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Abstract—Tree traversal is a fundamental operation in many
applications, such as database indexing and physics simula-
tions. Although tree traversals feature high parallelism, they
are inherently divergent and irregular, leading to inefficient
performance on GPUs. Tree traversals are also prevalent in ray
tracing, which is executed on dedicated Ray-Tracing Accelerators
(RTAs) in modern GPUs to mitigate inefficiencies such as control
flow divergence and underutilization of memory bandwidth by
irregular memory accesses. In this paper, we propose the Tree
Traversal Accelerator (TTA) to replicate the success of RTAs
in ray tracing for general tree traversal applications. TTAs
extend RTAs to support tree structures and operations beyond
those in ray tracing, such as B-Tree search and radius search
algorithms, by modifying existing computing units. Despite TTAs’
effectiveness, they still rely on fixed-function computations, making
it challenging to support other tree-based applications such as N-
Body simulation fully. Thus, we introduce TTA+ as an alternative
design, which modularizes the RTA computing units and makes
them programmable, trading some efficiency for flexibility. With
less than 1% increase in RTA area, our proposals can achieve up
to 5.4x speedup for B-Tree search, 1.7x for N-Body simulation,
and 1.2x for select ray-tracing applications.

Index Terms—GPU, Accelerator, Tree Traversal

I. INTRODUCTION

Tree data structures are used to efficiently organize and
search data across a variety of domains and are increasingly
important in our data-driven world. These structures are
particularly prevalent in web indexing, databases, data mining,
and file systems, where B-Trees [82], B+Trees [17], and R-
Trees [27] are used to index data for fast retrieval. Database
queries feature high parallelism [55], motivating the Niagara
system [68] and making them an excellent candidate for
execution on the massively parallel Graphics Processing Unit
(GPU). However, tree-based indexing is inherently irregular and
divergent, which leads to inefficient performance on modern
GPUs [7], [96].
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Fig. 1: SIMT efficiency and DRAM bandwidth utilization of
tree traversal applications on GPUs with and without TTAs.

GPUs were originally designed to accelerate graphics ren-
dering, but their adaptation of specialized hardware for diverse
domains makes them dominant parallel processing devices. For
example, GPUs accelerate general-purpose operations using
CUDA Cores [50], AI/ML applications using matrix multi-
plication units [69], ray tracing pipelines using Ray Tracing
Accelerators (RTAs) [1], [39], [71], and dynamic programming
using DPX instructions [15]. GPUs are a desirable platform
for tree-based applications because of their high memory
bandwidth and position as a widely available commodity
hardware option. As such, our goal is to improve existing
GPU architecture to better support tree-based applications.

Graphs are a generalization of trees, and graph-processing
accelerators are a popular solution for accelerating similar
workloads that are memory-bound and irregular [18], [28], [67],
[79], [101], [106]. Although these accelerators would be able
to support tree traversals, they are often designed for specific
graph processing algorithms and lack the broad support and
ecosystem of GPUs. For example, graph accelerators cannot
support a ray tracing application even though the underlying
algorithm in the application is a tree traversal. Other accelerator
cores on the GPU, such as Tensor Cores [42], may be useful for
database queries [36], but can only handle regular workloads
with predictable structures.

Algorithmic modification makes GPUs successful at ac-
celerating tree traversal applications such as database index-
ing [7], [8], [84], [102]. However, there are still significant



inefficiencies caused by control flow and memory divergence,
which are poorly handled by the Single-Instruction, Multiple-
Thread (SIMT) execution model of GPUs. RTAs in GPUs are
designed to mitigate these inefficiencies, and RTIndeX [34] and
RTNN [105] have shown that RTAs can be adapted to support
general-purpose tasks. However, adapting RTAs in software is
non-trivial and requires significant performance overhead to
manipulate target applications to fit the rigid RTA pipeline.

Figure 1 shows the average SIMT efficiency (percent of
active threads per warp due to control flow divergence) and
DRAM bandwidth utilization of several tree traversal applica-
tions on GPUs, profiled on an NVIDIA RTX 2080 Ti GPU and
also measured using Vulkan-Sim [83] with configurations listed
in Table II. SIMT efficiency and DRAM bandwidth utilization
are low for these applications, indicating that the GPU is
not being used efficiently. The difference in SIMT efficiency
and DRAM bandwidth utilization between the physical GPU
and Vulkan-Sim is due to different hardware configurations,
highlighting that these issues persist across different GPUs.
Although N-Body exhibits high SIMT efficiency, a single metric
cannot directly map to the end-to-end performance. N-Body
still suffers from low DRAM bandwidth utilization, implying an
opportunity for performance improvement as we demonstrate
in our evaluations (Figure 12).

