
Sparsepipe: Sparse Inter-operator Dataflow
Architecture with Cross-Iteration Reuse

Yunan Zhang
University of California, Riverside

USA
yzhan828@ucr.edu

Po-An Tsai
NVIDIA

USA
poant@nvidia.com

Hung-Wei Tseng
University of California, Riverside

USA
htseng@ucr.edu

Abstract— Sparse Tensor Algebra (STA) applications are
limited by data movement and can benefit from better data
reuse. Prior research has focused on intra-operator data reuse,
such as better dataflow or caching technique for a single STA
operation, missing other reuse opportunities at the application
level. By expressing STA applications as sparse tensor dataflow
graphs, we first identify two unexplored inter-operator data reuse
opportunities: 1) producer-consumer reuse and 2) cross-iteration
reuse. Producer-consumer reuse combines multiple operations to
reduce data movement for intermediate results. Cross-iteration
data reuse, a new opportunity identified in this paper, reduces
the data movement for the shared sparse data (e.g., graph)
across iterations. We then propose Output-stationary-Element-
wise-Input-stationary (OEI) dataflow, a novel dataflow to capture
both reuse opportunities in STA applications, and Sparsepipe, a
sparse dataflow architecture to support the OEI dataflow and
maximize data reuse. Evaluation results show that Sparsepipe
with OEI dataflow is 19.82×/4.65× faster than CPU/GPU and
1.77× faster than an ideal sparse accelerator that cannot exploit
inter-operator reuse.

Index Terms—domain-specific accelerators , graph processing,
high-performance and scientific computing.

I. INTRODUCTION

Sparse tensor algebra (STA) is the key building block of
scientific computing, graph analytics, and machine learning
applications. STA operators such as SpMSpM (sparse matrix-
sparse matrix multiplication), SpMM (sparse matrix-dense
matrix multiplication), and SpMV (sparse matrix-dense vector
multiplication) contribute to the majority of the runtime of
these applications [25], [44]. Unlike dense tensor algebra, the
data movement limits performance of STA applications due to
their low arithmetic intensity. Thus, maximizing data reuse is
the key to accelerating STA applications.

Prior research focuses on exploiting intra-operator data reuse
to reduce data movement. For example, SpMSpM accelera-
tors [25], [38], [70] propose dataflows with specialized format
and microarchitecture support to minimize data movement in
SpMSpM operations. Other work improves cache locality [8],
[9] of SpMV operations in graph analytics. These ideas push
the system closer to the roofline [62], where STA operations
can fully utilize the available memory bandwidth. However,
the intrinsic low arithmetic intensity in STA operations still
causes many applications to reside in the bandwidth-bound
region of the roofline even with existing optimizations [42].
Any innovative reduction in data movement is still attractive.

Conventionally, implementing STA applications requires
hand-written and format-specific code with nested loops and
application-specific logic, muddling opportunities to reduce
data movements. Fortunately, recent developments in domain-
specific STA languages and compilers [11], [19], [35], [51]
alleviate the programming burden by generating low-level
code for STA applications. Frameworks with tensor and
dataflow abstractions, such as TensorFlow [2], PyTorch [28],
GraphBLAS [16], and ALP [69], offer new abstractions for
STA applications. Such novel abstraction with a dataflow graph
presents data reuse opportunities beyond a single operator.

We find that there are two unexplored, inter-operator reuse
opportunities for STA applications. First, producer-consumer
data reuse reduces data movement by combining multiple ten-
sor operations into a single, large fused operation. Prevalent in
dataflow graphs, producer-consumer reuse is typically captured
by forming pipelines of operations to keep intermediate results
in on-chip buffers. While producer-consumer data reuse has
been exploited widely in dense tensor algebra [3], limited work
has explored this reuse opportunity in architecture for STA.

Second, cross-iteration data reuse is a new reuse oppor-
tunity revealed in this paper, which extends beyond single or
adjacent STA operations. By unrolling loops or stages in STA
applications, it is possible to fuse multiple identical operations
(e.g., SpMV in a while-loop) and reduce memory traffic across
iterations. No prior work has identified this opportunity, and
harnessing cross-iteration data reuse requires a novel dataflow
(Section III) and corresponding hardware supports (Section IV).

To exploit these inter-operator reuse opportunities, this paper
proposes (a) OEI dataflow, which facilitates inter-operator
data reuse, and (b) Sparsepipe–Sparse Inter-operator Dataflow
Architecture, which incorporates key features:
• A dynamic execution pipeline with compute cores for each

stage of the OEI dataflow. These cores support the diverse
semiring operations prevalent in common STA applications,
extending its applicability beyond HPC/DNN.

• An efficient on-chip buffer that streamlines the data supply
to compute cores in the OEI dataflow.

• A set of intelligent control and management policies to
schedule computation and data access tasks in sub-tensor
manners to maximize data reuse, targeting the producer-
consumer and cross-iteration reuse opportunities.

• A sparse tensor preprocessing algorithm, including blocking

for(int i = 0; i < n; i++) {

 dangling += pr[i] + row_sum[i];

 pr_next[i] = pr[j] * row_sum[j];

}

dangling = (d * dangling + 1 - d)/n;

for(int i = 0; i < n; i++) {

 sum = dangling;

 for(int j = 0; j < n; j++) {

 sum += pr_next[i] * L[i][j];

 }

 pr_nextnext[i] = sum;

}

for (int i = 0; i < n; i++) {

 res += fabs(pr[i]-pr_nextnext[i]);

}

pr = pr_next;

foldl(dangling, pr, row_sum, Add);

set(pr_next, 0);

eWiseApply(pr_next, pr, row_sum, Mul);

// Uses additional vector: pr_nextnext.

dangling = (d * dangling + 1 - d) / n;

set(pr_nextnext, 0);

vxm(pr_nextnext, pr_next, L, Mul-Add);

foldl(pr_nextnext, dangling, Add);

dot(res, pr, pr_nextnext, add, Abs-Diff);

swap(pr, pr_nextnext);

// L: Input graph d: Damping factor

// pr, pr_next, pr_nextnext, row_sum: PageRank vector buffer

// dangling: Caching the contribution of random jumps from dangling nodes

// res: Residual value

// Mul-Add, Abs-Diff, Add, Mul: Semiring/Monoid operator

Standard C code GraphBLAS code

Fig. 1. Inner loop of PageRank algorithm. For simplicity, the c implemen-
tation assumes dense tensors.

and reordering, to improve inter-operator reuse.
We evaluate Sparsepipe on a set of STA applications and

compare its performance against CPU- and GPU-based STA
implementations. On average, Sparsepipe is 19.82× better than
CPU and 4.65× better than GPU. We also compare Sparsepipe
with an ideal sparse tensor accelerator but cannot exploit inter-
operator reuse. Sparsepipe is up to 3.59 × faster than the ideal
sparse accelerator and saves 54.98% dynamic energy.

In summary, our contributions are:

• Identifying cross-iteration data reuse in STA applications,
• A novel dataflow to exploit inter-operator data reuse, and
• The first sparse dataflow architecture to accelerate the

complete algorithm in STA applications, instead of a specific
operator or domain.

II. BACKGROUND AND CHALLENGES

This section first reviews how to represent STA applications
in modern sparse tensor frameworks. With this representation,
this section will highlight the required hardware architecture
ingredients and potential data reuses to motivate the proposed
OEI dataflow and our Sparsepipe architecture.

A. STA applications as tensor dataflow graphs

Implementing high-performance STA applications tradition-
ally requires various manual optimizations and is rarely portable.
To improve programmers’ productivity, recent advances in
language and compiler design thus leverage and extend the
abstraction of BLAS [1] and Einsum [35] to allow programmers
to represent their STA applications as tensor dataflow graph.
For example, in Fig. 1, we compare two implementations of a
classic STA application, PageRank, one in standard C, and
the other in the GraphBLAS [34], tensor-based abstraction.

There are three advantages of the dataflow representation.
First, the building block is a set of well-define, semiring
tensor operators, such as vxm or mxm (vector/matrix matrix
multiplication), and a series of e-wise (element-wise) opera-
tions. For example, in PageRank, the used operators are vxm
with Mul-Add as the semiring operation, and set, fold,

pr nextnext

pr next

vxm <Mul-Add>

pr nextnext

e-wise

L

row sum
e-wise 0set < 0 >

pr

e-wise 1

convergence

check

pr nextnext

pr nextnext

row sum

pr nextnext pr

pr next

dangling

residual

vector

matrix

operation

< operator >

scalar
current
iteration

next
iteration

(a)

row sum pr

foldl < Add >

pr next

set < 0 >

e-wise apply

< Mul >

pr nextdangling

pr nextnext prdangling

foldl < Add >

dot < Abs-Diff >

residualpr

pr nextnext

swap

pr nextnext

e-wise 0 e-wise 1

(b)

Fig. 2. Inner loop compute graph of PageRank algorithm, (a) abstracted
compute graph fusing all e-wise operations with e-wise 1 and e-wise
2. (b) shows further break down of fusing e-wise 1 and e-wise 2 with
orignal tesnor operations used in Figure 1.

dot (vector-vector dot product), swap as e-wise operations,
and other STA applications use different combinations (see
Table. III). The implementation details of the operators,
including storage format and tensor traversal order, are hidden
from the programmer. This separation of concerns [50] lets
programmers focus on expressing the applications and leaves
how to optimize operators to system designers.

Second, under this abstraction, the tensor dataflow and
dependency between operators is clear. Fig. 2 shows an
abstracted compute graph of PageRank’s inner loop. The
vxm operator takes vector pr_next and matrix L as input
and produces vector pr_nextnext as output, while other
vectors serve as inputs, outputs, or intermediates for fused
e-wise. As shown in Fig. 2 (b), two groups of e-wise can
be fused by identifying connected components of operations
and data nodes, yielding two new sub-graphs. This abstracted
compute graph enhances visibility of data dependencies across
each loop iteration, facilitating exploration of cross-iteration
data reuse opportunities.

