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ABSTRACT
Approximate computing that works on less precise data leads to
significant performance gains and energy-cost reductions for com-
pute kernels. However, without leveraging the full-stack design of
computer systems, modern computer architectures undermine the
potential of approximate computing.

In this paper, we present Varifocal Storage, a dynamic multi-
resolution storage system that tackles challenges in performance,
quality, flexibility and cost for computer systems supporting di-
verse application demands. Varifocal Storage dynamically adjusts
the dataset resolution within a storage device, thereby mitigating
the performance bottleneck of exchanging/preparing data for ap-
proximate compute kernels. Varifocal Storage introduces Autofocus
and iFilter mechanisms to provide quality control inside the storage
device and make programs more adaptive to diverse datasets. Vari-
focal Storage also offers flexible, efficient support for approximate
and exact computing without exceeding the costs of conventional
storage systems by (1) saving the raw dataset in the storage device,
and (2) targeting operators that complement the power of existing
SSD controllers to dynamically generate lower-resolution datasets.

We evaluate the performance of Varifocal Storage by running
applications on a heterogeneous computer with our prototype SSD.
The results show that Varifocal Storage can speed up data reso-
lution adjustments by 2.02× or 1.74× without programmer input.
Compared to conventional approximate-computing architectures,
Varifocal Storage speeds up the overall execution time by 1.52×.
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1 INTRODUCTION
Approximate computing is gaining traction in commercialized sys-
tems because many applications can now tolerate small errors in
input data [12, 19, 44, 47, 51, 53, 58, 94]. By receiving fewer details
from the raw data, processors and hardware accelerators that use
approximate computing can make trade-offs in accuracy to improve
performance, energy, power and cost by applying simplified circuits
or reducing computation. Therefore, approximate computing also
creates a demand for different dataset resolutions, meaning details
about the raw data (e.g., data precision levels, summarized results, in-
termediate results, and sampled contexts) from the raw-data storage
system that are essential to support exact computing.

Because existing approximate-computing research only focuses
on accelerating compute kernels by improving the design of architec-
tural components, programming frameworks, or algorithms, modern
computer systems that host approximate computing still use storage
system stacks that are designed for conventional exact computing.
Using the latest generation of GPGPUs to execute approximate
compute kernels, the overhead of preparing input datasets (due to
receiving data from the storage device, adjusting data resolutions,
etc.) becomes the most critical stage in the data-processing pipeline.
Recent advances in approximate hardware accelerators, as embod-
ied in TPUs [29], NGPUs [92], NPUs [18], and mixed-precision
support in GPGPUs [60], have further shrunk the execution time in
compute kernels and deepened the gap between data preparation and
computation in approximate applications.

To fundamentally address the aforementioned bottleneck in ap-
proximate computing, the storage device needs to work with the run-
ning application to deliver datasets in the required resolution. Since
lowering resolution reduces dataset size, such a cross-layer design
can lessen the total bandwidth demand from the data source, thus
decreasing the most latency-critical data-transfer overhead. Compute
kernels can directly use these low-resolution inputs to avoid unneces-
sary data conversion. In spite of the clear benefits of a storage device
that can effectively implement data-resolution reduction, building
such a storage device is challenging, as the design must consider all
of the following:
Performance The computations required to adjust data resolu-
tions in the storage device need to be efficient enough to not exceed
the latency of transferring the adjusted data and should not affect
normal I/O workloads.
Quality Reducing data resolutions lowers the latency in data
transfer but also has the potential to degrade output quality [25, 37,
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41, 42]. If the input data leads to significantly inaccurate results, the
application must recompute and/or iteratively retrieve the reduced
data, both of which increase end-to-end latency.
Flexibility The design should preserve the ability to provide
datasets in the diverse resolutions that applications require. Any
design that fails to do this will limit the usefulness of the system.
Cost Costs must be minimized. Datacenter architectures are
prohibitively expensive, and hardware components that require large
capital outlays will likely prevent a new design from being widely
adopted.

As a solution, we propose Varifocal Storage (VS), a dynamic,
multi-resolution storage-system architecture that improves perfor-
mance while addressing the aforementioned challenges. VS extends
storage-interface semantics by introducing a set of operators that
applications can apply to make data-resolution adjustments. VS
uses computing resources already present in modern storage devices
with non-volatile memory (NVM) to support operators that work on
the stored raw data—without using additional hardware components.
Since the VS architecture only needs to store the raw data, VS adds
no storage-space overhead to the storage device.

To provide quality control when applying approximate computing
in applications, VS offers the Autofocus mechanism to automatically
specify resolution: Autofocus selects the lowest resolution that sat-
isfies all control variables for the VS operator and the data inside
storage devices before compute kernels on the host computer or
other heterogeneous computing resources start processing the data.
With Autofocus serving as a kind of approximate-computing van-
guard, VS can (1) prevent compute kernels from processing data that
will produce low-quality results, (2) reduce performance loss due
to recomputation and input data being re-sent in higher resolutions,
and (3) allow an application to tolerate a wider range of datasets.
To further reduce programmer burden in designing applications and
enable the potential of resolution adjustments, VS introduces the
iFilter mechanism to specify both the approximate operator and the
appropriate resolution.

In the later sections of this paper, we evaluate VS by designing
and implementing a VS-compliant solid-state drive (SSD) that is
an extension of an existing datacenter-class SSD. The current VS-
compliant SSD allows applications to adjust data resolutions using
operators for value approximations, packing, data filtering, and con-
tent selection in firmware programs without modifying hardware
design.

In summary, this paper makes the following contributions: (1) It
presents VS, a system architecture that optimizes the performance of
approximate computing in full-stack design by dynamically chang-
ing data resolutions in storage devices to address the demands of
performance, flexibility, cost, and quality; (2) it demonstrates the
potential benefits of adding another layer of quality control to re-
duce programmer burden by introducing the Autofocus and iFil-
ter mechanisms that automatically determine data resolutions or
even operators; and (3) it describes an implementation of VS to
demonstrate the feasibility of VS architecture in modern storage
devices and to evaluate the performance of VS using a wide range
of approximate-computing applications.

By running a wide range of applications, we show that the manu-
ally controlled VS can speed up the most critical data preparation by
2.02× without significantly affecting accuracy. With the Autofocus
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Figure 1: The data-processing pipeline of approximate applica-
tions using the conventional execution model.
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Figure 2: The data-exchange overhead compared against the
execution time of performing compute kernels on the same
amount of data.

mechanism determining the resolution, VS speeds up performance
by 1.70× on average. Using the fully automatic iFilter mechanism,
VS can achieve a speedup of 1.74×. Comparing the end-to-end
latency of VS with that of conventional approximate-computing ar-
chitecture, VS is 1.52× faster with programmer optimization, 1.43×
faster using Autofocus, and 1.46× faster using iFilter.

2 MOTIVATION AND BACKGROUND
VS not only improves data-supply performance, but also accom-
modates the demands of a wide range of both approximate- and
exact-computing applications. This section presents the motivation
for our design, describes missed opportunities in modern computer
architecture, and discusses alternative solutions.