As depicted by the rightmost bars in the figure, RTAs
have been successful in addressing these inefficiencies for
ray tracing applications but do not support other tree traversal
applications. In order to achieve efficient execution of other
tree traversal applications on a commodity hardware platform,
we propose to augment the already existing RTAs in GPUs by
introducing a modicum of programmability to balance between
efficiency and flexibility. Studies have shown that domain-
specific accelerators are more efficient than general-purpose
cores [29] and mixing fixed-function and programmable units
can provide the best of both worlds [46]. RTAs also benefit
from the captive computer graphics market, which has been a
strong driver of their development and adoption.

Based on these observations, we introduce an innovative Tree
Traversal Accelerator (TTA) that extends the existing RTAs to
support tree traversal applications. TTA allows programmers to
handle more diverse tree structures by redesigning the frontend
of the RTAs. To support more traversal algorithms beyond
ray tracing, TTA exploits the observation that many frequently
used traversal algorithms rely on computations that are subsets
of the baseline RTA function units. Thus, TTA modifies the
existing function units in the ray-tracing pipeline. Moreover,
to further broaden the versatility of TTA, we introduce an
additional TTA+ design that features modular components.
TTA+ decomposes the operations within the intersection test
into individual operation units (OP units) connected via an
interconnect.

We evaluate both designs for their impact on several
representative tree traversal applications including B-Trees,
B*Trees, and B+Trees, and N-Body simulation and show that
TTAs can achieve a geometric average of 2.4x speedup for
B-Tree variants and 1.2x speedup for N-Body simulation with
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Fig. 2: Abstraction of the tree traversal algorithm
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only 0.7% area overhead. We observe that the performance
improvement also results in 15-62% energy reduction compared
to using GPUs without TTAs. Performance of ray-tracing
applications overall degrade by 8% on average with our
modified TTAs, but we find individual ray-tracing workloads
can achieve up to 1.2x speedup by applying optimizations
enabled by our TTA architecture.
We make the following contributions in this paper:

« We identify the advantages of RTAs and reveal their
potential in accelerating tree traversal applications with
minimal hardware modifications.

« We propose two potential extensions of RTAs: TTA, which
minimizes the hardware overhead, and TTA+, which
maximizes the versatility.

« We provide a programming interface for both TTA and
TTA+ to simplify access to RTAs by developers.

« We achieve up to 5.4x speedup for tree traversal applica-
tions with up to 62% energy reduction using only a 1%
increase in total operation unit area.

II. BACKGROUND AND MOTIVATION

Tree data structures are widely used in applications such
as databases, file systems, and computer graphics to organize
and search data efficiently. This section provides an overview
of tree-based applications, including ray tracing and how it
executes on Ray-Tracing Accelerators (RTAs) in modern GPUs.

A. Tree-Based Applications

Trees, by definition, are a subset of graphs that are acyclic
and have exactly one parent per node except for the root node.
Figure 2 shows a common flow for traversing through a tree
structure using a while-loop and a traversal stack. The traversal
starts at the root node and continues until there are no more
nodes to visit or it reaches a termination condition. At each
node, the traversal algorithm decodes the node contents and
performs a predefined test operation based on the node type.
Such a hierarchical manner of three structures makes data easy
to search, making them a popular choice for many application
domains. Note that, after the tree search, applications often
post-process the search results into meaningful information,
such as generating query responses in index searches, analyzing
interactions in scientific applications, or determining shading
values in rendering applications. These computations typically
consist of element-wise vector operations that are straightfor-
wardly accelerated on GPUs. Hence, this paper focuses on the
tree traversal portion of the applications.



Algorithm 1 Query-Key value comparison for a 9-wide tree

Algorithm 2 Point-to-Point distance Calculation

NChildren = 9

Input: Query, NodeKeys, ChildAddress

Output: NextChild, Found

1: function QUERY-KEY VALUE COMPARISON

2: for i +— 0 to NChildren-1 do

3: if (NodeKeys[i] == Query) then

4: Found = true

5: return Found, NextChild = NULL
6: else if (Query < NodeKeys][i]) then
7: NextChild = ChildAddress][i]

8: return Found = false, NextChild
9: end if

10: end for

11: end function

B-Trees and its variants are one of the most common
indexing structures used in databases to organize and search
data efficiently [17], [82], with many works aimed at improving
its performance [3], [7], [8], [25], [40], [41], [49], [84], [95],
[96]. The B-Tree is a self-balancing tree data structure that
maintains sorted data to allow efficient insertion, deletion, and
search operations in large databases. Other variations, such
as the R-Tree [27], apply the same principles to index multi-
dimensional data and have also been widely adopted [5], [20],
[21], [26], [77], [811, [97].