Lastly, under the dataflow representation, STA applications
contain multiple iterations/stages of the same subgraph, with
each iteration advancing towards a convergent result. The loop
body can generally be divided into a BLAS-2/3 operation (vxm
or mxm), and a series of e-wise operations. Very often, the
matrix in the vxm or mxm operator is a constant sparse tensor
(e.g., the graph L in PageRank), which accounts for the most
of the data movement and is shared across iterations.

B. Architectural support to accelerate STA applications

To accelerate dataflow-based STA application like
PageRank shown in Fig. 2, we identify several key
architectural supports missing from existing solutions.

First, supporting and accelerating configurable semiring
tensor operations is a must. STA applications implemented
in frameworks like GraphBLAS require a larger set of semir-
ing operators (Table. III). Prior sparse accelerators, such as
GAMMA [70] for scientific applications, SCNN [45] for sparse
DNNs, optimize the data reuse within a STA operator, but only
support multiply-add as the basic computation. SIMD2 [71]
extends dense tensor accelerator for general semiring computa-
tion, but no prior work in sparse accelerators has the required
semiring support.

Moreover, simply combining ideas in optimizing intra-
operator reuse and SIMD2 does not capture the full reuse
opportunity in Fig. 2. To fully capture the inter-operator reuse,
the sparse architecture should support an explicit data staging
between operators. ISOSceles [68] proposes hardware support
to capture such producer-consumer reuse, but only for sparse
CNNs. ALP and GraphBALS’ nonblocking execution method
lets the programmer exploits producer-consumer reuse of STA
applications in CPUs, but the lack of an explicit buffer control
in hardware prevents the programmer from exploiting the
reuse opportunity. Such hardware support is similar to prior
accelerators [47] for dense tensor dataflow graphs, but need to
specialize for the dataflow and dynamism of STA applications.

Finally, despite that the sparse matrix is very often reused
across multiple iterations or stages in STA applications, the
footprint of this sparse matrix and the long reuse distance
(i.e., cross-iteration) prevent any prior on-chip buffer or cache
optimizations from capturing such reuse. To address this, the
system needs to store only a small portion of sparse tensors at
any time and executes work in different iterations in a short
time window to exploit the potential reuse across iterations,
ensuring that stored data is quickly consumed to make room
for new data. Therefore, the system must closely monitor the
on-chip buffer and schedule work to maximize reuse.

Implementing all above required support in purely software
can be both challenging and inefficient, negating the potential
benefits of inter-operator data reuse. These opportunities and
challenges motivate us to propose the OEI dataflow and develop
the Sparsepipe architecture.

C. Sparsepipe v.s. Dataflow architectures

Sparsepipe has roots from decades of work in dataflow
architectures [5], [52], [6], [56] and runtime systems [10] that
treat data dependencies as first-class citizens and form pipelines
between processing units to limit control and synchronization
overheads. Both static [17] and dynamic [5] dataflow machines
contrast the von Neumann architecture with fine-grained
dependency tracking (e.g., tokens) techniques. More recent
work instead implements task-based dataflow runtime systems
on commercial ISAs (e.g., Cell [10] and x86 [18], [24]) with
no or limited changes to the hardware.

1st time

matrix

access

vxm / mxv
e-wise e-wise

2nd time

matrix

access

vxm / mxv
e-wise

produce/consume data dependency fully computed

Conventional computation leads to long reuse distance

matrix value accessed

fused e-wise

current iteration next iteration

(a)

1st time

matrix

access

2nd time

matrix

access

Partial computation exposes sub-tensor dependency

partially computed

vxm / mxv
e-wise e-wise

vxm / mxv
e-wise

fused e-wise

fully computed

current iteration next iteration

matrix value accessed

(b)

vxm / mxv

fused e-wise

Input

matrix

vxm input

vector

other vectors
vxm output

vector

fused e-wise

other vectors

sub-tensor

dependency
only

Any
dependencies

current
iteration

next
iteration

sub-tensor

dependency

(c)

Fig. 3. Generalized compute graph of STA applications. (a) Data dependencies
of STA application using conventional computation. (b) Data dependencies
of STA application using partial computation. (c) Abstracted STA compute
graph with isolation of sub-tensor dependency only region.

Sparsepipe advances the concept from prior dataflow architec-
tures and runtime systems for tensor workloads in the following
aspects. First, this work targets the sparse tensor abstraction
and builds on recent advances in tensor-based programming
models to track dependency at the (sub-)tensor level. Without
Sparsepipe, prior work can only exploit the dataflow in scalar
and task-based programming models, missing the advantages
in productivity of the tensor-based dataflow graph in Fig. 1 that
is critical in STA. Second, the Sparsepipe architecture with the
OEI dataflow captures the long-distance data reuse (i.e., reuse
the sparse matrix across iterations) in STA. In contrast, prior
dataflow architectures and programs cannot efficiently exploit
cross-iteration reuse even with programmers’ careful crafting
of loop orders and applying tiling algorithms [14].

III. EXPLOITING CROSS-ITERATION DATA REUSE

This section details a novel dataflow tailored for cross-
iteration data reuse. We start by formulating an abstract view
of STA applications to identify cross-iteration data reuse.

A. Abstracting sparse algorithms

STA algorithms typically can be decomposed into two
components: leading matrix (e.g.,vxm/mxv) operations and sub-

vector u

mxv

vector temp

mxvInput matrix

vector u

Fig. 4. Inner loop compute graph of KNN.

sequent e-wise operations. By fusing all e-wise operations,
the originally complex compute graph simplifies, revealing clear
data dependencies between input and output tensors.

To exploit cross-iteration reuse, a dataflow schedule must
simultaneously execute operations spanning multiple loop
iterations. That is, to reuse the input sparse matrix, it is crucial
that the vxm and fused e-wise from the current iteration are
fused with the vxm of the subsequent iteration.

However, conventional dataflow schedule of STA applica-
tions executes operators sequentially (i.e., vxm has to finish
before e-wise starts). Such schedule leads to a long reuse
distance between two consecutive vxm operations. Figure 3
(a) shows the unrolled compute graph of an arbitrary STA
application including vxm in two iterations. To provide the
input vector of the second vxm, the current iteration needs to
access the entire input matrix for the first vxm to produce the
output vector, and fully compute fused e-wise operations.
Data dependencies on the entire output vector lead to long reuse
distance, preventing efficient fusing of two vxm operations.

Fortunately, for STA in dataflow representation, the loop
traversal order is hidden from the programmer. The system
can optimize the schedule arbitrarily and perform partial com-
putation, so long as it acknowledge the finest-data dependency
(as small as a scalar). Figure 3 (b) demonstrates the advantage
of partial computation, which reveals finer granularity of data
dependencies. If the schedule aims to produce just a single
input element for the subsequent vxm, the current iteration
only needs to partially access the input matrix and compute
corresponding elements of fused e-wise operation. We define
such finer data dependency as sub-tensor dependency.

Sub-tensor dependency reduces the reuse distance of two
consecutive vxm operations, as the top-left element of the
sparse matrix can be reused after the first vxm access only a
column of the sparse matrix, instead of the full matrix. Isolating
the sub-tensor dependency-only-region of the dataflow thus
reveals cross-iteration data reuse opportunity in any STA
applications. Figure 3 (c) shows the generalized STA compute
graph after fusing e-wise operations. For any STA compute
graph, if there exists a subgraph that includes both input and
output vector of vxm, and all operations within the subgraph
exhibit sub-tensor dependency, fusing two vxm can leverage
cross-iteration data reuse. For example, in PageRank, a
valid subgraph can be structured by vxm → e-wise 1 →
e-wise 0 → vxm, which exposes sub-tensor dependency for
all operations fused in e-wise 1 and e-wise 0.

Several other structurally different compute graphs also
reveal the benefits of this generalized STA abstraction. KNN
(K-nearest neighbors), as shown in Figure 4, incorporates two

ReLU
Input

 Graph

Matrix

output

dense

matrix
Iteration 0

Iteration 1
SPMM

MM
weight

dense

matrix

SPMM

ReLUMMoutput

dense

matrix

input

dense

matrix

input

dense

matrix

Fig. 5. Inner loop compute graph of GCN.

=

(a)

=

(b)

Fig. 6. (a) Output stationary vxm dataflow. (b) Input stationary vxm dataflow.

vxm (or mxv) within the same iteration. Despite its unique
structure, the circular dependency between the two vxm across
iterations forms a subgraph: vxm → no-op → vxm, making
reuse of input matrix possible.

In addition, as shown in Figure 5, Graph Convolutional
Neural Networks (GCNs) can be represented as subgraphs of
SpMM → MM (Dense Matrix Multiplication) → ReLU. Since
no value in the input dense matrix is blocked by MM and
ReLU, and SpMM can be implemented as multiple vxm, it is
possible to fuse SpMM operations from different stages to
exploit cross-iteration data reuse.

Based on this observation, so long as an STA algorithm
can be abstracted with the generalized compute graph, cross-
iteration data reuse applies regardless of whether the fused
operations occur within a single loop iteration or span across
multiple iterations.

B. OEI dataflow

Within the isolated subgraph, exposing sub-tensor dependen-
cies ensures that subsequent vxm must execute concurrently
with preceding vxm to avoid blockage. Given that all other
operations within the subgraph do not interfere with each other,
any output generated by the earlier vxm can be immediately
consumed by the subsequent vxm.

However, single vxm can only choose stationarity between
the input vector or the output vector. As illustrated in Figure 6,
vxm operations exhibit two prevalent compute dataflows: (a)
Output Stationary (OS) dataflow, which generates a single
element in the output vector at a time, requiring access to all
input vector elements, and (b) Input Stationary (IS) dataflow,
which yields partial results for all output vector elements but
requires only a single input vector element at a time.