2.1 The Overhead of Presenting Datasets in
Different Resolutions

Figure 1 illustrates the data-processing pipeline of approximate-
computing applications in modern heterogeneous computers. The
computer first needs to issue I/O commands for the storage device
to access raw data from its internal data arrays and then transfer the
raw data through the underlying system interconnect while simulta-
neously serving other data-access requests. Once the host computer
receives a chunk of data, the CPU can start producing datasets in
lower resolutions. The approximate-compute kernel can then per-
form computations using the resolution-adjusted datasets. If the ker-
nel can leverage a GPU, TPU, NPU, or other hardware accelerator,
the system must additionally exchange among different components
through the interconnects before the accelerator can compute on the
prepared data.
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Figure 3: (a) The architecture of modern SSDs. (b) The modern
PCIe system-interconnect architecture.

With these approximate-computing-based acceleration tech-
niques, the latency of retrieving data from the storage system be-
comes the most critical stage in the data-processing pipeline. Fig-
ure 2 compares the latency of receiving raw data chunks from a
high-end NVM-Express (NVMe) storage device against the execu-
tion time of performing approximate/mixed-precision compute ker-
nels on the same data chunks using an NVIDIA Tesla T4 GPU [60]
for a set of applications [10, 69, 87, 91] (detailed description in
Section 7). Using a highly optimized I/O library that saturates the
NVMe I/O bandwidth, the overhead of receiving datasets exceeds
the kernel execution as the most critical stage in a majority of these
applications.

2.2 Missed Opportunities in Modern NVM-Based
Storage Systems

Without revisiting the hardware/software interface for storage de-
vices, conventional approximate-computing frameworks fail to op-
timize the increasingly critical data-preparation process from the
following opportunities:
Reduced data size Since approximate computing works on lower-
resolution datasets, the compute kernels usually consume fewer
bytes than exact computing ones. However, conventional storage
interfaces, including those based on the latest NVMe standard [4],
only support read/write commands that exchange raw data between
source and destination; applications can never reduce the bandwidth
demand of exchanging raw data between the storage device and the
host.
Rich device-internal bandwidth Conventional storage inter-
faces waste the rich internal bandwidth of storage devices. The
controllers found in modern datacenter SSDs, including the con-
troller in the prototype SSD that we used for this paper (Section 7.1),
support up to 32 channels. The internal bandwidth of our prototype
SSD can reach up to 8 GB/s if the SSD uses MLC flash mem-
ory chips with an average reading latency at 35 µs for each 8 KB
page [22, 55, 66]. However, the application only works on the host
computer and exchanges data with the SSD using limited PCIe band-
width. With newer, faster NVM technologies (e.g., ZNAND [74]
or 3DXPoint [27]), the mismatch between the internal and external
bandwidths can become more significant.
In-storage processing power Conventional interfaces also hide
the freely available processing power in SSD controllers. Figure 3(a)
shows the architecture of a modern datacenter SSD. In addition to

NVM chips, an SSD contains general-purpose cores and DRAM
to execute firmware programs and to cache/buffer data. In spite of
the limitations and dynamics of the outgoing bandwidth, the SSD
controller can still access its own data-storage arrays with channels
and banks. Nonetheless, the SSD’s general-purpose cores remain
unavailable to applications because conventional interfaces only
support access to raw data.

Due to the relatively longer latency of accessing NVM devices
and the over-provisioning of processing power to avoid the cost
of adding an embedded operating system, SSD cores are idle for
significant amounts of time. To accurately determine processor idle
time, we analyzed the loading of each processor core in our baseline
data-center SSDs under different scenarios. The maximum utiliza-
tion appeared when we saturated the outgoing PCIe bandwidth by
continually issuing 32 MB read requests. Under this scenario, the
busiest SSD processor core spent 70.4% of its time parsing NVMe
requests, and the second busiest core spent 46.5% of its time re-
ceiving commands from the PCIe interconnect. All other processors
responsible for managing data accesses for flash data were only busy
12.5% of the time. When the SSD is performing garbage collection,
none of the processors are busy for more than 20% of the time due to
the long latency of erase and write operations characteristic of SSDs.
Consistent with these results, previous studies of data-center-class
SSDs and common SSD prototypes [66, 95] have shown the aver-
age utilization of their SSD processors to be lower than 30%. With
frameworks such as FlashAbacus [96], the SSD controller typically
has even more idle time to spare for non-essential workloads.

2.3 Alternative Approaches
A number of alternatives have been suggested to address the data-
I/O bottleneck for general-purpose applications and the dataset-
preparation requirements for approximate-computing applications.
However, none of the alternatives addresses the demands of approxi-
mate computing in modern heterogeneous computers. Rather, each
alternative only addresses a subset of the challenges of presenting
datasets in different resolutions.
Increasing I/O bandwidth The most direct approach to improv-
ing data-transfer performance between the storage device and the
host computer is to increase the I/O bandwidth of the storage de-
vice. However, this approach is difficult and expensive in modern
architectures. Figure 3(b) shows the topology of attaching peripheral
devices, host processors, and other accelerators in the most pop-
ular system interconnect for a PCI Express (PCIe). Most modern
SSDs attach to a PCIe using 4× PCIe Gen3 lanes that provide up to
4 GB/sec of bandwidth. As modern CPUs incorporate their memory
controllers on-chip and use an exclusive processor-memory bus, the
bandwidth that the host application can use to communicate with
other devices (including GPUs, NICs, hardware accelerators, and
SSDs) is limited by the total PCIe bandwidth to which the CPU
connects. As a result, the actual outgoing bandwidth that the SSD
can use is narrower than the theoretical bandwidth, as it is usually
the case that multiple devices are competing for the bandwidth going
into the CPU/memory controller. In this modern system-interconnect
architecture, increasing the bandwidth is very challenging since it
requires the CPU to make more PCIe lanes available (i.e., increase



MICRO’19, October 12-16, 2019, Columbus, OH, USA Yu-Ching Hu, Murtuza Taher Lokhandwala, Te I, and Hung-Wei Tseng

Varifocal Storage Core

Varifocal Storage API

VS-compatible NVMe Driver

Host Application

Computer Kernels on Accelerators

Interconnect I/O & Storage Interface

NVM Arrays
Storage Device

Host
Computer

Accelerators
PCIe

PCIe

Intra-storage
interconnect

SSD Management Layer

Figure 4: The VS system architecture.

the pin count of the processor) or reduce the number of peripheral
devices that the system can connect.
Data compression Although lossy and lossless data-compression
algorithms [8, 11, 64, 90] both help to reduce data size and save
I/O bandwidth, the overhead of decompressing data on the desti-
nation computing device can easily cancel the benefit of reducing
data-transfer time; without appropriate hardware support, data com-
pression may lead to performance degradation [45]. This is precisely
what we observed (see Section 8.2.6). If the storage device stores
data using lossy algorithms, the system sacrifices support for exact-
computing.
In-storage processing (ISP) General-purpose intelligent storage
frameworks such as Willow [76], Samsung’s SmartSSD [16], Mor-
pheus [85], Biscuit [23], Summarizer [40] and FlashAbacus [96]
allow applications to use the processing power inside SSDs. These
platforms fall short of approximate computing for the following rea-
sons. (1) These platforms aim at offloading computation from exact
computing and can lead to suboptimal performance for approximate
computing. For example, Summarizer’s filter operation picks pages
that render datasets distorted from the raw dataset, which increases
data exchanges and computation. (2) These platforms require the
programmer to customize near-storage computation (e.g., resolution
adjustments in approximate computing) on per application basis,
increasing the burden of programmers and creating security con-
cerns. (3) Even language support makes programming easier, the
programmer can easily overestimate the capability of controllers and
hurt performance.
Approximate storage Approximate storage systems store data
using unreliable memory cells. Since these cells do not faithfully
store raw data , systems that use them can neither support exact
computation nor dynamically generate data in different resolutions;
such approximate-storage systems simply sacrifice flexibility [21,
28, 43, 73].
Quality control Without revisiting storage-interface design, exist-
ing quality-control mechanisms must request full-size, raw data from
the storage device [25, 37, 41, 49, 68, 72, 81]. Most frameworks
control output quality by comparing subsets of results for exact
and approximate computation, missing the opportunity to capture
low-quality input that failed the requirement before computation be-
gins. Section 8.2.5 presents the superiority of VS over conventional
approaches in this respect.
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Figure 5: The data-processing pipeline of VS.