Searching a B-Tree involves traversing from the root node
down to the leaf nodes, selectively navigating through child
nodes based on Query-Key comparisons. Algorithm 1 describes
the Query-Key value comparison operation of a single query
value against the children key values of a tree node. The
operation requires the addresses of the child nodes as inputs
and outputs a boolean indicating whether the query value was
found in the key values contained by the tree node and the
address of the child node to visit next. The algorithm first
checks for equality between the key values and the query
value. If they do not match but the query value is smaller than
the key value, then the query value lies between the previous
and the current key values, and the traversal continues to the
corresponding child node set as NextChild.

Tree structures are also popular in physics simulations for
representing spatial data with octrees [12], [14], [19], [51]
and k-d trees [22], [30], [35], [76], [80], [104]. In these
applications, the tree structure is used to partition the simulation
space and efficiently compute interactions between particles or
objects. One particularly common algorithm is the Barnes-Hut
algorithm, which approximates distant particles as a single
massive particle to reduce the number of interactions that need
to be computed [9], [45].

The algorithm relies on a Point-to-Point distance calculation
at each internal node of the octree to decide whether to
approximate the node as a single particle or to traverse
to the child nodes for more accurate force approximations.
Algorithm 2 shows the Point-to-Point distance calculation
operation, which takes the query point, a point to compare,
and a threshold as inputs. The operation outputs a boolean
value indicating whether this distance is below the specified
threshold. The calculation begins with a vector subtraction
to represent the distance between two points, which is then

Input: PointA, PointB, Threshold

Output: result

1: function POINT-TO-POINT DISTANCE CALCULATION
dis = PointB - PointA

3 dis2 = dot(dis, dis)

4 threshold2 = Threshold * Threshold

5: result = (dis2 < threshold2)

6: end function

Algorithm 3 Find primitives intersecting with a given ray

Input: root, ray

Output: hits

1: function TRAVERSEBVH(ROOT, RAY)

2 stack.push(root)

3 while stack is not empty do

4 node = stack.pop()

5 if (node is a leaf) then

6: if ray intersects node primitive (Ray-Triangle) then
7: hits.append(node)

8 end if

9 else

10: if ray intersects node bounding box (Ray-Box) then
11: for each child of node do

12: stack.push(child)

13: end for

14: end if

15: end if

16: end while
17: end function

/

Fig. 3: Simplified example of BVH tree traversal for Bunny [88]

squared to calculate the squared distance and compared against
the squared threshold value.

B. Ray Tracing and RTAs

Ray tracing is another important tree-based application and
is used in computer graphics to render photorealistic images
by simulating rays of light interacting with a virtual scene.
To render a scene, the ray tracing algorithm represents the
scene geometry as a Bounding Volume Hierarchy (BVH) tree
with axis-aligned bounding boxes (AABBs) and geometric
primitives (usually triangles) at the leaf nodes. Modern GPUs
include RTAs that accelerate the BVH traversal and intersection
tests for each ray [1], [6], [37], [39], [71]. Algorithm 3 shows
pseudocode for BVH traversal as a While-While loop [4],
starting at the root node and continuing in a depth-first order,
which matches the traversal abstraction in Figure 2. Figure 3
visualizes how this algorithm traverses through a BVH tree.
On modern GPUs, this entire traversal is offloaded to RTAs
using the traceRay instruction, where a state machine in
the RTA warp scheduler tracks the status of each ray traversal
using the traversal stack and orchestrates the while-loop in
Algorithm 3. Rendering a complete frame requires several other



shader stages consisting of pixel-wise computations, which are
executed on the GPU’s general-purpose cores.

There is usually one RTA per Streaming Multiprocessor
(SM) in modern GPUs, which autonomously processes ray
traversals and intersections once the traceRay instruction
is issued. Figure 4a shows a high-level example of the RTA
architecture in modern GPUs, based on the Vulkan-Sim RTA
model [83]. In this model, per-ray information such as the
traversal stack and the ray origin and direction are stored in the
warp buffer (@) when the t raceRay instruction is issued.
In each cycle, the RTA’s warp scheduler (@) selects a warp to
process based on the per-ray information from the warp buffer,
and the hardware memory scheduler in the RTA coalesces and
issues requests for BVH nodes to the GPU’s memory system.