Conventional implementations of STA algorithms adopt
one dataflow type across all iterations, which prevents the
cross-iteration data reuse of multiple vxm. For instance, when
fusing two vxm with OS dataflow, the first vxm produces one
output element at a time, but the second vxm requires entire
vector output from the first vxm to start. Namely, the first

= e-wise e-wise… =

Fused e-wise vxm in next iterationvxm in current iteration

e-wise

Step 2 Step 3 Step 4 Step 5Distribution

value reusable value reusednon-zero value

(b)(a)

Fig. 7. Overview of OEI dataflow, (a) Fusing OS vxm and IS vxm, (b) Reuse oppertunity of an example sparse matrix

=

matrix reuse

. pattern

= e-wise

== e-wise

== e-wise

== e-wise

=e-wise

output stationary

vxm

input stationary

vxm

Fused e-wise

operations

Step

1

Step

2

Step

3

Step

4

Step

5

Step

6

vector value consume

matrix value consume

vector value produce

vector value produce

(intermediate values)

matrix value reusable

matrix value reused

=Step

7

Fig. 8. Illustration of OEI dataflow for dense matrices.

vxm does no expose sub-tensor dependency with the second
vxm. Conversely, when choosing IS dataflow for both vxm,
the input vector elements for the second vxm are not fully
available until the completion of the first vxm, which also
prevents the sub-tensor dependency between two vxm.

To address this, our insight is to employ OS dataflow
for the first vxm and IS dataflow for the second vxm.
This mixed dataflow meets the necessary condition to reuse
the data from the sparse matrix. As depicted in Figure 7
(a), the first vxm with the OS dataflow generates an output
vector element, subsequently consumed by the fused e-wise
operation. The element produced by e-wise operations can
be directly consumed by the second vxm with the IS dataflow,
without any hindrance from preceding operations. We name
such dataflow as OEI (OS-ewise-IS) dataflow, which facilitates
the simultaneous execution of operations in the subgraph,
enabling the use of large input matrices in two vxm across
iteration.

Fig. 8 demonstrates the OEI dataflow with a 5× 5 dense
matrix as an example. In each step, the OS vxm computes one
output vector element by accessing the entire input vector and
a single column of the input matrix. The fused e-wise is

TABLE I
PORTION OF SPARSE MATRIX NEED TO BE STORED ON-CHIP TO ENABLE

OS-EWISE-IS DATAFLOW (SMALLER % IS BETTER)

matrix row/col nnz max (%) avg (%)
ca 18772 198110 98802 (49.9%) 65124 (32.9%)
gy 17361 178896 8661 (4.8%) 3321 (1.9%)
g2 150102 438388 15448 (3.5%) 7304 (1.7%)
co 434102 16036720 2143362 (13.7%) 1155196 (7.2%)
bu 513351 10360701 9329007 (90%) 4944897 (47.7%)
wi 3566907 45030389 17422630 (38.7%) 10450514 (23.2%)
ad 6815744 13624320 1143568 (9.4%) 694064 (5.1%)
ro 23947347 28854312 557694 (1.9%) 281769 (1.0%)
eu 50912018 54054660 2338567 (4.3%) 1419430 (2.6%)

delayed by one step relative to the OS vxm because the input
vector elements required for e-wise are not fully available
until the OS vxm completes its previous step. Similarly, IS vxm
lags two steps behind the OS vxm, as it awaits the completion
of both the OS vxm and the fused e-wise. IS vxm scatters the
partial sum from the multiplication for each pair of elements,
where the matrix value has been previously use by OS vxm.
Therefore, the IS vxm avoids the computation of the full outer
product in each step.

To show the data reuse, the matrix reuse pattern in Fig. 8
indicates matrix values that are either ready for reuse or are
currently being reused. Figure 7 (b) highlights the matrix reuse
pattern for selected execution steps after applying the OEI
dataflow to a sparse matrix. For extremely sparse input matrices
in STA applications, only a small portion of the matrix is
required to be buffered at a time, potentially fitting within a
standard on-chip buffer.

Table I demonstrates our simulation results for the maximum
and average percentage of the nonzero values in a sparse matrix
to be stored on-chip using the OEI dataflow. For a vast majority
of the examined matrices, maintaining only a small fraction
(<10%) of values is sufficient to capture the reuse opportunity
in the OEI dataflow.

When the on-chip buffer can hold all the reusable matrix
values across all steps, the IS vxm need not to load any matrix
element from memory. However, given the uneven distribution
of non-zero values in sparse matrices, it becomes challenging
to ensure that OS vxm uniformly loads data from the main
memory in each step. This uneven data distribution can lead to
load imbalance between OS and IS stages and under-utilization
of memory bandwidth in certain steps.

To address this, figure 9 shows an enhancement to the OEI
dataflow, using the same sparse matrix referenced in Figure 7
(b). In step 3, the initial element of the IS vxm input vector

e-wise

e-wise

e-wise

e-wise

= =

= =

= =

=

…
…

Step

3

Step

4

Step

5

Step

6

matrix reuse

. pattern
output stationary

vxm

input stationary

vxm

Fused e-wise

operations

vector value consume

matrix value consume

vector value produce

vector value produce

(intermediate values)

matrix value reusable

IS reused

OS reused

Fig. 9. Illustration of OEI dataflow for sparse matrices with eager IS execution.

is generated by fused e-wise operations. Besides computing
a partial sum with reusable matrix elements, the IS vxm also
proactively loads another matrix value from memory, instead
of idling. The matrix value loaded by IS vxm is instead reused
by OS vxm in step 4, eliminating the need for additional main
memory loading. Similar dynamics occur between steps 4 and
5. This refined approach addresses the issues of load imbalance
and bandwidth utilization.

IV. SPARSE INTER-OPERATOR DATAFLOW ARCHITECTURE

This section will overview the proposed Sparsepipe archi-
tecture and describe key components and optimizations.

A. Overview of Sparsepipe

Figure 10 presents the high-level functional blocks of
Sparsepipe. Sparsepipe efficiently supports sparse tensor alge-
bra while enabling data reuse opportunities in the following
aspects.
• Dual sparse storage in on-chip buffers to efficiently accom-

modate various data access demands in different stages of
OEI dataflow.

• A dynamic scheduling pipeline that natively supports OEI
dataflow and sparse tensor semiring operations through
compute cores, dedicated to the demand of each stage in
the OEI dataflow: the OS Core, E-Wise Core, and IS Core.

• A dataflow-aware controlling logic that schedules memory
accesses, dispatches computation tasks, and prefetches data
in units of sub-tensors in the control logic to efficiently use
memory bandwidth and buffer space.
Sparsepipe leverages the compiler behind existing STA

programming frameworks to generate efficient tensor semiring
instructions. Sparsepipe and a Sparsepipe-compliant language
framework partition data and schedule computation tasks in sub-
tensors to more efficiently use memory bandwidth and reduce
memory footprint. Sparsepipe initiates a stream of computation
tasks from loading input sub-tensors that typically contain
multiple columns of data for the OS Core and propagates the
intermediate sub-tensors to the E-Wise Core. In the meantime,
Sparsepipe can initiate another stream of computation tasks by

Instruction Dispatcher

OS Core IS Core

Forwarding

Adder Tree

(SIGMA)

IS

output

 vector

buffer

PE

PE

PE

PE

Scatter

Interc-

onnect

E-wise Core

OS

output

vector

buffer

PE

PE

PE

PE

PE

PE

PE

PE

E-wise

output

vector

buffer

G
D

D
R

6
X

On-chip buffer

E-wise Vector

buffer

VXM

 Vector buffer
Matrix Buffer

Sparsepipe

controller

Fig. 10. High-level architecture of Sparsepipe: Pipelined OS Core, IS Core,
and E-Wise Core share an on-chip buffer.

CSC format CSR format

… … … ……

colum I colum I + 1 colum I + 2

… ………

row 0 row 1 row 2

CSC space CSR space

Matrix snapshot

col address
I 0x000

I + 1 0x280
I + 2 0x440
I + 3 0x600

CSC Mapping Table

…

row address
0 0x900000
1 0x900540
3 0x900900

Storage format

Buffer layout

CSR Mapping Table

column I fully loaded by

CSC

fully loaded by CSC

loaded by CSC

column I + 3 reserved

space

column I + 1

column I + 2 fully

column I + 3 converted

from row data

0x000

…

Buffer Meta data

converted

row 0 reserved space

row 1 reserved space

row 3 converted

row 3 reserved space

column data

row 0 converted from

column data

partially loaded by CSR

row 1 converted from

row 0

row 1

0x200

0x400

0x600

0x800

0xa00

0x900000

0x900200

0x900400

0x900600

0x900800

0x900a00

Fig. 11. Dual sparse storage and memory layout of Sparsepipe on-chip buffer

loading another set of sub-tensors into the buffer. Sparsepipe
can start OS operations for the later stream once the previous
stream advanced to the E-wise operations. By executing streams
of sub-tensor computation tasks in a pipeline manner among
OEI compute cores, Sparsepipe exploits pipeline parallelism
and cross-iteration data reuse opportunities. In addition to
the architectural supports and optimizations, the language
framework can further optimize data structures that facilitate
program execution and improve space efficiency.

B. Dual sparse storage

In Sparsepipe architecture, both the OS and IS Cores require
sub-tensor inputs from the same sparse tensor but with opposite
traversal orders. Specifically, the vxm operations in OS Cores
need sub-tensors from the input matrix in column order for the
desired semiring operations with the input vector. In contrast,
IS vxm demands row-wise access for scatter multiplication
with a matrix row to yield partial outputs.

Sparsepipe on-chip buffers store input sub-tensors in a dual
storage strategy that utilizes both CSC and CSR formats to
optimize data access for both OS and IS dataflows to address the
limitation that no single sparse matrix storage format optimally
supports both row and column data access simultaneously.

Sparsepipe does not take the design option of using a single
buffer to store orientation-neutral data format like Coordinate
List (COO) because the orientation-neutral design can only
ensure efficient access for the sorted dimension.

Figure 11 depicts the high-level idea of the dual storage
on-chip buffers. Each buffer contains a CSC space for data in
CSC format and CSR space for data in CSR format. As CSC
format consecutively places column data between col start
and col end of the coordinate and data arrays, each val shares
the same col idx but exhibits unique row coord. Sparsepipe
stores the same column consecutively in the on-chip buffer,
providing straightforward access for OS Cores. The practice
of consecutive fetching and storing column data fetched from
CSC format seamlessly extends to managing row data fetched
from CSR format. Storing row data fetched from CSR format
into the CSR space follows a similar strategy. The starting
memory address of each row and column are recorded in the
CSC/CSR mapping table for subsequent access.