3 OVERVIEW
Figure 4 shows VS in a heterogeneous computer system. VS revisits
the storage-system stack to allow the device to dynamically produce
data with different resolutions on demand. The VS core layer resides
inside the storage device to change data resolutions presented to ap-
plications. The VS layer interacts with existing system I/O interfaces
and provides an extended interface for resolution adjustments. The
VS layer also works together with the SSD management layer (i.e.,
the flash translation layer in flash-based, solid-state drives) to locate
the requested data. The host system needs an extended kernel driver
and API functions in order for the applications to send requests, ex-
change data, and receive feedback from the VS core layer. The host
application interacts with the API and sends commands specifying
the raw data types and operators that VS should work on.

The VS core layer supports a set of operators that are especially
effective for applications that contain high data-level parallelism
but are able to tolerate inaccuracies in datasets. The VS layer is
also where the Autofocus and iFilter perform mechanisms that auto-
matically determine the most appropriate data resolution for quality
control. The host application can optionally enable Autofocus and
iFilter through VS’s API and kernel driver.

Figure 5 illustrates the data-processing pipeline that VS enables to
tackle the challenges of performance, quality, flexibility, and cost. By
using operators and quality-control mechanisms inside the storage
device, VS exploits the richer internal bandwidth and idle processing
power to efficiently adjust/prepare datasets in lower resolutions for
approximate computing applications. Instead of always sending raw
data, VS allows the storage device to send adjusted datasets to the
host, reducing the total latency of transferring data over the system
interconnect. In this way, VS mitigates the idle time in compute
units and frees up CPU resources to tackle more useful workloads,
leading to performance gains for approximate applications on the
host side.

4 THE VARIFOCAL STORAGE
PROGRAMMING MODEL

To prepare an application to take advantage of the VS model, the
programmer uses the VS library to specify data resolutions and
retrieve adjusted data for the application. The application also needs
access to compute kernels that work with lower-resolution data. The
details of the VS programming model are given below.

VS provides a set of library functions for applications. The pro-
grammer uses these functions to set up (1) the operators required to
read data and whether Autofocus or iFilter is enabled, and (2) the
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Synopsis Description
int vs_setup(int fildes, struct
vs_operator** op_list, const char
*restrict format)

This function sets up the VS operator to apply on a file stream that is associated with a file descriptor, fildes. The
op_list describes the desired operators for data associated with the open file descriptor. This function collects data
formats within the file through the format string and VS will apply each operator to each type of data in the string
accordingly. If the list contains a nop operator, VS will not apply any approximation of the corresponding data.

int vs_read(int fildes, void *buf, size_t
nbyte, struct vs_feedback *fb)

The function reads data from the storage device using the previously set operators for the open file descriptor and provide
the feedback through the struct vs_feedback data structure.

int vs_release(int fildes) The function disables the VS operators on the given data stream that fildes represents and releases the resources that
these operators use.

Table 1: Sample functions from the VS API.

int setup(int argc, char **argv)  {
    // Skip — the rest of code ...
    int infile;

    // VS: Declare VS variables
    struct vs_operator op[1];
    struct vs_feedback fb[1];

    // Open a file descriptor
    infile = open(filename, O_RDONLY, "0600");

    // Read precise data from the file descriptor
    read(infile, &npoints,   sizeof(int));
    read(infile, &nfeatures, sizeof(int));

    // Skip — some other initialization code ...

    // VS: set parameters for desired operator 
    // PACKING(default)/PACKING_AF(autofocus)/VS_IF(iFilter) 
    op[0].op = PACKING;
    op[0].resolution = HALF;

    // Skip — some other initialization code ...
    // VS: apply the desired VS operator for the file
    vs_setup(infile, &op, “%f”);
    // VS: read data processed by the VS operator
    vs_read(infile, buf, npoints*nfeatures*sizeof(float), &fb);
    // VS: disable the usage of VS operator for the file
    vs_release(infile);
    // Skip — the rest of code ...
    // VS: use approximate kernel if the operator succeed
    if(fb[0].resolution == op[0].resolution)
        cluster_approximate(…);
    else
        cluster(…);
    // Skip — the rest of code ...
}

Figure 6: A KMeans code sample with inserted VS function
calls.
parameters that allows the underlying storage device to adjust data
as well as control variables that Autofocus and iFilter use to control
the adjusted data. Table 1 lists three representative API functions;
the functions are used when an application calls open to create a
file descriptor. If the offset of an open file descriptor needs to be
manipulated, the application simply uses conventional file system
functions like lseek or fseek.

Figure 6 shows KMeans code (Rodinia benchmark suite [69])
with VS function calls inserted. In the example, KMeans uses con-
ventional system-library functions (e.g., open and close) to manage
the file descriptor. If the program reads data using standard I/O func-
tions (as in the two read function calls in the code), VS does not
change the resolution of the accessed data. The modified KMeans
code initiates VS for the infile file descriptor by calling vs_setup.
This version of the code sets the desired operator and resolution.
The vs_setup function also accepts an argument that describes the
data formats. In the KMeans code sample, VS will interpret the file
content as floating point numbers.

VS starts adjusting data only if the application calls the vs_read
function. This function resembles the existing Linux read function
except that (1) the resulting data size may be different from the
requested data size, since operators will trim data sizes in most cases,
and (2) the function will provide feedback regarding the resolution

that VS selects. If the program calls a regular read function to re-
place the vs_read in Figure 6, VS will not change the data resolution
(even if the program previously initiated VS using vs_setup). These
API functions (e.g., vs_read) can interact with the underlying file
system cache to further improve performance if another application
is requesting the same dataset with the same resolution.

If VS successfully adjusts the data, the application can use
a compute kernel that supports lower-resolution input (e.g.,
cluster_approximate) to further reduce the total execution time
of the program. If the kernel is elastic to changes in dataset size (like
machine learning algorithms), then no need to change the compute
kernels. In many cases, the programmer can compose approximate
versions of compute kernels by slightly modifying the original ker-
nel functions to operate on less precise data types or summarized
input datasets [70, 71]. The application can also use library func-
tions (e.g., Mixed-Precision CUDA libraries and FANN library for
NPU [18]) leveraging approximate hardware accelerators to perform
the approximation in compute kernels.