Memory requests return to the RTA through the RTA’s
response FIFO, and the operation arbiter (@) processes the
request. The operation arbiter first decodes the node type based
on a flag in the BVH node (node decoder) and reads the per-ray
information from the warp buffer of the warp where the returned
memory request originated through the ray collector. With the
node type and per-ray information, the operation arbiter can
determine the appropriate intersection test to perform based on
the operation destination table (@) and forward the information
to the fixed-function intersection units (@).

During the BVH traversal, a Ray-Box intersection test
(Figure 5 left) is computed between the ray and the AABB at
each tree node, continuing traversal recursively to the children
only if they intersect. This test calculates the ray hit distances at
each AABB plane (#x0,7y0,¢x1,7y1) and compares them with
one another to check for a valid intersection. If the traversal
reaches a leaf node, a Ray-Triangle intersection test (Figure 5
right) is performed and barycentric coordinates (u,v) of the
intersection point are computed by transforming the (x,y,z)
coordinates of the triangle vertices. The results then feed into
one of three buffers (@) before writing back to the warp
buffer or memory. The barycentric coordinates are returned
to the GPU’s general-purpose cores for shading and material
computation after traversal completes.

Figure 4b shows the detailed architecture of the RTA’s
operation units. The Ray-Box intersection uses a 4-stage fixed-
function pipeline with a latency of 13 cycles, implementing the
algorithm with floating point subtractors, multipliers, min/max
units, and comparators that operate in parallel whenever
possible. The min/max operation is specifically designed for
the Ray-Box intersection test to collapse a sequence of min
and max comparisons into a single operation, optimizing the
check for ray hit distances against each AABB plane.

The Ray-Triangle intersection units take the ray origin,
direction, and three triangle vertices as inputs and compute
the barycentric coordinates of the intersection point, the
ray hit distance, and a boolean indicating hit. The Ray-
Triangle intersection also has four stages, consisting of multiple
vec3 floating point cross and dot product units, subtractors,
multipliers, reciprocals, and comparators, pipelined to a total
of 37 cycles. RTAs also include Transform units used in multi-
level BVHs to translate between different coordinate spaces.
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Fig. 6: GPU roofline model for tree traversal applications

C. Advantages of RTAs

Figure 6 plots the roofline model for several tree traversal
applications, highlighting a common characteristic of under-



utilized memory bandwidth due to limited data reuse and
long-latency memory fetches. RTAs have introduced several
advantages over traditional GPU compute cores for ray tracing,
many of which can be generalized to other tree traversal
applications that suffer from these inefficiencies:

(1) RTAs employ fixed-function units to reduce dynamic
instructions and improve performance. Intersection tests at
each node in the tree traversal are fixed and do not change
based on the input data. As a result, RTAs can use fixed-
function units to perform the same operations for each node,
only distinguishing between inner and leaf nodes. This approach
reduces the overhead associated with instruction fetching,
decoding, issuing, and register file accesses by eliminating 91%
of dynamic ALU and control flow instructions on average.

(2) RTAs mitigate the SIMT divergence by representing
the entire ray traversal as a single instruction (t raceRay)
on the GPU. When threads diverge in the tree traversal,
RTAs handle the control flow divergence directly, avoiding
inactivating computing lanes in the SIMD pipeline [83]. Thus,
the warps only need to synchronize the rays at the end of
the traversal when RTAs complete the instruction. Prior works
like Dynamic Ray Shuffling [57] mitigate SIMT divergence on
GPUs for ray tracing but are still less effective than the RTA.

(3) RTAs use a dedicated hardware memory scheduler
to improve memory bandwidth utilization. This scheduler
coalesces node requests between threads when possible and
arbitrates for one memory request into the GPU memory system
per cycle. The dedicated memory scheduler better handles
irregular memory access patterns by only focusing on node
requests, allowing the scheduler to track more concurrent
traversals and increase DRAM utilization by nearly 2x.

(4) RTAs free up general-purpose cores for performing
other tasks in parallel, effectively hiding the latency of
ray traversal [13]. With the RTA, the compute cores can
execute shading tasks for completed traversals while the RTA
traverses the BVH for other rays. The GPU architecture can
further exploit this parallelism if the RTA can support more
tree traversal algorithms.

RTAs apply the same traversal algorithm in ray tracing
as the abstraction used by other tree structures illustrated
in Figure 2, with PROCESS_INNER_NODE (...) as Ray-
Box intersections and PROCESS_LEAF_NODE (.. .) as Ray-
Triangle intersections. Adapting RTAs to traverse other tree
structures could leverage the existing benefits of RTAs with
only minor modifications to support other node operations.
Even ray-tracing applications can benefit from this change
because not all ray-tracing applications use the Ray-Triangle
intersection operation. For example, some scenes use spheres as
the base geometry, which requires Ray-Sphere intersections [24]
implemented with a programmable intersection shader instead.