As data in the same column always belongs to unique rows,
the on-chip buffer must store the converted row data non-
consecutively in the CSR space the original input is in CSC
format. To address this, Sparsepipe determines the necessary
space for each row using row start - row end from the CSR
index array, reserving space upon receiving the first converted
row data from CSC data. Specifically, when column data
(col idx, row coord, val) from CSC format is converted to
row data as (row coord, col idx, val), equivalent to (row idx,
col coord, val) in CSR format, Sparsepipe allocates exact space
for converting non-zero values in each row and records the
starting memory addresses in CSR mapping table.

As STA applications demand column data in the order from
lower to higher col idx, the row data in which an earlier
fetching operation brings should always have lower col coord
compared the later ones. Therefore, the first non-zero element
of any row can always trigger space reservation in advance,
allowing for consecutive and ascending storage of subsequently
fetched row data within its reserved space. Additionally, when
row data are eagerly loaded from the CSR format to utilize the
remaining memory bandwidth, they are converted to column
data and stored in the CSC space following the same logic.

C. The OEI compute pipeline

Sparsepipe’s compute pipeline features the OS Core, the
E-Wise Core, and the IS Core to efficiently execute the OEI
dataflow.

1) OS Core: The OS Core executes operations on each
matrix column and vector pair like dot-products. Beyond
the mul-add operation, Sparsepipe extends each processing
element (PE) to additionally support frequently used semir-
ing operations in sparse tensor algebra, including and-or,
min-add, aril-add. Each PE in the OS Core can execute
of a semiring operation on a sub-tensor/column simultaneously
with other PEs. Sparsepipe uses the Forwarding Adder Tree
from SIGMA [49] to handle the varying number of non-
zero elements per column, allowing flexible sets of PEs to
communicate during the reduction phase of each vector-column

S
p

a
rs

e
p

ip
e
 c

o
n

tr
o

ll
e

r

Front-end data fetcher

 Back-end SRAM controllerRepack logic Eviction logic

CSC

loader

CSR

loader

Block

loader

col-row

convertor

vxm vector loader

Traffic

Estimator

Buffer meta data

Sub-tensor

dispatcher

E-wise

Core

dispatcher

Block

dispatcher IS Core

dispatcher

OS Core

dispatcher

e-wise vector

loader

Fig. 12. Sparsepipe control logic

dot product. The OS Core stores the generated intermediate
sub-tensors (vectors) in a buffer for the later stage.

2) E-Wise Core: E-Wise Core processes e-wise operations
on the OS vxm’s output buffer, where the sub-tensor size
directly corresponds to the number of elements managed
by the E-Wise Core in each step of OEI dataflow. The E-
Wise Core processes sub-tensor elements concurrently in
Single Instruction, Multiple Data (SIMD) model. Sparsepipe
uses offline compilation to pre-generate instructions for fused
e-wise operations specific to an application. Each PE in the
E-Wise Core is identical to the PEs in the OS Core. E-Wise
Core stores the results of sub-tensors into the e-wise vector
buffer.

3) IS Core: The IS Core performs outer product calculation,
where a single vector element multiplies against multiple row
elements and accumulates with intermediate values generated
in E-Wise Cores. Sparsepipe includes an output vector buffer
to store partial results from the IS Core and employs a scatter
network to integrate the most recent products. Sparsepipe
writes each fully computed output vector element back to
the main memory. Similar to OS Core, IS Core configures
semiring operators specific to each application before execution,
eliminating any additional runtime overhead.

D. Control logic

The control unit in Sparsepipe targets utilizing all available
memory bandwidth beyond controlling compute resource
operations to push performance to the roofline. Figure 12 shows
Sparsepipe’s control logic that serves the following purposes:
• Regulating each OEI dataflow stage’s functional units.
• Estimating bottleneck component of Sparsepipe at each step

within the OEI dataflow.
• Managing the selection of CSC/vector sub-tensors for loading

in the forthcoming steps of the OEI dataflow.
• Determining when to load/prefetch CSR data to maximize

memory bandwidth utilization.
1) Pipeline control: The pipeline control logic generates

control signals for each datapath element in the OEI pipeline.
Figure 13 shows the concept of Sparsepipe’s pipeline control.
In Figure 13, the sub-tensor with index I represents the first
sub-tensor in the STA program’s compute order, followed by
sub-tensors with indexes I +1, I +2, and I +3, respectively.
The horizontal axis of Figure 13 represents the time as steps

Step s Step s + 1 Step s + 2

 Sub-tensor I

 Sub-tensor I + 1

 Sub-tensor I + 2

Step s + 3 Step s + 4 Step s + 5

Total bandwidth

CSC

loader

Using

bandwidth

OS core

e-wise

loader

CSC loader

e-wise

core

OS core

IS

core

e-wise

loader

CSC loader

e-wise

core

OS core

Used bandwidth

e-wise

loader

CSR

loader

e-wise

core

IS core

 Sub-tensor I + 3

CSC

loader

OS core

Compute

CSR loader

e-wise

loader

IS core

e-wise

core

matrix

consu-

med vector

produce

matrix

consu-

med vector

produce

matrix

consu-

med vector

produce

matrix

consu-

med vector

produce

Bottleneck stage

CSR

loader

Prefetch dependency Data dependency
CSR loader

Fig. 13. Runtime behavior of Sparsepipe’s pipeline and stages in OEI dataflow.

corresponding to the progress of Sparsepipe’s pipeline in
processing sub-tensors. Each sub-tensor in the pipeline will go
through four steps in the following order. (1) the CSC loader,
(2) the OS stage and e-wise data loader, (3) the e-wise stage
and CSR data loader (optional), and finally, (4) the IS stage.

Based on the sub-tensor workflow, the pipeline control sets
the operations of each core unit accordingly. For example, at
time step s+2, if the E-Wise Core dispatcher receives tasks
on sub-tensor I, then the OS Core dispatcher should receive
sub-tensor I+1, and in the meantime, loading the input vector
of element-wise operations that the pipeline will compute with
the OS output of sub-tensor I +1 before the future step s+3
arrives. Also, in step s+2, the CSC loader can start loading
sub-tensor I +2 since sub-tensor I +2 is the input for the OS
in step s+3.

Unlike OS vxm and e-wise, which operates on determinant
sub-tensor in each step of OEI dataflow, the runtime behavior of
the IS vxm can vary based on several conditions: (1) Sparsepipe
opts to load CSR data only when there’s leftover bandwidth. (2)
The IS dataflow limits its computation to element-row scatter
multiplication exclusively for the rows in the on-chip buffer.
(3) Scatter multiplication computations by the IS dataflow are
contingent upon the completion of OS vxm and e-wise.

2) Sub-tensor loading and prefetching: Sparsepipe contains
three dedicated data loaders for each OEI dataflow’s compute
stage: the CSC loader for the OS Core/stage, E-wise vector
loader for E-wise stage, and CSR loader for the IS Core/stage.
As Figure 13 depicted, these data loaders load data a step
before the step when the corresponding compute stage occurs.

If the sub-tensor has a size of T columns, the OS Core
dispatcher will load columns and vector elements with indexes
ranging from (I + 1) ∗T to (I + 2) ∗T , whereas the E-Wise
Core dispatcher loads elements of e-wise vectors with indexes
ranging from I ∗ T to (I + 1) ∗ T . On the other hand, IS
Core dispatcher, theoretically, can eagerly compute scatter
multiplication up to the s-th rows. However, to prevent
bottlenecks in the IS Core from affecting other stages and

to align with data prefetched by the CSR loader, the IS
Core conservatively fetches up to R (received from the traffic
estimator) row data in all rows along with the corresponding
vector elements.

Both the CSC and e-wise vector loaders directly receive
sub-tensor indexes from the sub-tensor dispatcher and generate
fetch commands for CSC and vector inputs, respectively. The
loader issues commands to the DRAM if a demanding portion
of the sub-tensor does not exist in on-chip buffers. For each
loaded sub-tensor, the col-row convertor flips the column and
row index from the received row/column data. With accessing
space reservation size from buffer meta data, col-row convertor
issues commands to SRAM controller and stores fetched data
to on-chip buffer.

The CSR loader receives a parameter R from the traffic
estimator, indicating the quantity of desired sub-tensor data.
As on-chip buffer stores all row data in consecutive and
ascending from each row’s first non-zero element, the CSR
loader can access all rows eligible for IS vxm computation
from the buffer. Suppose memory bandwidth saturates due to
the loading of CSC data for the OS dataflow and vector data
for E-wise operations. In that case, the IS Core will prioritize
computing scatter multiplications solely on data already fetched
or converted to CSR format. When bottlenecks arise during
the compute phase and access to the CSC and vector data
under-utilizes the available memory bandwidth, Sparsepipe
prioritizes loading CSR data to mitigate this imbalance.

Sparsepipe also prefetches CSR data heuristically. For each
row r has an index greater than the highest fully computed row
index S by the IS vxm, yet smaller than the fully computed
index E, the CSR loader decides the number of elements to
prefetch per row by considering (a) the total number of fetched
row data does not surpass R and, (b) for each row r, where
S < r < E, the CSR loader calculates P(r) = ∑

r
i=S T (i)

r , where
T (i) denotes the count of already fetched row data for row i.
This heuristic ensures that (a) the loaded row data fully utilizes
the remaining memory bandwidth, and (b) load balance of IS

vxm. The CSR loader then issues fetch commands for each row
r to retrieve consecutive data starting from the next non-zero
at col coord to col coord+P(r).

If a column in CSC space has reserved its space but a newly
converted column data is not the next non-zero element the
computation task needs, Sparsepipe discards this conversion.
Even if storing the converted column were feasible, any not-
requested data with a lower column index would lead to
separate fetches, potentially causing the CSC loader to initiate
multiple commands for non-consecutive data in the same
column, thus diminishing memory utilization efficiency.