Depending on the approximate compute kernels that the applica-
tion uses, the programmer can choose different VS operators for data
adjustments when calling the vs_setup function. To determine the
desired resolution, the programmer can leverage existing language
frameworks and profiling tools [7, 70–72]. In addition to traditional
approaches for determining resolutions, VS provides the Autofocus
mechanism to automatically decide the resolution using a set of
control variables that the programmer can optionally pass as param-
eters. The resolution-reduction choices Autofocus makes are usually
more conservative than those of a programmer, but Autofocus can
nonetheless help applications adapt to datasets. To ensure the qual-
ity of the execution result, VS may leverage existing approximate
frameworks [37, 41, 49, 68, 72, 81].

If a given application can apply multiple versions of approximate
kernels for different VS operators, the programmer can use the iFilter
mechanism to let the storage device choose the most appropriate
operators and resolutions for each dataset. The programmer can
pass “VS_IF” as the operator to trigger the iFilter mechanism and
optionally describe the available set of operators and the control
variables. Using the feedback data structure (vs_feedback), the
application can then execute the corresponding approximate kernel.

5 THE CORE VARIFOCAL STORAGE LAYER
The core of VS provides a set of operators to adjust data resolutions.
VS exposes these operators to applications through an extended
storage interface. The VS layer also implements two mechanisms to
determine appropriate data resolutions and provide quality control
over the adjusted data.
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5.1 VS Operators
VS provides several operators to adjust data resolutions before ship-
ping the data to host applications. To achieve the best performance
using the VS model, operators are selected in accordance with the
following criteria: (1) The computation overhead must match the
processing power inside the storage device. Thus, VS can minimize
the impact on access latency and power consumption and avoid extra
hardware costs. (2) A wide range of applications must be able to
apply the operator, thereby allowing for more efficient use of valu-
able device resources (VS identifies the most useful operators from
previous efforts [70, 71]). (3) The operator must allow VS to take
advantage of mismatches between external and internal bandwidths
and downsize the outgoing data—the VS model is most effective
when the data adjustment can reduce the demand of interconnecting
bandwidth.

The current VS framework supports the following categories of
operators for diverse data types.
Data Packing The data-packing operator trims the dataset size by
using fewer bytes to express each item and by condensing the layout
in memory. A data-packing operator is suitable for applications that
only use a small range within the number space of the original data
type and for applications that can tolerate some inaccuracies in the
input data. Since the data-packing operator translates raw data into
a less-precise data type, it can potentially decrease accuracy (e.g.,
double→float→half or int64→int32→short→char).
Quantization The quantization operator rescales the raw values
into a smaller value space as well as preserves the relative order of
values. The quantization operator is applicable to the application
requires large value sapce.
Reduction/Tiling The reduction operator applies a function (e.g.,
average) to a group of input values and yields a single output value.
After applying a reduction operator, VS sends only the resulting
value of each group in order to reduce the amount of data passing
through the system interconnect. This operator is especially useful
for machine learning and statistics applications when the input data
is uniformly distributed [70].
Sampling The sampling operator chooses a subset of items from
the raw data and sends the selected items to the host computer. Oper-
ators in this category can perform uniform/random data selection or
report only the most representative data. The sampling operator helps
to filter out repetitive/similar inputs that make no contribution to the
final application result. If the compute kernel is elastic with respect
to the number of records within the dataset, the sampling operator
can achieve the same effect as that of loop perforation [57, 61, 78]
but without any code modification (without the VS sampling opera-
tor, conventional loop perforation needs the raw data to be present
in system memory).

Besides, by providing the preceding types of operators, VS gives
system designers the chance to extend the number of operator types
using the mechanisms described in Section 6.3.

5.2 Autofocus and iFilter
The Autofocus and iFilter mechanisms provide quality control and
reduce the amount of programmer effort required to adjust data
resolutions. Autofocus and iFilter are inspired by two previously
observed phenomena: (1) The quality of the input data affects the

quality of the result in approximate computing [37, 41, 42]. (2) A
small subset of input data is representative of the rest of the input
data in approximate-computing applications that tolerate inaccura-
cies [41] . Building upon these observations, Autofocus and iFilter
can select the resolution/operator using only a small portion of the
raw input data from a requested dataset and then monitor the quality
of the adjusted input data.

Algorithm 1 Autofocus
Input: op, CV s ▷ CV s are optional

1: for each r ∈ R do ▷ r is sorted in ascending order
2: D← RawData
3: for each d ∈ D do
4: d′← ad just_data(d,op,r)
5: ∆← compute_CV s(d,d′,op)
6: if ∆ satisfy CV s then
7: remove d from D
8: if D ∈ /0 then
9: return r

10: else
11: go to 1

5.2.1 Autofocus. Autofocus allows the programmer to simply spec-
ify the desired VS-operator, letting VS decide the most appropriate
resolution that guarantees quality while improving performance. Aut-
ofocus also makes applications more adaptive to different datasets,
as the most appropriate resolution varies from dataset to dataset.

Algorithm 1 shows how the Autofocus mechanism works. Auto-
focus makes decisions using the programmer-selected operator (op)
and the quality-control variables specified in (CV s), with values
being determined by either the programmer or the default settings.
Autofocus then adjusts each data subset (d) using the specified oper-
ator (op) with the least precise resolution (r) that Autofocus has not
examined from the available operator resolutions (R).

Autofocus will check the quality of adjusted data (d′) by com-
paring the adjusted data with the raw data (Line 5) and generate the
comparison result (∆). Take the data-packing operator as an exam-
ple; Autofocus will compare the precision loss between the original
data type (e.g., FP32) and the adjusted data type (e.g., FP16) and
check to see whether the difference is smaller than the value from
the control variable. To reduce overhead of operators that need more
complex logic (e.g., sampling) to generate ∆ or when the controller’s
load is high, Autofocus only applies the quality-control function
compute_CV s to each byte of data in the first few pages (8 in our
experiments) and then randomly checks the remaining adjusted data.
Table 2 summarizes how we compute the control variables for each
VS operator.

If every checked piece of the adjusted data successfully passes
through the compute_CV s, VS will report the current resolution
to the host application and transfer the adjusted data (Line 9 of
Algorithm 1) through the system interconnect. If the quality of the
adjusted data (d′) fails on the control variables, Autofocus will fall
back to the next resolution (Line 11 of Algorithm 1).

5.2.2 iFilter. iFilter can work without programmer input and is
more effective than Autofocus for applications having compute
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VS Operator Function compute_CV s Description

Data Packing
abs(dataraw,dataad justed ) and
minnew_data_ f ormat ≤ datanew ≤ maxnew_data_ f ormat

For data packing, VS calculates and check if (1) the absolute difference between the original data and
adjusted data is smaller than the given threshold and (2) adjusted data falls in the range of the target data
type.

Quantization

abs(dataraw,dataad justed ∗ scale_ f actor), where
scale_ f actor =
max(dataold_data_ f ormat )−min(dataold_data_ f ormat )
max(datanew_data_ f ormat )−min(datanew_data_ f ormat )

For quantization, VS controls the quality by rescaling the adjusted data back to the raw data format and
measuring the absolute difference. VS drops the adjustment if the difference is greater than the given
threshold.

Reduction/Tiling abs(dataraw,dataad justed )
For reduction/tiling, VS computes the absolute difference between raw data and adjusted data. VS
compares if the absolute difference is smaller than the given threshold.