From our observations, we find that tree-based applications
typically focus on a distance relationship between some query
and the node, which may be a value on a 1D number line
in the case of index-based search or a coordinate in 2D or
3D space for N-Body simulations. Therefore, we propose a
modified RTA that can support multiple different fixed node

I /+ Define ray generation shader code /
> conmst GLchars raygenShader = R”
3 void simpleRayGenShader () {

Ray ray = makeRay ()

eeTTA (ray BVHRootAddr) ;

8 /% Specify

layout with byte offsets =/

9 size_t internalNodeLayout[4] = [12, 12, 4, 4];

10 size_t leafNodeLayout[3] = [12, 12, 12];

11

12 /+ Reserve fields for intermediate values according to the intersection test
example (specified with byte offsets) x/

13 size_t rayLayout[12] = [12, 12, 4, 4, 12, 12, 4, 4, 4, 4, 4, 4];

I5 Configl ("RayBoxProg.asm”);
16 ConfigL (*RayTriProg.asm”);

18 Decodel(internalNodeLayout) ;

19 DecodeL (leafNodeLayout) ;

20 DecodeR(rayLayout);

/+# Specifies which ray, internal/leaf node fields should be checked for
termination (specified with byte offsets) s/

3 /% Ray tracing checks ray.tmin for termination at PC 20 of the Ray—Tri program
«/

ConfigTerminate(“ray”, 24, float, "Leaf”, 20);

191
VI

26 /+ Launch tree traversal to GPU =/

27 vkCreateTTAPipeline (device , info, “simpleRayTraversalShaderInRTAx");
’8  vkCmdTraverseTree (GPUcommandBuffer, raygenShaderBindingTable);

Listing 1: Example of CPU Code using TTA APIs for Ray-
Tracing

operations, which we refer to as the TTA. We also propose a
more flexible design, TTA+, that generalizes the RTA further
by providing a programmable architecture.

III. ARCHITECTURE

This section outlines the proposed architecture, TTA, and
its programming model that enables hardware support for tree
traversal algorithms. TTA extends the existing RTA architecture
to support various input data structures and allows for adaptable
intersection test units. To minimize the hardware overhead,
TTA modifies the existing fixed-function operation units to
support additional operations essential for decision-making and
condition tests. We also introduce an additional configuration,
TTA+, that generalizes TTA further by splitting the fixed-
function operation units into granular OP units to allow
programmable intersection tests, but requires more hardware
modifications.

A. Programming model

We introduce a new Application Programming Interface
(AP]) that allows programmers to configure TTA and TTA+
and launch general-purpose tree traversals. This program-
ming model mimics existing hardware ray-tracing APIs
such as Vulkan [44] by replacing traceRayEXT and
vkCmdTraceRaysKHR with new traverseTreeTTA and
vkCmdTraverseTree instructions. Before launching the
traversal, the programmer also needs to configure the ray
data layout, node layouts for internal and leaf nodes, and
the intersection tests using the new API calls DecodeR,
DecodelI, Decodel, ConfigI, and ConfigL, respectively.
This approach also matches Vulkan, where programmers must
first configure the stages of the ray-tracing pipeline before
launching the traversal.

Listing 1 shows how a ray-tracing application can be adapted
to the new TTA APIs. Lines 9, 10, and 13 specify the
ray data layout, internal node layout, and leaf node layout,
respectively, using byte offsets. These layouts are passed into



the DecodeR, DecodelI, and Decodel API calls to set
the RTA_DECODE_NODE stage from Figure 2, allowing the
operation arbiter to properly decode data. Lines 15 and 16
configure the Ray-Box and Ray-Triangle intersection tests
using the ConfigI and ConfigL API calls since they are
no longer fixed-function units. To describe the termination
condition of the tree traversal, ConfigTerminate specifies
the data fields that TTA should check for when a specific PC
of either the Ray-Box or Ray-Tri program is executed (Line
24). Finally, Lines 27 and 28 send the configurations to TTA
and launch the tree traversal into the GPU command buffer.
To traverse a B-Tree with TTA, the programmer should
specify the query key in the ray data layout and the child keys
and addresses in the node data layout. Next, a value comparison
is defined as the intersection test for PROCESS_INNER_NODE
and PROCESS_LEAF_NODE using ConfigI and ConfigL.
Lastly, the termination criteria for the traversal is specified
using ConfigTerminate to terminate the traversal when
the traversal stack is empty. The traverseTreeTTA API
call is then used to start the traversal with the query and the
root address of the tree. TTA will then execute the traversal
following the While-While loop pattern, using the specified
intersection tests and termination criteria at each node.