Upon receiving a fetch command from CSC and CSR loaders,
the front-end data fetcher retrieves the data and computes a set
of vxm vector indexes by intersecting all received row idx and
row coord. It retrieves the necessary vector data from memory
and stores them in the on-chip buffer. Lastly, the e-wise vector
loader directly issues fetch commands since e-wise PEs use
all e-wise data in a single step of the dataflow.

3) Data eviction and repacking: OEI dataflow facilitates
data reuse by only storing a fraction of the input matrix
in the on-chip buffer. Sparsepipe further reduces the buffer
size required with an efficient eviction policy and a buffer
repacking mechanism. In the CSC buffer, Sparsepipe evicts
entire column data immediately after the OS Core processes
them to free up reserved space. Using sub-tensor execution
further prevents fragmentation by fetching and evicting multiple
columns concurrently.

Since IS Core operations consume each data element in
a row individually, Sparsepipe maintains additional metadata
for each stored row to monitor the total count of consumed
elements. Upon surpassing a predetermined threshold of total
consumed elements, the controller initiates a buffer repacking
process that discards fully computed sub-tensors and places
remaining sub-tensors in a contiguous CSR space.

When Sparsepipe encounters Out-Of-Memory (OOM) condi-
tions without any available repacking opportunities, Sparsepipe
adheres to the reuse patterns outlined in Figure 8, prioritizes
eviction for rows with higher row idx. The control logic will
reload the evicted row when later steps of OEI dataflow need
that row.

E. Sparse tensor preprocessing

Sparsepipe implements two offline optimizations designed
to preprocess input sparse matrices.

1) Row reorder: Sparsepipe employs row reordering to
enhance the locality of the non-zero distribution of sparse
matrices. As any converted row data may trigger CSR space
reservation, string too much unconsumable row data with high
row idx causes frequent Out-Of-Memory in the on-chip buffer,
leading to memory ping-ponging in later steps. Sparsepipe
favors fetching row data with higher row idx in later steps of
the OEI dataflow.

Like prior works optimizing the SpMSpM operation [70],
Sparsepipe utilizes the GraphOrder algorithm [61] to rearrange
rows for input data. Additionally, Sparsepipe incorporates a
straightforward vanilla reorder algorithm as an alternative,

which aims to reorder the sparse matrix towards an upper
triangular matrix with simple heuristics.

2) Blocked sparse storage: Sparsepipe also adopts blocked
sparse storage to reduce the storage overhead due to dual
sparse storage. Dual sparse storage has two main drawbacks:
(a) CSC and CSR formats use redundant data arrays (with
different orders). (b) Overhead in indexing structure as each
coordinate requires at least 4 bytes. Using the FiberTree
notation proposed in Sparseloop [65], [66], Sparsepipe uses
UOP-CP-CP format to compress dual sparse storage and reduce
storage size. Specifically, each value in the data array of CSC
and CSR points to a non-zero block of the original sparse
matrix, which offers two advantages: (a) A single byte can store
a coordinate within any block that has a size up to 256, which
saves 4× space compared with using 4-bytes coordinates; (b)
quantity of non-zero blocks is significantly less than non-zero
values, allowing CSR and CSC format to have less redundancy
by storing pointers of sprase blocks and sharing the same data
and coordinate array.

Beyond storage efficiency, blocks of non-zeros also provide
Sparsepipe performance improvements for specific input ma-
trices and applications. Leveraging these benefits, Sparsepipe
opts for blocked sparse storage. When utilizing blocked storage,
CSC and CSR loaders additionally transmit the loaded block
ID to the block loader, which then facilitates the Front-end data
fetcher in loading the required non-zero blocks. Similarly, in
the compute stage, OS and IS Core dispatchers load prefetched
non-zero blocks and unpacked row/column data that compute
cores will later use for processing.

F. Code generation and optimization

Sparsepipe leverages the nonblocking execution pattern, the
code generation, and the optimization approach similar to
ALP/GraphBLAS. However, as Sparsepipe provides hardware
support for the OEI dataflow, Sparsepipe can perform static
compilation of a tensor program instead of runtime code
generation.

The offline compilation process begins with a data depen-
dence analysis on the tensor-based program (e.g., GraphBLAS
program), separating it into sub-tensor dependence groups and
all other operation groups. For element-wise operations within
each group, Sparsepipe merges consecutive operations to exploit
inter-operator reuse and generates fixed vector instructions
for the e-wise core. Unlike the dynamic data dependency
analysis used in ALP/GraphBLAS, Sparsepipe’s OEI dataflow
enables looser conditions for fusing element-wise operations,
incurring no runtime overhead.

Based on the semi-ring operator for each application, the
compiler generates opcodes for the OS and IS core operations.
At runtime, all cores execute identical operations with preloaded
opcodes, relying on sub-tensor indexes received from the sub-
tensor dispatcher for each sub-tensor of the input matrix and
vectors. Sparsepipe can either operate on a fixed sub-tensor size
for an already optimized configuration or explore the optimal
sub-tensor size in the initial steps of the OEI dataflow.

TABLE II
MEMORY CONFIGURATION EVALUATED

Bandwidth
(GB/s)

Latency
(Read/Write)

(ns)
DRAM tech

CPU (AMD 5800X3D) 40 13.75/12.5 DDR4
GPU (NVIDIA 4070) 504 12.0/5.0 [41] GDDR6X
Sparsepipe (iso-CPU) 40 13.75/12.5 DDR4
Sparsepipe (iso-GPU) 504 12.0/5.0 GDDR6X

TABLE III
BENCHMARK STA APPLICATIONS

Algorithm vxm
Semiring

Reuse
Pattern Domain

PageRank (pr) Mul-Add

cross-
iteration,
producer-
consumer

Graph
Analytics

Kcore Decomposition (kcore) Mul-Add
Breadth First Search (bfs) And-Or

Single Source
Shortest Path (sssp)

Min-Add

Kmeans Initialisation (kpp) Aril∗-Add Clustering
K-Nearest Neighbors (knn) And-Or
Label Propagation (label) Mul-Add Machine

LearningGraph Convolutional
Neural network (gcn)

Mul-Add

Generalized Minimal
Residuals (gmres)

Mul-Add
Solver,
HPCConjugate Gradient (cg) Mul-Add producer-

consumerBiconjugate Gradients
Stabilized (bgs)

Mul-Add

*Assigns the right-hand input if the left-hand input evaluates true.

V. METHODOLOGY

This paper evaluates Sparsepipe through a custom-built
simulator and a set of STA algorithms. This section highlights
the simulated configurations and workloads.

A. Simulation framework

We developed an event-driven, cycle-accurate simulator to
assess the performance of Sparsepipe. The simulator generates
accurate cycle counts and other statistics, including memory
accesses and bandwidth utilization, by iteratively modeling
each pipeline stage of the OEI dataflow, sub-tensor fetching,
on-chip buffer management (e.g., caching, eviction), and
computation events within Sparsepipe. The memory subsystem
of our simulator models a GDDR6X memory controller [37]
and interacts with real input data. We evaluated the energy
consumption of compute units and memory components using
Cacti [39] and Accelergy [63] with the Aladdin [53] plug-
in. We also scale the dynamic energy consumption based on
factors reported in prior work [30] [37]. In this paper, we
simulate an Sparsepipe architecture with 1024 PEs for each
compute core, a 64 MB on-chip buffer, and on-device DRAM
at 504GB/s bandwidth. Table II demonstrates detailed memory
configuration of Sparsepipe, CPU, GPU. In addition to an
iso-GPU Sparsepipe configuration, we also evaluated iso-CPU
configuration of Sparsepipe with limited memory bandwidth,
discussed in Section VI-B.

B. Evaluated STA algorithms and systems

We evaluate a total of 10 applications from ALP/GraphBLAS.
Table III lists these applications, including their semiring
operations, data reuse patterns, and application domains.
Eight applications can leverage cross-iteration data reuse. We
also include two applications that benefit solely from inter-
operator data reuse to assess the performance of Sparsepipe on
applications without OEI dataflows. 4 out of 10 applications
employ graph analytics algorithms, while the remaining six
power scientific computing and machine learning applications.

To thoroughly investigate the performance across all appli-
cations, we selected all nine representative sparse matrices,
each with unique row/column size, sparsity, and non-zero
distributions. Table I provides the list of these datasets.

We compare the performance of Sparsepipe with two base-
lines. (1) CPU baseline with large on-chip memory. We run the
same workloads and datasets and collect performance counter
numbers from a machine with AMD 5800X3D CPU, featuring
a 96 MB 3D stacked V-cache and 128GB of dual-channel
DDR4 main memory with measured memory bandwidth at 44
GB/s. (2) An idealized sparse accelerator (baseline) that utilizes
the same compute and memory bandwidth as Sparsepipe, but
does not exploit inter-operator data reuse. This idealized
sparse accelerator always has the throughput as its roofline,
representing the upper bound of prior sparse accelerators. Ad-
ditionally, we chose bfs, kcore, pr, sssp to compare
Sparsepipe’s performance against an NVIDIA 4070 GPU with
GDDR6X memory bandwidth at 504 GB/s.

VI. EXPERIMENTAL RESULT

A. Performance over an idealized sparse accelerator

Sparsepipe (iso-GPU) achieves up to 3.59 × in end-to-end
latency over the baseline accelerator across all benchmark
applications. For applications with OEI dataflow presented,
Sparsepipe achieves a geometric mean speedup ranging from
1.21× to 2.62×. Figure 14 detailed the speedup of end-to-end
latency in each application.

Despite the baseline accelerator in Figure 14 always deliver-
ing performance at the roofline of STA operations, the baseline
does not exploit inter-operator data reuse nor data reuse in OEI
dataflow. Even for applications without OEI dataflow (i.e., cg
and bgs), Sparsepipe can still exploit producer-consumer reuse
and achieve the same level speedup as the baseline accelerator,
ranging from 0.75× to 1.20×.