Sampling binary_distance(dataraw,dataad justed ) [65] For sampling, VS calculates the Hamming distance between raw data and adjusted data and drops the
current decision if the distance is larger than the given distance.

Table 2: Summary of function compute_CV s.

Algorithm 2 iFilter
Input: OP, CV s ▷ OP, CV s are optional

1: for each op ∈ OP do
2: for each r ∈ R[op] do ▷ r is sorted in ascending order
3: D← FirstFewChunksO f RawData
4: min_size[op]← 0
5: min_res[op]← r
6: for each d ∈ D do
7: d′← ad just_data(op,d,r)
8: ∆← compute_CV s(d,d′,op)
9: if ∆ satisfy CV s[op] then

10: remove d from D
11: min_size[op]← min_size[op]+ size(d′)
12: if D ∈ /0 then
13: go to 1
14: else
15: go to 2
16: op← select_op(OP,size,res)
17: D← RawData
18: for each d ∈ D do
19: d′← ad just_data(op,d,res[op])
20: ∆← compute_CV s(d,d′,op)
21: if ∆ satisfy CV s[op] then
22: remove d from D
23: if D ∈ /0 then
24: return op, r
25: else
26: remove r from R_op
27: go to 1

kernels that are compatible with multiple VS-operators. Algorithm 2
shows how the iFilter mechanism works.

The iFilter algorithm includes a decision-making phase (Line 1–
Line 15) and a monitoring phase (Line 16–Line 27). In the decision-
making phase, iFilter will try out all available VS operators (OP) that
can be applied to the input data type for the first few pages (8 in our
experiments) of the requested data. The iFilter algorithm is similar
to the Autofocus algorithm in that it selects the most appropriate
resolution for each operator, except that iFilter will keep track of the
resolution (min_res[op]) and the resulting data size (min_size[op])
for each operator (Line 5 & Line 11).

After the decision-making phase, iFilter will enter the monitor-
ing phase and select the operator that yields the smallest data size
(Line 16). iFilter uses the selected operator (op) to adjust every piece
of raw data. If iFilter successfully reaches the end of the request,
iFilter will report the selected operator and resolution (Line 24) and

send the adjusted data to the host. If iFilter fails to reach the end
of the request, it will remove the current resolution from the avail-
able set of resolutions (R[op]) and restart the decision-making phase
to choose the next appropriate operator and resolution (Line 26 &
Line 27). The computation overhead for iFilter is thus higher than
that of Autofocus since iFilter examines more operators to choose
the one with the minimum amount of data going through the system
interconnect. However, the additional overhead is negligible with
large datasets because the relevant VS operators need only be applied
to the first few chunks of the dataset.

6 BUILDING A STORAGE DEVICE
COMPLIANT WITH VARIFOCAL STORAGE

Building a VS-compliant storage device means tackling challenges
associated with (1) providing a hardware/software interface that
allows applications to describe the resolutions and quality of the
target data, and (2) minimizing the computational overhead/cost of
adjusting data resolutions. VS overcomes the former challenge by
extending the NVMe interface; this requires the fewest modifica-
tions to the system stack and applications. VS addresses the latter
challenge by exploiting the idle cycles available in modern SSD
controllers. This section describes the NVMe extensions and the use
of existing architectural components in an SSD that are needed to
ensure VS compliance. This section also describes how to add new
operators to the VS architecture.

6.1 NVMe Extensions for VS
Conventional storage interfaces such as the popular NVMe protocol
only support read/write commands for data access. Therefore, the
NVMe extensions for VS need to provide commands to set up VS
operators and apply those operators on datasets. The extended NVMe
interface aligns with the programming model in Section 4 to simplify
the complexity of software implementation.
Setting up VS operators The NVMe extension for VS provides
a new command to set up I/O stream and file descriptors—the
vs_setup command. This command carries the descriptor num-
ber using the 8-byte reserved area in the standard NVMe command
format. The descriptor usually corresponds to a file or I/O stream in
high-level programming language/system abstractions.

VS uses an abstraction similar to an instruction-set architecture
that allows the API to map the demanding operators to each stream.
Each operator starts with a 4-byte opcode followed by a 4-byte
integer for the number of arguments, which is then followed by the
arguments (e.g., target data resolutions, quality control variables).
For each category of operator, VS provides a different opcode for
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Host System
CPU Intel Core i7-7700K [26] @ 4.2 GHz
GPU NVIDIA Tesla T4 [60]
OS & file system Linux Kernel 4.15 & EXT4

baseline/VS-compliant SSD
Controller Microsemi flashtec controller with 32 channels [66]
DRAM 2GB DDR4 DRAM
Capacity 768 GB with 10% overprovisioning
Flash Chip MLC NAND/8 KB page size [55]
I/O interface NVMe through PCIe 3.0×4

Table 3: The platform configuration used for evaluation.

different data types. The API generates a sequence of operators and
works with the driver to store the sequence in a host DMA page for
the SSD to access.

Upon receiving the vs_setup command, the SSD will add the
page specifying the operators into its internal data structure, which
usually resides in the DRAM space of the SSD. Later commands can
use the descriptor number to indicate the operators that a vs_setup
command previously set and look up the corresponding operators
from the internal data structure. When the application does not
need the setup operators for the I/O stream, the vs_release com-
mand will signal the SSD to release the descriptor, allowing a later
vs_setup command to reuse the descriptor number.
Applying VS operators VS only adjusts data resolutions on data
requested by the vs_read command. The vs_read command is
similar to a typical read command with the following exceptions:
(1) The vs_read command contains a flow number in its 8-byte
reserved area. (2) The vs_read command reports the resulting data
size to the host, as most operators will change the data size or a
negative value if an error occurs. (3) The vs_read command reports
the selected operator and the degree of data adjustment to the host
software stack if necessary.

Since the regular read does not provide any feedback to the host
computer other than the error code, vs_read requires the driver
to always allocate an additional DMA page on the host for each
command that receives the feedback. As NVMe’s Physical Region
Page (PRP) list uses a type of linked-list data structure that allows
the vs_read command to specify an almost unlimited number of
DMA pages, accommodating feedback information does not require
any change in the NVMe command format. Rather, only minor
modifications to the device driver are required.

The current NVMe standard only allows each NVMe command
to transfer at most 32 MB of data. Consequently, firmware programs
will keep the offset of processed data within the data stream as-
sociated with a given descriptor. If Autofocus or iFilter revises a
decision while processing a large (e.g., greater than 32 MB) file
transaction, the API is allowed to generate commands to restart the
entire transaction with the revised decision.

6.2 Architecting a VS-compliant SSD
To minimize extra hardware costs, VS makes efficient use of existing
architectural components in modern SSDs.

With modern flash memory technologies, the critical path of
the data-access pipeline is determined by either the access time of
flash chips or the latency of the DMA stage (i.e., depending on the
outgoing bandwidth) of the SSD. In either case, data transfer through
the critical path in the pipeline usually takes a few microseconds. As

even the humblest modern processor cores can execute thousands
of instructions within the latency period of the critical stage in the
SSD data-access pipeline, such cores are idle most of the time and
leave slack that can be taken up by VS to apply operators without
the need for additional accelerators. An SSD will not experience
any performance degradation in accessing its own data array if the
applied operator does not create more than the average data-access
latency in the pipeline.