B. TTA Architecture

As mentioned, the TTA architecture modifies the existing
RTA architecture to support two additional operations that are
common to several types of tree traversal applications: Query-
Key value comparison and Point-to-Point distance calculation.
Query-key value comparison is critical for efficient index-
based tree search applications, including binary search, B-
Tree, and various B-Tree-based algorithms. Point-to-point
distance calculation is another crucial operation that 2D or
3D point-based search applications rely on, including N-
Body simulation, Random Consensus Sampling in point cloud
processing, and Radius search. Note that with the baseline RTA,
these operations must be executed on general-purpose cores,
which are less efficient than the fixed-function intersection
pipeline.

We modify the node decoder in the operation arbiter to
support different node data structures and make the operation
destination table programmable to handle different dataflows
required for each specific application. The existing Warp Buffer
in the baseline RTAs is also repurposed as a general-purpose
register file (RF), separate from the main GPU register file,
that stores ray and node data with the programmer-defined data
layout. Figure 7 shows the structure of the repurposed RTA
Warp Buffer with dedicated space for ray and node data. Each
ray or node entry contains 16 x 32-bit ray registers (RR) or node
registers (NR) and is addressable using the ray or node ID and
the register ID. TTA implements Query-Key value comparison
by modifying the Ray-Box intersection units and Point-to-Point
distance calculation by rearranging the operations within the
Ray-Triangle intersection units.

1) Query-Key value comparison: Figure 8 @ shows the
modifications to support Query-Key value comparison. We

Warp Buffer (RF)
RF Space for Ray (64B/Ray x 4warp x 32thread = 8KB)
Ray ID RRO | RR1 | RR2 | RR3 | RR4 | RR5
0
1
RF Space for Node (64B/Node x 4warp x 8entry = 2KB)

Node ID| NRO | NR1 | NR2 | NR3 | NR4 | NR5
0
1
2

RR15

NR15

Fig. 7: Reusing Warp Buffer as General Purpose RF in TTA+
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observe that the Query-Key comparison from Algorithm 1
can be adapted to use the existing min/max operations in the
Ray-Box intersection units. Figure 9 (@) shows the baseline
min/max operation as a series of min and max comparators,
grouped as a minmax sequence and a maxmin sequence. By
replacing the Tmin, tx1, tx2, and Tmax values used in
Ray-Box intersections with the key K1, query X, key K2 and
K3 respectively, the min/max operations will generate results
according to the table (@). Hence, the relative magnitude of
the query value compared to the keys can be determined by
comparing the result of minmax sequence with K1 and X and
the result of maxmin sequence with X.

However, the Query-Key comparison also needs to check
whether the key value matches the query value and determine
the appropriate destination child node, which is missing in
the baseline min/max operation (@). To support this, we add
equality operations to check whether the key value matches
the query value (@) and another three additional equality
operations to determine the appropriate destination child node
(@). Each min/max operation compares the query value with
three key values, allowing the Ray-Box intersection test units to
process up to nine children at once. The output is the address of
the child node and a one-hot vector length of three. The address
of the next child node can be represented as an offset from the
first child node’s address. Thus, the three additional equality
operations implemented at the last stage generate values of
zero, one, or two when confirming the inputs’ equality.



R1 = max(K1, min(X, K2))
R2 = min(K3, max(X,K2))

Tmin = max(Tmin, min(tx1, tx2))
Tmax = min(Tmax, max(tx1, tx2))

0 Max/Min and Min/Max logic B-Tree traversal logic in RTA+
in Ray-Box intersection test units
Tmin txl tx2 Tmax K1 X K2 K3
min max
K1
. L2
Tmin Tmax e[ eq ‘ [ eq ‘ [ eq ‘
Hardware Modification Result
Q X<Kl |KI<X<K2|K2<X<K3| K3<X |i
| max(K1, min(x,k2)) K1 X K2 K2 [
| min(k3, max(x, k2)) K2 K2 X K3

Fig. 9: Modifications in min/max and max/min operation
for Query-Key comparison support

Additionally, since each min/max and max/min operation
pair compares the input query value against three key values,
the Ray-Box intersection test units can process up to nine
children in a single instruction. Note that the baseline RTA
operates on the BVH tree, in which nodes also have multiple
children, and can traverse the child nodes iteratively. Thus, TTA
can also traverse the child nodes iteratively when the number
of children is larger than the capacity of a single Ray-Box
intersection test unit. In our evaluation, applications employ a
tree structure with a maximum of nine children per node, fully
utilizing the computing units.