Figure 15 explains Sparsepipe’s performance by showing
the memory bandwidth breakdown in each phase of execution
using four representative workloads. Figure 15 (a) demonstrates
a well-performing case of running sssp with the input
matrix bu. With evenly distributed non-zero elements, all three
Sparsepipe’s OEI pipeline stages can maintain high memory
bandwidth utilization, achieving a 2.9× speedup compared
to the baseline accelerator. Additionally, Sparsepipe actively
reclaims unused bandwidth to load CSR data during the IS

pr kcore bfs sssp kpp knn gmres label gcn
 producer-consumer + cross-iteration

1

2

3

Sp
ee

du
p

ov
er

ba
se

lin
e

ac
ce

le
ra

to
r

ca gy g2 co bu wi ad ro eu

gmean cg bgs
 producer-consumer only

gmean gmean

Fig. 14. Speedup of Sparsepipe over baseline accelerator. 4 highlighted bars with colored edges, kcore-eu, sssp-bu, sssp-wi, knn-eu, are representative
benchmarks discussed in Figure 15 with corresponding highlighted color.

(a) bu-sssp, speedup: 2.9x
0%

25%
50%
75%

100%

OS stage traffic e-wise stage traffic IS stage traffic Remaining bandwidth

(b) eu-knn, speedup: 1.6x (c) eu-kcore, speedup: 1.2x (d) wi-sssp, speedup: 1.2x

Ba
nd

w
id

th
ut

iliz
at

io
n

Fig. 15. Highlighted memory bandwidth utilization during Sparsepipe execution. Each bar represents the sampled utilization at every 4% interval of the
simulation. The leftmost bar corresponds to the first sample step of the OEI dataflow, and the rightmost bar represents the final sampled step.

pr kcore bfs sssp kpp knn gmres label gcn cg bgs
Algorithm

0.01

0.1

1

10

100

1000

Sp
ee

du
p

ov
er

C
PU

ca gy g2 co bu wi ad ro eu

gmean

Sparsepipe (iso-CPU) Sparsepipe (iso-GPU)

Fig. 16. Speedup of Sparsepipe over CPU implementation of STA algorithms.

stage, improving performance when processing our largest
input matrix eu, as shown in Figure 15 (b).

Two cases could make Sparsepipe less effective. The first
case is when the workload is more compute-intensive. Figure 15
(c) depicts Sparsepipe’s utilization when executing the relative
compute-intensive kcore, containing many e-wise opera-
tions. Using the largest input matrix eu requires processing all
e-wise operations on very large vectors. While Sparsepipe
makes every effort to fetch CSR data and utilize unused memory
bandwidth, the limited buffer size and long compute latency
result in low bandwidth utilization for most steps. Consequently,
executing large input matrices yields fewer benefits from the

OEI dataflow, resulting in only a 1.18× speedup.

The uneven distribution of non-zero values in sparse matrices
is the other case that can make Sparsepipe less effective.
Figure 15 (d) illustrates running sssp with the matrix wi,
which exhibits a skewed distribution of non-zero values even
after row reordering. Due to the minimal CSC data fetched
in the early steps of the OEI dataflow, even with CSR data
fetching to maintain high memory bandwidth, the limited on-
chip buffer space and heavy CSC data traffic cause memory
ping-ponging in later steps. This sparsity characteristic of the
matrix wi leads to lower performance across all algorithms.

ca gy g2 co bu w
i

ad ro eu

Matrix

1

2

4

8

16
Sp

ee
du

p
ov

er
 G

PU

bf
s

kc
or

e pr

ss
sp

Algorithm

gm
ea

n

Fig. 17. Speedup of Sparsepipe over GPU implementation, each bar shows
geometric mean of speedup.

B. Performance over CPU and GPU implementations

Figure 16 compares Sparsepipe with implementations using
ALP/GraphBLAS running on a multicore CPU-based STA
framework. The CPU implementations exploit non-blocking
execution patterns for producer-consumer data reuse. In con-
trast, Sparsepipe benefits from both OEI dataflow and a higher
memory bandwidth utilization. Excluding graph convolution
neural networks (GCN), where Sparsepipe also benefits from
dp4a-like instructions, Sparsepipe (iso-GPU) achieves up to
a 164.84× speedup. Across all applications and matrices,
Sparsepipe performs 12.20× to 35.14× better, surpassing the
theoretical benefit ratio of 12.6× on system configuration
with higher memory bandwidth. Sparsepipe (iso-CPU) with
identical memory bandwidth can still bring 1.31× to 3.57×
speedup compare to CPU framework, which demonstrates pure
advantages of OEI dataflow by exploting cross-iteration data
reuse.

While our focus primarily lies in presenting evaluation
results compared to accelerator-based approaches, we also
chose the four algorithms as a representative benchmark to
study Sparsepipe’s advantages over GPUs. We utilized the
implementation from GraphBLAST [67] and Gunrock [60],
GPU-based STA frameworks. As Figure 17 (a) demonstrates,
Sparsepipe achieves a geometric mean of 4.65× speedup across
all matrices.

C. Effectiveness in exploiting cross-iteration data reuse

To evaluate the effectiveness of Sparsepipe in exploiting
cross-iteration and OEI dataflow data reuse opportunities,
we modeled an oracle STA accelerator that assumes that all
elements of the input sparse matrix are always ready when
reuse opportunities across iterations present, fully exploiting all
inter-operator data reuse opportunities irrespective of on-chip
buffer size. Such an oracle accelerator presents the theoretical
performance upper limit for STA applications. As shown in
Figure 18, on average, Sparsepipe achieves 66.78% of the
oracle accelerator’s performance, utilizing only a 64MB on-
chip buffer to process sparse matrices as large as 1.3GB (with
64-bit datatype).

Benchmark results sorted by speedup of
idealized accelerator with oracle inter-operator data reuse

1

3

5

Sp
ee

du
p

ov
er

ba
se

lin
e

ac
ce

le
ra

to
r

baseline accelerator
Accelerator with oracle inter-operator data reuse

Sparsepipe

Fig. 18. The performance of Sparsepipe compared with an accelerator with
perfect inter-operator reuse.

pr

kc
or

e

bf
s

ss
sp kp
p

kn
n

gm
re

s

la
be

l

gc
n cg bg
s

Algorithm

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 b
as

el
in

e

none blocked reorder blocked + reorder

gm
ea

n

Fig. 19. Sensitivity study for the benefit of data optimization.

D. Impact of sparse tensor preprocessing

The accelerator architecture of Sparsepipe presents a skeleton
of STA accelerators. Without any optimization, Figure 19
shows that Sparsepipe can still achieve 1.37× speedup over
the baseline accelerator.

Encoding data using the blocked sparse format can help
Sparsepipe to improve performance by up to 1.12×. Em-
ploying solely the optimal row reorder technique slightly
boosts Sparsepipe’s performance from 1.01× to 1.03×. With
both optimizations increasing the locality of non-zero values,
Sparsepipe can have a more efficient data access pattern during
the OS-wise-IS dataflow, leading to 1.05× to 1.34× speedup
from the Sparsepipe without data optimizations.

Using the blocked sparse format reduces the size of the dual
sparse storage of input matrices. Figure 20 (a) illustrates the
storage benefits of the blocked dual sparse format. Regardless
of the reorder technique employed, blocked formats enhance
the storage efficiency of dual storage, decreasing the storage
requirements to 39.2% of the non-blocked dual-storage format.

E. Memory bandwidth utilization in Sparsepipe

Sparsepipe can effectively use available memory bandwidth
for bandwidth-sensitive STA applications. Figure 21 shows that

original gorder vanilla
Row reorder

0.5

1.0

R
el

at
iv

e
st

or
ag

e
si

ze
dual-storage
blocked dual-storage

(a)

CPU GPU Sparsepi
pe

Architecture

0

2

4

6

8

10

R
el
at
iv
e

Pe
rf/
Ar
ea

(b)

Fig. 20. (a) Storage improvement of blocked format. (b) Relative performance-
per-area comparision normalized to CPU.

pr
kc

or
e

bf
s

ss
sp kp
p

kn
n

gm
re

s
la

be
l

gc
n cg bg
s

Algorithm

0%

25%

50%

75%

100%

M
em

or
y

Ba
nd

w
id

th
ut

iliz
at

io
n

gm
ea

n ca gy g2 co bu w
i ro eu ad

Matrix

gm
ea

n

Fig. 21. Bandwidth utilization of Sparsepipe, geometric mean across algorithms
and sparse matrices.

Sparsepipe maintains 82.93% memory bandwidth utilization.
When considering only naturally memory-bound applications
(excluding gmres and gcn), Sparsepipe efficiently utilized a
geometric mean of 92.94% of system memory bandwidth.
Figure 22 illustrates the memory bandwidth utilization of
CPU and GPU frameworks, Sparsepipe demonstrates superior
utilization of available bandwidth across all matrices. Despite
multiple cache levels reducing memory traffic benefits CPU
and GPU frameworks to exhibit lower bandwidth utilization
for smaller input matrices, when processing large matrices,
these frameworks do not leverage the benefits of OEI dataflow,
requiring repetitive loading of the input matrix without data
reuse. Consequently, this prevents the translation of high
memory bandwidth utilization into actual performance gains.

F. Energy savings with Sparsepipe

The primary advantage of Sparsepipe lies in reducing the
memory traffic of STA applications through cross-iteration
data reuse. Since memory operations dominate the energy
consumption for a significant portion of the selected STA
applications, Sparsepipe achieves a significant energy saving.
It reduces energy consumption by an average of 54.98%
across all applications compared with the baseline accelerator.
Specifically, Sparsepipe saves 50.32% of energy on memory
operations and 39.45% on cache/on-chip buffer operations.