VS extends firmware programs to reclaim these idle computing
resources for VS operators. When a chunk of the requested data
(e.g., a flash page) arrives in the SSD DRAM, the extended firmware
programs will signal an underutilized or idle processor core to fetch
data from the data location in the SSD DRAM and apply the desired
operator(s). Since VS operators reduce dataset size, the programs
using VS operators can reuse the existing data buffers and thus do
not require additional space to buffer their processing results; the
firmware programs can keep their runtime states in the SSD DRAM
or in the data caches of the processor cores.

6.3 Adding New Operators
In our SSD, VS operators are implemented as overlay functions in
the firmware programs. With the extended NVMe protocol providing
a mechanism to exchange information for adjusting data resolutions,
the overlay functions receive the same set of arguments (including
the resolution and the pointer to the SSD DRAM data-buffer loca-
tion) and report the data size and resolutions through a data structure
defined in our framework. To add a new operator, our current tool
chain requires the designer to first write C functions. The designer
also needs to update a header file where the firmware program iden-
tifies and locates the new operator. The designer can then use a
cross-compiler to generate machine code for the controller’s mi-
croarchitecture. Finally, the system deploys the compiled firmware
program to the SSD through the standard firmware update command
in the NVMe protocol [4].

7 EXPERIMENTAL METHODOLOGY
We developed VS by extending a datacenter-class SSD. We then
measured the performance of the resulting system with several work-
loads that span a wide range of applications. This section describes
the setup of the experimental platform and the benchmarks that we
used.

7.1 Experimental Platform
We built a VS-compliant SSD by extending a commercialized,
datacenter-class SSD. We attached the VS-compliant SSD to a high-
end heterogeneous machine with a GPU. The host operating system
contains the extended NVMe driver to support additional VS NVMe
commands. Table 3 lists the key specifications of the host computer
and the SSD. The VS-compliant SSD runs our modified firmware
programs. The firmware is also compatible with a standard NVMe.
Since we did not modify the code that handles regular NVMe com-
mands, the firmware achieves the same performance as a regular
NVMe SSD with the same hardware configuration. Throughout our
tests, the baseline SSD achieved a 3.2 GB/s bandwidth when commu-
nicating with the host systems, but the theoretical internal bandwidth
is twice of that.
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Workload Name Application Category Operator Resolution Raw Data Size Relative Error Rate
Breadth-First Search (BFS) [69] Graph Traversal Packing 62.5% 3.5 GB [69] 0%
Black-Scholes [91] Financial Packing 50% 3 GB [91] < -0.25%
HotSpot [69] Physics Simulation Reduction 25% 2 GB [69] < -0.15%
2D Discrete Wavelet Transform (DWT2D) [69] Image/Video Compression Reduction 50% 1.6 GB [69] < 0.1%
Inversek2j [91] Robotics Packing 50% 2 GB [91] < -0.01%
Jmeint [91] 3D gaming Packing 50% 2 GB [91] < -0.02%
KMeans [69] Data Mining Quantization 25%

1.36 GB [69]
< -0.97%

k-Nearest Neighbors (kNN) [52] Data Mining Packing 50% [69] < -0.01%
streamcluster (SC) [69] Data Mining Packing 50% < -0.01%
ThunderSVM–Train (SVM-Train) [87] Machine learning Sampling 75% 2.6 GB [79] + 0.5%
ThunderXGB (XGB) [88] Machine learning Packing 50% < -0.10%
CNN–Pred [1] Machine learning Quantization 12.5%

0.95 GB [79]
< -0.6%

ThunderSVM–Pred (SVM-Pred) [87] Machine learning Packing 50% < -0.01%
ThunderXGB–Pred (XGB-Pred) [10] Machine learning Packing 50% < -0.10%

Table 4: Workloads, default VS operators, input data sizes, and error rates.

We performed all experiments with 90% utilization of SSD capac-
ity. Because SSDs over-provision internal data arrays (typically by
7%) in order to minimize garbage collection, wear-leveling, and read-
intensive workloads like those we created, we did not observe any
interference between VS operations and the regular SSD workloads.

7.2 Benchmarks
The workloads we used for VS-performance assessment are shown in
Table 4. We used these workloads on both the baseline configuration
and the VS-enabled configurations. We selected the given set of
applications based on the following criteria: (1) the application had
to be representative of approximate computing workloads found in a
publicly available repository, and (2) the application had to accept
large, publicly available datasets or provide a data generator capable
of producing large, arbitrary datasets that could serve as meaningful
input. Table 4 lists the dataset sizes that we used in experiments;
these are also the largest dataset size that our GPU can accommodate
but do not represent a limitation of our SSD or the VS programming
model. We followed examples found in previous work in modifying
the compute kernels of Black-Scholes [91], Hotspot, DWT2D, and
KMeans [70, 71]. We also implemented approximate-computing
versions of kNN, SC, SVM, and XGBoost by leveraging the native
mixed-precision support in NVIDIA’s latest Turing architecture.
When running these workloads, we used the default parameters that
each workload or its demo script suggested. For each application,
we also tried our best to exploit pipeline parallelism that overlaps
I/O, resolution adjustment and compute kernels to hide latencies.

Table 4 also lists the lowest data resolutions and the corresponding
operators that these approximate-computing applications can accept.
For each workload, we carefully profiled and chose the operators
and their parameters to limit the relative error rate to less than 1%
compared to the exact version of the same application.

In our experiments, three groups of benchmark applications were
chosen to use the same datasets: (1) KMeans, kNN, and SC, (2)
SVM-Train and XGB-Train, and (3) CNN-Pred, SVM-Pred and
XGB-Pred. With respect to evaluating VS, the key difference be-
tween KMeans and both kNN and SC is that KMeans uses an ag-
gressive packing operation that reduces input size by 25%. The key
difference between SVM-Train and XGBoost is that SVM-Train
encourages the programmer to set aside 25% of the raw data for
training. For predictors on machine learning (ML) models (e.g.,

SVM-Pred), we trained the models using precise datasets and re-
duced the resolutions of the datasets to be predicted. Using these
predictors, CNN allows an aggressive quantization that reduces
87.5% of the data size, while other models would lead to errors
larger than 1%.

For the basic/programmer-directed VS version, we applied opera-
tors and target resolutions as shown in Table 4. When the Autofocus
and iFilter mechanisms are enabled, our implementations check the
feedback from the VS API. If VS decides to adjust data resolutions,
our code can choose to apply appropriate compute kernels to process
data. Otherwise, our code uses the baseline compute kernels. When
using Autofocus and iFilter, we selected a set of default control vari-
ables that were relatively conservative across all applications. For
control variables, we used a delta value of 1% for packing, reduction,
and quantization as well as 1% binary difference [65] for sampling,
since we are targeting at less than 1% error rate.

8 RESULTS
This section presents the performance results for VS on our prototype
system and the potential impact of VS on approximate computing.