2) Point-to-Point distance calculation: We observe that the
Point-to-Point distance computation in Algorithm 2 is a subset
of Ray-Triangle intersection test units, which already include
vector subtractors, vector dot-products, scalar multipliers, and
scalar comparators. Thus, we support Point-to-Point distance
computations by integrating an additional datapath within the
Ray-Triangle intersection units. When a query needs to compute
the Point-to-Point distance calculation with the Ray-Triangle
intersection unit, the computation follows the bolded data path
in Figure 8 @.

C. TTA+ Architecture

While TTA already extends the usability of RTAs to more
applications, there are many tree traversal applications with
operation sequences that do not fit the intersection pipeline,
such as the Ray-Sphere intersection or the force computation
in N-Body simulation. Thus, we explore an alternative design
point, TTA+-, which favors flexibility by adopting a modular
design philosophy that allows programmable intersection
operations (referred to as pops). TTA+ decomposes the fixed-
function pipeline into individual operation units (OP units)
connected via an interconnect, which is less efficient than TTA
but more versatile. The granularity of the OP units in TTA+
aims to balance between increased latency per intersection
computation and the flexibility to support more computation
sequences, including optimizations for specific applications.

Figure 10 outlines modifications to the RTA architecture
for TTA+, which breaks up the fixed-function ray intersection
pipeline into individual parallel operations that communicate
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Fig. 10: TTA+ design overview with modified operation units

through an internal interconnect. Intersection tests are executed
by visiting the OP units in a specified sequence, passing input
data and intermediate results through the interconnect. Each
OP unit includes computing units to execute its operations,
configuration registers (Config Regs), and an operation destina-
tion table (OP Dest Table). The Config Regs controls the input
decoder for selecting operands in the data from the interconnect.
The OP Dest Table tracks the next OP unit destination port to
send the result to based on the input node type and the pop
PC, which identifies the correct destination port when there
are multiple operations in an intersection test. The node type
field allows the OP Dest Table to differentiate between internal
and leaf node intersection tests. TTA+ is able to support a
wide range of applications (e.g., Ray-Sphere intersection) by
updating the Config Regs and OP Dest Tables that control the
interconnect network before each kernel launch.

When an OP unit receives incoming data from the intercon-
nect, the input decoder decodes source operands according to
the Config Regs, then the operation is executed by the compute
unit (@). The input data includes all ray and node data and
intermediate results from previous operations, as well as the
previous pop’s PC and destination port, which are needed
for the input decoder. During execution, the OP Dest Table
stores queries to find where to send the operation result. Once
the compute unit completes execution, the result is stored in
the output buffer along with the destination port, the pop PC,
and the originally received input data that needs to be passed
along to further operations (@). The front of the output buffer
is pushed to the interconnect whenever the destination port
is available. When the intersection test completes, results are
finally written back to the buffers and warp register (€)).

Table I lists the OP units included in TTA+ with their
functionality. TTA+ includes units for functions such as floating
point scalar arithmetic, vector dot and cross products, and
comparison and logical operations. We also include a PUSH
unit that handles pushing child addresses to the traversal stack
and writes exclusively to the traversal stack buffer. Figure 11
shows a partial example of how the OP units can be used
to implement a Ray-Box intersection test for TTA+, which
would be configured with the ConfigI API. The format of
the intersection test and termination criteria for TTA+ is a list
of supported ptops that execute sequentially in the OP units.
In this example, when a memory request for an internal type



RTAx RayBoxIntersection Program

VEC3-SUB ray.diffl, node.boxMin, ray.origin
VEC3-SUB ray.diff2, node.boxMax, ray.origin
RCP ray.iOrigin.x, ray.dir.x

RCP ray.iOrigin.y, ray.dir.y

RCP ray.iOrigin.z, ray.dir.z

procedure RayBoxIntersectionTest

// Ray hit distance at each AABB plane

tx1 = (BoxMin.x - RayOrigin.x) / RayOrigin.x
tx2 = (BoxMax.x — RayOrigin.x) / RayOrigin.x
tyl = (BoxMin.y - RayOrigin.y) / RayOrigin.y
ty2 = (BoxMax.y - RayOrigin.y) / RayOrigin.y

tz1 = (BoxMin.z - RayOrigin.z) / RayOrigin.z MUL ray.tx1, ray.diffl.x, ray.iOrigin.x
tz2 = (BoxMax.z - RayOrigin.z) / RayOrigin.z MUL ray.tx2, ray.diff2.x, ray.iOrigin.x
MUL ray.tyl, ray.diffl.y, ray.iOrigin.y
MUL ray.ty2, ray.diff2.y, ray.iOrigin.y
MUL ray.tzl, ray.diffl.z, ray.iOrigin.z
Node Field 1 2 3 4 MUL ray.tz2, ray.diff2.z, ray.iOrigin.z
Type | vecs | vecs | float | float
Name |boxtax | boxMax | addrl | addr2
Size 128 128 B 48
RayField [ 1 2 3 4 5 6 7 8 9 10 1 12