G. Area Efficiency of Sparsepipe

Under the identical hardware configurations as our perfor-
mance simulation, the Sparsepipe architecture resembles the

ca gy g2 co bu w
i

ad ro eu

Matrix (CPU)

0%

25%

50%

75%

100%

M
em

or
y

Ba
nd

w
id

th
ut

iliz
at

io
n

gm
ea

n ca gy g2 co bu w
i

ad ro eu

Matrix (GPU) gm
ea

n

Fig. 22. Bandwidth utilization of STA application on CPU and GPU, geometric
mean across sparse matrices.

pr

kc
or
e

bf
s

ss
sp kp
p

kn
n

gm
re
s

la
be
l

gc
n cg bg
s

Algorithm

0.00

0.25

0.50

0.75

1.00

En
er
gy

C
on
su
m
pt
io
n

compute memory cache

Baseline SparsepipeBaseline Sparsepipe

av
er
ag
e

Fig. 23. Relative energy consumption of Sparsepipe separating compute,
memory, and cache operations.

size of a consumer-grade, mid-tier GPU but with significantly
better area efficiency than GPUs for STA. We estimated
Sparsepipe’s area from the RTL code and synthesized with the
Synopsys Design Compiler using the 45 nm technology library.
By scaling the design to the TSMC N5 process, Sparsepipe
takes 253.95 mm2, close to the 294 mm2 die size of an RTX
4070 GPU. The on-chip buffer contributes 78% of the chip
area.

Figure 20 (b) plots the average relative performance-per-area
comparison across all architectures running STA applications.
Sparsepipe occupies 253.95 mm2 and achieves a 5.38×
improvement in relative performance per area over the GPU,
and a 9.84× improvement over the CPU.

VII. RELATED WORK

In proposing the OEI dataflow and the microarchitecture,
Sparsepipe exploits inter-operator reuse and complements prior
work in 1) STA system software, 2) hardware accelerators for
STA, and 3) techniques for inter-operator reuse.
Sparse tensor algebra framework and compiler. Our
proposed OEI dataflow can optimize existing STA compiler
frameworks that share the same front-end tensor programming
models, including Sparse MLIR [11], TACO [15], [35], and
COMET [29], [40], [58]. These compilers can generate
software-only implementations that exploit OEI dataflow across
CPU/GPUs. However, without Sparsepipe architecture, the

software-only optimization will incur buffer and work man-
agement overhead. The proposed OEI dataflow also applies to
Sparse Abstract Machine [26]’s Einsum-based programming
model to generate more efficient hardware accelerators for
STA.
Sparse dataflows and accelerators. Prior sparse tensor accel-
erators focused on intra-operator reuse for SpMSpM, including
DRT [42], OuterSPACE [44], SpArch [72], MatRaptor [55],
ExTensor [25], Gamma [70], HSS [64], and RM-STC [27].
Sparsepipe complements prior accelerators in exploring inter-
operator reuse. Prior sparse accelerators also propose more
generic, reconfigurable pipelines, including ALRESCHA [7],
SMASH [31], Flexagon [38], SIGMA [49], Symphony [46],
and MAERI [36] and efficient storage formats [48] to accelerate
STA. While prior accelerators target intra-operator optimiza-
tions, Sparsepipe’s OEI dataflow can help prior work exploiting
inter-operator optimizations.
Exploiting inter-operator reuse. Sparsepipe targets STA in-
stead of dense tensor algebra as prior work in DNNs intensively
investigated exploiting producer-consumer data reuse in dense
tensor algebra and proposed special dataflows to optimize
for producer-consumer reuse. Examples include FLAT [32]
for the multi-head attention kernel in Transformers, Fused-
Layer CNN Accelerators [3] for CNNs and Pipelayer [54],
TANGRAM [20], ARCHON [43], and Atomic dataflow [73],
for producer-consumer reuse across spatial hardware units.
As optimizing for fusion requires an extensive design space
search, prior work explored tools and modeling techniques for
fusion. Convfusion [59], DNNFuser [33], MultiFuse [13], and
Stream [57] provide optimization tools to search for the best
fusion decisions automatically. SET [12] and LoopTree [23]
propose polyhedral abstraction to reason about fusion decisions
more effectively.

Very recent research started the awareness of producer-
consumer reuse for a specific STA domain, including ISOSce-
les [68] for sparse CNNs, GOGETA [21] for Conjugate
Gradient (CG) in HPC, and [22] in exploiting pipeline
dataflows for GNNs. Sparsepipe supports a wide range of
STA applications beyond existing work and exploits cross-
iteration reuse, a new type of data reuse. Zhuang and Casas
[74] presents iteration-fusing techniques for pipelined CG,
enabling computation overlapping and improving concurrency.
Nonetheless, without Sparsepipe’s explicit buffer control and
the OEI dataflow, prior work cannot capture all data reuse
opportunities to address the most critical bottleneck in STA.

VIII. CONCLUSION

As computer architects seek performance scaling with
new process technologies through hardware accelerators and
software developers demand efficient and more descriptive
programming frameworks, the evolution of being “domain-
specific” is clearly the future for architecture and software
design. Compared to conventional programming paradigms and
hardware/software interfaces at the scalar/vector instructions
level, domain-specific languages/interfaces make the high-
level architecture of applications more visible to compilers

and hardware. Therefore, the rapid adoption of domain-
specific designs opens up new opportunities for performance
optimizations that prior work cannot easily exploit.

This paper identifies and exploits two inter-operator reuse
opportunities that domain-specific languages polish in sparse
dataflow graphs: consumer-producer reuse and cross-iteration
reuse, to reduce data movement, maximize data reuse, and
accelerate STA applications. In contrast, prior work exploits
solely intra-operator reuse due to the limitation of conventional
paradigms. We propose the OEI dataflow to capture inter-
operator reuse and the Sparsepipe architecture to support the
OEI dataflow with limited buffer space. The evaluation shows
Sparsepipe’s superior performance, energy, and area efficiency
over CPUs/GPUs and state-of-the-art accelerators.

Beyond our specific Sparsepipe implementation, the pro-
posed OEI dataflow opens up other possibilities to improve STA
applications. For example, how to implement the OEI dataflow
on general-purpose hardware (e.g., GPGPU), and design the
extra hardware support to facilitate the buffer management
and synchronization across stages? How can we leverage the
modern compiler framework [4] for tensor applications to
automatically find applications with cross-iteration reuse and
accelerate them with the OEI dataflow? Can the same concept
of Sparsepipe apply to other application domains besides STA?
We leave these exciting new avenues to future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was sponsored by two
National Science Foundation (NSF) awards, CNS-2007124 and
CNS-2231877. This work was also supported by new faculty
start-up funds from University of California, Riverside.

REFERENCES

[1] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/,
2004.

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer CNN Accelerators. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[4] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni
Burovski, et al. Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2024.

[5] Arvind and David E Culler. Dataflow architectures. Annual review of
computer science, pages 225–253, 1986.

[6] Arvind and Rishiyur S Nikhil. Executing a program on the mit tagged-
token dataflow architecture. IEEE Transactions on Computers, 39(3):300–
318, 1990.

http://www.netlib.org/blas/

[7] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and
Sudhakar Yalamanchili. ALRESCHA: A Lightweight Reconfigurable
Sparse-Computation Accelerator. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2020.

[8] Vignesh Balaji, Neal Crago, Aamer Jaleel, and Brandon Lucia. P-opt:
Practical Optimal Cache Replacement for Graph Analytics. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021.

[9] Vignesh Balaji, Neal C Crago, Aamer Jaleel, and Stephen W Keck-
ler. Community-based Matrix Reordering for Sparse Linear Algebra
Optimization. In 2023 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2023.

[10] Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta. Cellss:
a programming model for the cell be architecture. In 2006 ACM/IEEE
Conference on Supercomputing (CS), 2006.

[11] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache,
Bixia Zheng, and Fredrik Kjolstad. Compiler Support for Sparse Tensor
Computations in MLIR. ACM Trans. Archit. Code Optim., 19(4), 2022.

[12] Jingwei Cai, Yuchen Wei, Zuotong Wu, Sen Peng, and Kaisheng
Ma. Inter-layer Scheduling Space Definition and Exploration for Tiled
Accelerators. In the 50th Annual International Symposium on Computer
Architecture (ISCA), 2023.

[13] Chia-Wei Chang, Jing-Jia Liou, Chih-Tsun Huang, Wei-Chung Hsu,
and Juin-Ming Lu. MultiFuse: Efficient Cross Layer Fusion for DNN
Accelerators with Multi-level Memory Hierarchy. In 2023 IEEE 41st
International Conference on Computer Design (ICCD), 2023.

[14] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
In the 43rd Annual International Symposium on Computer Architecture
(ISCA), 2016.

[15] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format
Abstraction for Sparse Tensor Algebra Compilers. Proc. ACM Program.
Lang., 2(OOPSLA), 2018.

[16] Timothy A Davis. Algorithm 1000: SuiteSparse: GraphBLAS: Graph
algorithms in the language of sparse linear algebra. ACM Transactions
on Mathematical Software (TOMS), 45(4):1–25, 2019.

[17] Jack B Dennis. Data flow supercomputers. Computer, 13(11):48–56,
1980.

[18] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M
Badia, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Task
superscalar: An out-of-order task pipeline. In the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2010.

[19] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang
Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and Tianqi
Chen. TensorIR: An Abstraction for Automatic Tensorized Program
Optimization. In the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023.

[20] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. In the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[21] Raveesh Garg, Michael Pellauer, Sivasankaran Rajamanickam, and Tushar
Krishna. Exploiting Inter-Operation Data Reuse in Scientific Applications
using GOGETA. arXiv preprint arXiv:2303.11499, 2023.

[22] Raveesh Garg, Eric Qin, Francisco Muñoz-Matrı́nez, Robert Guirado,
Akshay Jain, Sergi Abadal, José L. Abellán, Manuel E. Acacio, Eduard
Alarcón, Sivasankaran Rajamanickam, and Tushar Krishna. Understand-
ing the Design-Space of Sparse/Dense Multiphase GNN dataflows on
Spatial Accelerators. In 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2022.

[23] Michael Gilbert, Yannan Nellie Wu, Angshuman Parashar, Vivienne
Sze, and Joel S. Emer. LoopTree: Enabling Exploration of Fused-layer
Dataflow Accelerators. In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2023.

[24] Gagan Gupta and Gurindar S Sohi. Dataflow execution of sequential
imperative programs on multicore architectures. In the 44th annual
IEEE/ACM international symposium on Microarchitecture (ISCA), 2011.