8.1 The Overhead of VS Operators and
Mechanisms

Throughout our experiments, most VS operators required less time
than the critical stage of the original data-accessing pipeline of an
SSD with limited processor cores, suggesting that the operators can
take full advantage of processing inside the storage device. In the
most complex case, the packing operator takes 1.3 µs to convert
a whole page of double-precision numbers into single-precision
floating-point numbers, and the quantization operator takes 2 µs
to rescale a double-precision number into an integer, both of these
times are shorter than the critical-stage latency of our SSD. The
reduction operator takes 0.76 µs to evaluate the average of every
pair of double-precision floating-point numbers within a flash page.
The sampling operator generally takes 0.4 µs to randomly select
from binary data.

The Autofocus and iFilter mechanisms also use the SSD general-
purpose cores to execute their algorithms. For the Autofocus mecha-
nism, VS takes at most 25 µs to stabilize the resolution for an oper-
ator working on binary numbers. For iFilter, the decision-making
phase takes about 150 µs to make its first decision because we need
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Figure 7: The speedup of reading inputs and adjusting data res-
olutions using VS.

to perform sampling for all operators. Once Autofocus and iFilter
have determined the required resolution, both mechanisms simply
compute on values for control variables, so the overhead is negligible
and the throughput unaffected.

8.2 The Performance of Data-Resolution
Adjustments

Figure 7 shows the speedup in reading input datasets and adjusting
data resolutions for each workload using different VS modes; VS is
compared with the conventional approximate programming model
that relies on the host to adjust data resolutions.
8.2.1 Programmer-Directed VS. Choosing the default VS settings
and specifying the desired operator and resolution can speed up the
performance of data adjustment by 2.02×. For KMeans and CNN-
Pred, which tolerate very low-resolution inputs, the speedup of data
adjustment can reach up to 3.82× since the storage device only needs
to send out 25% of the raw data size to the host. For Black-Scholes,
adjusting raw data on the host is more time-consuming than data
transfer. Therefore, VS can achieve more than 2× speedup since VS
also takes the advantage from the ISP model for data adjustment.
Even with the geometric mean that discounts outliers, VS still
exhibits a 1.91× speedup (Figure 7).
8.2.2 Autofocus and iFilter. Without any programmer input on the
desired resolution or even on the operator, Autofocus and iFilter
accelerate the process of preparing datasets for approximate kernels
by about 1.70× and 1.74×, respectively.

For most workloads, the Autofocus mechanism effectively selects
the same resolutions as those obtained using exhaustive profiling.
For KMeans, the programmer’s decision to condense the dataset
into 25% of the original space by quantizing, but Autofocus only
quantizes the dataset in half of the original space, producing a result
indistinguishable from the result achieved using the raw dataset.
For CNN-Pred, Autofocus conservatively decides to not quantize
inputs; however, if the programmer uses exhaustive profiling, the
quantization operator can shrink the input data size by 87.5%.

For SVM-Train, Autofocus does not perform any adjustment, but
ships the raw data for kernel computation. As the kernel computes
on raw data, SVM-Train skips the data-preprocessing stage on the
host, so we still see a slight performance gain in data adjustments.

In the fully automatic mode, iFilter achieves a speedup of 1.74×
for data preparation. Though the overhead of iFilter in its decision-
making phase is larger than that of Autofocus (as iFilter may need to
test more operators/resolutions), this overhead is relatively insignif-
icant as inputs get larger. For most cases, iFilter makes the same
decisions of the operator and target resolution as does Autofocus,
except that for KMeans, SVM-Train and CNN-Pred, iFilter selects
packing instead of the programmer’s decision.

In our experiments, the relative error rate of computation observed
when using Autofocus and iFilter never exceeded the values in Ta-
ble 4 because Autofocus and iFilter always made more conservative
choices than the programmer.

8.2.3 Internal/external bandwidth. VS is most useful when the SSD
has limited external bandwidth. Nonetheless, because VS adjusts
data resolutions within the data-access pipeline and avoids the oper-
ating system overhead, the VS model is still beneficial when internal
bandwidth matches external bandwidth. To quantify this benefit, we
modified the SSD firmware to only allow the controller to use half
of the SSD channels, so the internal bandwidth matched the external
bandwidth while preventing the application from taking advantage
of the reduced demand for outgoing bandwidth.

The "VS w/ 1:1 int/ext bandwidth" bar in Figure 7 shows the
speedup from using this modified version of our prototype SSD.
Without being able to rely on the host CPU for data adjustment, the
basic VS still speeds up the total latency of preparing datasets by
1.17×. Additionally, VS reduces the size of data going through the
system interconnect, making applications more adaptive when many
devices have to compete for the same set of limited PCIe links.

8.2.4 Case study: shared datasets. VS can reduce space overhead
by storing only one copy of each dataset but dynamically chang-
ing resolutions to accommodate the demands for diverse applica-
tions. As noted above, we allowed three groups of applications,
KMeans/kNN/SC, SVM-Train/XGB-Train, and CNN-Pred/SVM-
Pred/XGB-Pred to share raw input.

In our study, the basic VS allowed the programmer to use the
quantization operator and a resolution that reduces data size to 25%
for KMeans while using packing operator for kNN and SC to reduce
data size to 50% with the shared dataset. When Autofocus and iFilter
were enabled to select resolutions by previewing the input dataset
without having the compute kernels running, all mechanisms chose
a resolution of 50% for these applications. Note that without an
architecture like VS, the storage system must store multiple versions
of a shared dataset or provide raw data to the host for preprocessing,
hurting either space-efficiency or performance.

For SVM-Train/XGB-Train, our experiments also showed that
the programmer was able to pick different operators for the shared
dataset. When iFilter is enabled, it selects packing for SVM-Train
instead of sampling with the same resolution as that chosen by iFil-
ter for XGB-Train. As SVM-Train’s compute kernel is elastic to
different input dataset sizes, iFilter allows an application to take ad-
vantage of SVM-Trains’s elasticity to discard some data and achieve
an effect similar to the effect of loop perforation in an unmodified
compute kernel. Similarly, in CNN-Pred/SVM-Pred/XGB-Pred, the
programmer can quantize input data using VS to achieve better per-
formance than the performance achieved by simply using the same
operator for the same dataset.
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Figure 8: (a) The speedup of end-to-end latency using VS
and conventional approximate-computing framework. (b) The
speedup of data preparation using VS, compared with data
compression.

8.2.5 Case study: diverse datasets. Since Autofocus determines
the most appropriate resolution by examining the characteristics
of datasets, Autofocus makes VS more adaptive to changes in input
datasets for each approximate-computing application. In addition,
Autofocus does not rely on feedback from kernel computation re-
sults and does not require the storage device to send raw data in
the beginning, so Autofocus is more efficient than conventional ap-
proaches tackling the same problem. To illustrate this strength of
VS, we modified the data generator of Jmeint from AXBench to gen-
erate random points in various sizes of 3D spaces. We next present
the results when using Autofocus with datasets from three different
dimensions: 323, 655363 (65K3) and 42949672963 (4.3B3).

Figure 8(a) shows that VS with Autofocus exhibits significantly
shorter end-to-end latency for all datasets compared to the conven-
tional approximate-computing approach using IRA [41]. We used
the unmodified exact-computing version of Jmeint as the baseline.
Since Autofocus does not need to send raw datasets to the host, VS
outperforms IRA by more than 2.86× in the case of the 323 dataset,
with VS only sending data encoded in 8-byte integers. For the 65K3

dataset, Autofocus down-samples the datasets to short data type,
leading to a 1.80× speedup over IRA.

