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0), = |000)
1), = |111)

We can encode superpositions using this code

al0), +5|1), = a[000) + 3[111)

0 1

1 0 ) in the second bit:

Suppose we have a bit error oy = (

ox(2) : @|000) + B |111) — | 010) 413 |101)

When this is measured, the result is “bit 2 is flipped,” and since
the measurement gives the same answer for both elements of the
superposition, the superposition is not destroyed.

Thus, bit 2 can now be corrected by applying ox(2).
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How to correct phase flip?

The unitary transformation

-5 2)

takes phase flips to bit flips and vice versa:

(2 3)w=(3 2)

Suppose we apply H to the 3 encoding qubits and the encoded
qubit. What does this do to our code?

Applying H, we get a new code

0), = %(|ooo>+|011>+|101>+|11o>)

), = %(|1oo>+|01o>+|001>+|111))

| 0) encoded by superposition of states with an odd number of 0's;
| 1) by superpositions of states with an even number of 0's.

A bit flip on any qubit exchanges 0 and 1, so it takes a logical 0 to
a logical 1. Thus bit flips are three times as likely.
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~(1000) +[011) + | 101) + | 110))

—
gy
|

% (| 100) + | 010) + | 001) + | 111))

A phase flip_on any qubit is correctable.
1 0 :
Eg., 0,= ( 0 —1 ) on bit 3.

72(3)10), = 5 (1000) — |011) | 101) + | 110))

This is orthogonal to o0,(a) | b); unless a =3, b = 0.
So we can measure “which qubit has a phase flip?" and then
correct this qubit.
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Constraints of classical error correction

.- Measurement loses Qubit-state

- Non-cloning theorem

- [t is impossible to create an independent and identical copy of unknown qubit
states

- Sign-flip should be covered
- (classical coding can only detect/correct bit-flip error)
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Measure the error, not the data

Use this circuit:

i &
Encoded o o Ancilla qubits st Outl 2nd Out2
state \ -
Ancila [0y DD <] | Error 0> 10> 10> 10> 0>
qubits 0) DD syndrome 0> 1> 1>
1st bit of error syndrome says whether the first two
bits of the state are the same or different. 0> 1> /1> |0> 1>
2nd bit of error syndrome says whether the second 1> 1> |0
>

two bits of the state are the same or different.
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Redundancy, not repetition

This encoding does not violate the no-cloning
theorem:

o 0) + B 1Y = a 1000) + B [111)
£ (o 0) + B |1))®8

We have repeated the state only in the
computational basis; superposition states are
spread out (redundant encoding), but not
repeated (which would violate no-cloning).
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Correcting phase error

Hadamard transform H exchanges bit flip
and phase errors:

H (al0) + Bl1)) =al+) + B
X l+) = l+), X |-y = - |-)Aacts like phase flip
Zl+y= 1), 2y = |+) \acts like bit flip)
Repetition code corrects a bit flip €rror

—— > Repetition code in Hadamard
basis corrects a phase error.

ol+) + By > o [+++) + B |---)

; [TH RIVERSIDE




Stabilizer example in 9-Qubit

Errors

Quantum Error Correction Cycle
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Operation in toric code
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Surface code

Ox@x0O0Ox@x0O=<x@xO0O

Jocofecofee]
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Error detection
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Qubit error pattern

et

(a)

(b) (c)
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Quantum error correction
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Decoding
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Decoding should be fast

especially considering the cryogenic environment of typical
quantum computing systems. If decoding occurs slower than
error information is generated, the system will generate a
backlog of information as it waits for decoding to complete,
introducing an exponential time overhead that will kill any
quantum advantage (see Section III). A hardware solution

smsnnrman~nd lhAawva wansiléa 2 tlha Alacletsr A cvAawfAacwica TAA~iAanl ~AatAn

_- line c (if no backlog after R,)

_-line b (if no backlog after R))

,# line a (if no backlog at all)

T, : time to encounter the x™" T-
gate if there is no backlog

Wall clock time

R, : time required to decode
the backlog after we
encounter the xt" T-gate

ty=T,
t=T-T

T, for x>0

T, T
Compute time (no backlog)
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Baseline error correction

& ++ _‘j_

Step 1 Step 2 Step 3
| + e
=l 4—1 ‘
Step 4 Step 5 Step 6
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Constraints of baseline method

== Chain chosen by the decoder == Correct chain

-’—’- -H”—

(a) (b) (c)

Reset Boundary Equal distance
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Thank you

- Any questions?
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