[25] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher.
ExTensor: An accelerator for sparse tensor algebra. In the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[26] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle
Olukotun, Joel S. Emer, Mark A. Horowitz, and Fredrik Kjølstad. The
Sparse Abstract Machine. In the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems(ASPLOS), 2023.

[27] Guyue Huang, Zhengyang Wang, Po-An Tsai, Chen Zhang, Yufei Ding,
and Yuan Xie. Rm-stc: Row-merge dataflow inspired gpu sparse tensor
core for energy-efficient sparse acceleration. In 56th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2023.

[28] Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan.
PyTorch. Programming with TensorFlow: Solution for Edge Computing
Applications, pages 87–104, 2021.

[29] Geonhwa Jeong, Gokcen Kestor, Prasanth Chatarasi, Angshuman
Parashar, Po-An Tsai, Sivasankaran Rajamanickam, Roberto Gioiosa,
and Tushar Krishna. Union: A unified hw-sw co-design ecosystem in
mlir for evaluating tensor operations on spatial accelerators. In the
30th International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2021.

[30] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter
Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff
Young, Zongwei Zhou, and David Patterson. Ten Lessons From Three
Generations Shaped Google’s TPUv4i : Industrial Product. In the 48th
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), 2021.

[31] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula,
Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha
Shahroodi, Juan Gomez Luna, and Onur Mutlu. SMASH: Co-designing
Software Compression and Hardware-Accelerated Indexing for Efficient
Sparse Matrix Operations. In the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019.

[32] Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yaz-
danbakhsh, and Tushar Krishna. FLAT: An Optimized Dataflow for
Mitigating Attention Bottlenecks. In 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2023.

[33] Kao, Sheng-Chun and Huang, Xiaoyu and Krishna, Tushar. DNNFuser:
Generative pre-trained transformer as a generalized mapper for layer
fusion in dnn accelerators. arXiv preprint arXiv:2201.11218, 2022.

[34] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, et al. Mathematical Foundations of
the GraphBLAS. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), 2016.

[35] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. The Tensor Algebra Compiler. Proc. ACM Program. Lang.,
(OOPSLA), 2017.

[36] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI:
Enabling Flexible Dataflow Mapping over DNN Accelerators via
Reconfigurable Interconnects. In the 23rd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[37] Micron. Gddr6x memory. https://www.micron.com/products/memory/
hbm/gddr6x. [Accessed 22-06-2024].

[38] Francisco Muñoz Martı́nez, Raveesh Garg, Michael Pellauer, José L.
Abellán, Manuel E. Acacio, and Tushar Krishna. Flexagon: A Multi-
dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient
DNN Processing. In the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2023.

[39] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi.
Optimizing NUCA Organizations and Wiring alternatives for Large
Caches with CACTI 6.0. In the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2007.

[40] Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto
Gioiosa, Jacques Pienaar, and Gokcen Kestor. Comet: A Domain-
specific Compilation of High-performance Computational Chemistry.
In International Workshop on Languages and Compilers for Parallel
Computing, 2020.

[41] Mike O’Connor, Donghyuk Lee, Niladrish Chatterjee, Michael B.
Sullivan, and Stephen W. Keckler. Saving pam4 bus energy with smores:
Sparse multi-level opportunistic restricted encodings. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2022.

https://www.micron.com/products/memory/hbm/gddr6x
https://www.micron.com/products/memory/hbm/gddr6x

[42] Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer,
Kartik Hegde, Po-An Tsai, Neal C. Crago, Aamer Jaleel, John D.
Owens, Edgar Solomonik, Joel S. Emer, and Christopher W. Fletcher.
Accelerating Sparse Data Orchestration via Dynamic Reflexive Tiling.
In the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2023.

[43] MohammadHossein Olyaiy, Christopher Ng, and Mieszko Lis. Accelerat-
ing DNNs Inference with Predictive Layer Fusion. In ACM International
Conference on Supercomputing (ICS), 2021.

[44] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath,
Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor
Mudge, and Ronald Dreslinski. OuterSPACE: An Outer Product Based
Sparse Matrix Multiplication Accelerator. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[45] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W
Keckler, and William J Dally. SCNN: An Accelerator for Compressed-
sparse Convolutional Neural Networks. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017.

[46] Michael Pellauer, Jason Clemons, Vignesh Balaji, Neal Crago, Aamer
Jaleel, Donghyuk Lee, Mike O’Connor, Angshuman Parashar, Sean
Treichler, Po-An Tsai, Stephen W. Keckler, and Joel S. Emer. Symphony:
Orchestrating Sparse and Dense Tensors with Hierarchical Heterogeneous
Processing. ACM Trans. Comput. Syst., 41(1–4), dec 2023.

[47] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik
Hegde, Rangharajan Venkatesan, Stephen W Keckler, Christopher W
Fletcher, and Joel Emer. Buffets: An Efficient and Composable
Storage Idiom for Explicit Decoupled Data Orchestration. In the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[48] Eric Qin, Geonhwa Jeong, William Won, Sheng-Chun Kao, Hy-
oukjun Kwon, Sudarshan Srinivasan, Dipankar Das, Gordon E. Moon,
Sivasankaran Rajamanickam, and Tushar Krishna. Extending Sparse
Tensor Accelerators to Support Multiple Compression Formats. In
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021.

[49] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan
Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. SIGMA:
A Sparse and Irregular GEMM Accelerator with Flexible Interconnects
for DNN Training. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[50] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. Acm Sigplan Notices, 48(6), 2013.

[51] Amit Sabne. XLA : Compiling Machine Learning for Peak Performance,
2020.

[52] Shuichi Sakai, Y Yamaguchi, Kei Hiraki, Yuetsu Kodama, and Toshitsugu
Yuba. An architecture of a dataflow single chip processor. ACM SIGARCH
Computer Architecture News, 17(3):46–53, 1989.

[53] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In the 41st
International Symposium on Computer Architecture (ISCA), 2014.

[54] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. PipeLayer: A
Pipelined ReRAM-Based Accelerator for Deep Learning. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017.

[55] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-
wise product. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2020.

[56] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.
[58] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. A

High Performance Sparse Tensor Algebra Compiler in MLIR. In 2021
IEEE/ACM 7th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), 2021.

Wavescalar. In the 36th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2003.

[57] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Verhelst.
Stream: A Modeling Framework for Fine-grained Layer Fusion on Multi-
core DNN Accelerators. In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2023.

[59] Luc Waeijen, Savvas Sioutas, Maurice Peemen, Menno Lindwer, and
Henk Corporaal. ConvFusion: A Model for Layer Fusion in Convolutional
Neural Networks. IEEE Access, 9, 2021.

[60] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. Gunrock: A high-performance graph
processing library on the gpu. In the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2016.

[61] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup Graph
Processing by Graph Ordering. In 2016 International Conference on
Management of Data (SIGMOD), 2016.

[62] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An Insightful Visual Performance Model for Multicore Architectures.
Communications of the ACM, 52(4):65–76, 2009.

[63] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy:
An Architecture-level Energy Estimation Methodology for Accelerator
Designs. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2019.

[64] Yannan Nellie Wu, Po-An Tsai, Saurav Muralidharan, Angshuman
Parashar, Vivienne Sze, and Joel Emer. Highlight: Efficient and flexible
dnn acceleration with hierarchical structured sparsity. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2023.

[65] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze,
and Joel S Emer. Sparseloop: An analytical, energy-focused design
space exploration methodology for sparse tensor accelerators. In 2021
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2021.

[66] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and
Joel S. Emer. Sparseloop: An Analytical Approach To Sparse Tensor
Accelerator Modeling. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022.

[67] Carl Yang, Aydin Buluç, and John D. Owens. GraphBLAST: A high-
performance linear algebra-based graph framework on the GPU. CoRR,
abs/1908.01407, 2019.

[68] Yifan Yang, Joel Emer, and Daniel Sanchez. ISOSceles: Accelerating
Sparse CNNs through Inter-Layer Pipelining. In the 29th international
symposium on High Performance Computer Architecture (HPCA), 2023.

[69] A. N. Yzelman, D. Di Nardo, J. M. Nash, and W. J. Suijlen. A
C++ GraphBLAS: specification, implementation, parallelisation, and
evaluation. Preprint, 2020.

[70] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez.
Gamma: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix
Multiplication. In the 26th international conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2021.

[71] Yunan Zhang, Po-An Tsai, and Hung-Wei Tseng. SIMD2: A Generalized
Matrix Instruction Set for Accelerating Tensor Computation beyond
GEMM. In the 49th Annual International Symposium on Computer
Architecture (ISCA), 2022.

[72] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. SpArch:
Efficient Architecture for Sparse Matrix Multiplication. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020.

[73] Shixuan Zheng, Xianjue Zhang, Leibo Liu, Shaojun Wei, and Shouyi
Yin. Atomic Dataflow based Graph-Level Workload Orchestration for
Scalable DNN Accelerators. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2022.

[74] Sicong Zhuang and Marc Casas. Iteration-fusing conjugate gradient. In
2017 International Conference on Supercomputing (ICS), 2017.

	Introduction
	Background and Challenges
	STA applications as tensor dataflow graphs
	Architectural support to accelerate STA applications
	Sparsepipe v.s. Dataflow architectures

	Exploiting cross-iteration data reuse
	Abstracting sparse algorithms
	OEI dataflow

	Sparse Inter-operator Dataflow Architecture
	Overview of Sparsepipe
	Dual sparse storage
	The OEI compute pipeline
	OS Core
	E-Wise Core
	IS Core

	Control logic
	Pipeline control
	Sub-tensor loading and prefetching
	Data eviction and repacking

	Sparse tensor preprocessing
	Row reorder
	Blocked sparse storage

	Code generation and optimization

	Methodology
	Simulation framework
	Evaluated STA algorithms and systems

	Experimental Result
	Performance over an idealized sparse accelerator
	Performance over CPU and GPU implementations
	Effectiveness in exploiting cross-iteration data reuse
	Impact of sparse tensor preprocessing
	Memory bandwidth utilization in Sparsepipe
	Energy savings with Sparsepipe
	Area Efficiency of Sparsepipe

	Related Work
	Conclusion
	References