In the case of the 4.3B3 dataset, the distribution of point coordi-
nates expands the number space to 32-bit floating point, so approxi-
mate computing kernels cannot take advantage of using less-precise
values without exceeding the 1% error rate limit—both VS and IRA
will apply exact computing to generate results. As Autofocus detects
no potential in changing data resolutions, the slight slowdown of VS
comes from the overhead that Autofocus needs to make a decision.
In contrast, IRA slows down by 18% when approximate computing
cannot generate meaningful results.
8.2.6 Data Compression Comparisons. Since the most significant
VS performance gain comes from reducing data-movement overhead,
we also compared VS with several high-performance lossy/lossless
compression algorithms: FPC [8], C-Pack [11], BDI [64], and
ZSTD [90]. We clocked the time of reading compressed data, of
decoding data, and of adjusting resolutions. We excluded the over-
head of compressing data. We use the best-performing compression
algorithm as our baseline in Figure 8(b), showing the speedup of
using VS comparing against data compression.
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Figure 9: The speedup of the end-to-end latency.

On average, VS outperforms the best compression algorithm for
each dataset by 4.40×. This is because the overhead of decom-
pression consumes considerable overhead on the host even though
decompression saves bandwidth. In addition, VS generates data that
compute kernels can directly process, but the application can never
bypass the decompression overhead if we use data compression.
Without hardware-accelerated compression/decompression (which
adds costs), data compression cannot compete with VS.

8.3 The Impact of VS on Total Application
Latency

Figure 9 shows VS’s impact on the relative end-to-end latency of
running a complete workload using workloads with the conventional
approximate computing approach with GPU-accelerated kernels as
the baseline. Since VS efficiently prepares input datasets in stor-
age devices for approximate computing kernels running the GPU,
the basic programmer-directed VS leads to a speedup of 1.52× for
these applications. Using Autofocus to dynamically select data res-
olutions, these applications achieve an average speedup of 1.43×.
As Autofocus adjusts data resolutions under the constraints of the
control variables that generally lead to more conservative decisions
than the programmer, Autofocus gives up resolution adjustments in
SVM-Train and CNN-Pred and applies exact computing kernels so
as not to distort the result. Without any programmer intervention,
iFilter can improve performance by 1.46× because iFilter has more
flexibility in choosing the appropriate combinations of VS operators
and resolutions compared to Autofocus. However, without using VS,
the conventional approximate-computing approach can only speed
up exact computing by 1.07×.

8.4 Power and Energy
To quantify the effect of reducing the CPU workload, total power,
and energy consumption, we first examined the CPU frequency
when performing data packing on the VS-compliant SSD using
the baseline host-version implementation. We sampled the CPU
frequency every 500 ms. Even though packing is a very lightweight
operation, adding this computational burden to the host program
still forces the CPU frequency to go beyond 3 GHz most of the
time. For VS, which requires that the CPU handle DMA or issue
NVMe commands, the peak CPU frequency during the data I/O
is only 1274 MHz. Using a Watts Up meter to measure the power
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Figure 10: The total system energy consumption.

consumption, the total system consumes 64.7 W for this frequency.
Without VS, the system consumes an average of 70.8 W during the
whole data I/O process.

Since VS reduces both the power consumption during I/O and
the total application latency, VS also reduces the energy consump-
tion. To measure power consumption, we used Watts Up to measure
the power draw every 200 ms. Figure 10 shows that the basic VS
achieved an average energy savings of 32% for these applications
compared to the conventional approximate-computing approach.
Even without a programmer’s aggressive decision in adjusting data
resolutions, VS’s Autofocus and iFilter still achieve the same level
of energy savings in most applications, except for SVM-Train and
CNN-Pred due to their increased end-to-end latency as Section 8.2.2
explains. Autofocus and iFilter provide energy savings of 25% and
27%, respectively. In contrast to this, the conventional architecture
with aggressive data adjustments and approximate-computing ker-
nels could only improve energy consumption over exact computing
by 5%.

9 OTHER RELATED WORK
Approximate computing has a significant presence among solu-
tions that tackle the limitations of modern hardware design. Us-
ing simplified algorithms, smaller ALUs/FPUs, or faster operators,
approximate computing maximizes the area-efficiency of silicon
chips [24, 29, 32, 34, 46, 54, 77, 83, 86, 93, 97]. By designing
simpler, faster approximate circuits (e.g., circuits that use neural-
network accelerators [59], load value approximation [56], or ap-
proximate memoization [3]), approximate computing also avoids
intensive usage of slower but precise circuits for better performance
or energy efficiency. In addition, approximate computing allows
hardware designers to use unreliable transistors that are commonly
found in advanced process technologies [13, 15, 36]. Yet all of the
approximate-computing research cited above still follows the single-
point design principle, creating the resolution-adjustment problem
that this work tries to address. VS is complementary to these projects
and can work together with them to address the issues they raise.

To reduce the overhead of applying approximate hardware or
software-based approximate-computing solutions, current research
projects provide support and analysis through programming lan-
guage extensions and compilers [5, 7, 13, 15, 36, 37, 41, 70–72].
Since VS simply exposes its features to applications through an API

and proposes extensions in the I/O protocol and firmware programs,
applications can adapt VS without programming language exten-
sions or compilers. Further, the Autofocus and iFilter mechanisms
control input quality after applying VS operators within storage de-
vices, so VS can react before the compute-intensive kernel starts. VS
and existing projects are also orthogonal; the system can incorporate
VS with existing approximate-computing programming frameworks
to use VS operators and mechanisms more efficiently.

Even though VS shares the benefits from recent advances in
ISP [6, 9, 14, 23, 31, 33, 35, 40, 67, 75, 76, 82, 85, 89, 96] and near-
data processing [2, 17, 20, 39, 48, 50, 63, 80, 84], these frameworks
need the mechanisms that VS offers in order to execute approximate
computing applications efficiently. And while using approximate
computing in channel encoding [38, 62] and memory controller [30]
can achieve an effect similar to that of VS in terms of reducing
data-movement overhead, VS is independent of these projects and
requires no changes in hardware.

10 CONCLUSION
This paper presents VS architecture that supports arbitrary data reso-
lutions for both exact and approximate computing. VS adjusts the
resolution of the input data within source-storage devices giving
applications a simple way to access the features of VS and program-
mers a simple interface to do the same. VS significantly reduces
overhead and speeds up latency by leveraging underutilized proces-
sor resources. This paper also describes the Autofocus and iFilter
mechanisms that automatically select the most appropriate param-
eters for data adjustment that reduces programmer burden while
enforcing quality-control measures for outgoing data.

Through experiments conducted with a VS-compliant SSD and
the experience gained from tailoring applications on the platform,
this paper also demonstrates that a VS-compliant architecture re-
quires very few modifications to hardware or software. A clear
indication of VS’s efficiency relative to conventional approximate-
computing architectures may be found in the 2.02× speedup ob-
served for VS-based data-resolution adjustments and the 1.52×
speedup observed for total end-to-end latency, with both improve-
ments producing a change in results of less than 1% . In summary,
VS improves performance, maintains flexibility, guarantees quality,
and incurs no storage-space overhead for adjusting data resolutions—
all at a low cost.
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