Type | vecs | vecs | float | float | vees

Name |origin| dir tmin | tmax | diff1 | diff2 | tx1

Size 128 128 48 48 128 128 B 4B 4B 4B 4B 48

Fig. 11: Example of TTA+ intersection test

TABLE I: Operation Units in TTA+

Unit Type Description Latency
Vec3 Add/Sub Pipelined FP32 Vec3 + Vec3 4 cycles
Multiplier Pipelined FP32 Scalar multiply 4 cycles
Reciprocal (RCP) | FP32 1/x, similar to RCPSS insn for CPUs 4 cycles
Cross Product Pipelined Cross product of two FP32 Vec3 5 cycles
Dot Product Pipelined Dot product of two FP32 Vec3 5 cycles
Vec3 CMP Return (a < b) ? 1 : 0 for all Vec3 components 1 cycle
FP32 MIN(a, MAX(b, ¢)),
MINMAX also supports MIN(a, b) and MAX(a, b) I cycle
FP32 MAX(a, MIN(b, c)),
MAXMIN also supports MIN(a, b) and MAX(a, b) 1 cycle
Logical Unit Logical AND/OR/XOR/NOT 1 cycle
SQRT Square root 11 cycle
R-XFORM Ray transform matrix multiplication unit 4 cycles

node returns to the TTA+, the RTA frontend processes the
request and identifies that the first pop is a vector subtraction,
forwarding the ray and node data to the ADDSUB unit. The
ADDSUB unit then decodes the ray and node data, executes
the first two operations serially, and forwards the result to the
next OP unit, RCP. Temporary variables and pop operands
are specified using the ray and node layouts so OP units can
decode and transfer intermediate results.

IV. EXPERIMENTAL METHODOLOGY

RTAs are designed for ray tracing and only support opera-
tions in the ray tracing pipeline via dedicated APIs. However,
TTA and TTA+ modify the hardware pipeline of the operation
units and introduce new APIs to extend the usage of RTAs and
support for more data structures. Therefore, we evaluate the
performance of the baseline, TTA, and TTA+ using Vulkan-
Sim [83], which simulates a cycle-level GPU architecture with
a configurable RTA model for ray-tracing applications using
the cross-vendor Vulkan API [44]. To model our proposed
changes, we modify the functional simulation in Vulkan-Sim
to support the programming model from Section III-A, which
allows us to evaluate non-ray-tracing applications on the RTA
and trigger hardware traversal without the Vulkan API. Vulkan-
Sim does not include detailed models of intersection units,
which we add to assess different operation unit configurations
for TTA and TTA+. We use Vulkan-Sim with the default GPU
configurations listed in Table II.

TABLE II: Vulkan-Sim Configurations

# Streaming Multiprocessors (SM) 8
Max Warps / SM 32
Warp Scheduler GTO
# Registers / SM 32768

Instruction Cache
L1 Data Cache + Shared Memory

128KB, 16-way assoc., 20 cycles
64KB, Fully assoc. LRU, 20 cycles
L2 Unified Cache 3MB, 16-way assoc. LRU, 160 cycles
Compute : Interconnect : L2 : Memory Clock 1365 : 1365 : 1365 : 3500 MHz
# TTA Units / SM 1
Warp Buffer Size 4 warps
# TTA Intersection Units 4 sets

A. Selected Applications

TTA and TTA+ are the first to extend the hardware func-
tionality of RTAs to additional tree-based applications, which
involve a high degree of parallelism commonly accelerated
on GPUs. To evaluate the performance of TTA and TTA+,
we select representative tree traversal applications that are
commonly executed on GPUs [33], [100]. The benchmarks we
evaluate are B-Tree variants, N-Body simulation, and radius
search, which we implement using our proposed programming
model and compare against CUDA implementations as the
baseline. In our implementations, each thread represents a
single query, and traversals follow a while-loop pattern [4].
Note that we focus on the tree traversal part of the applications
to evaluate the performance advantages of our proposal since
other computations in the applications can already be easily
parallelized and accelerated on GPUs, making them orthogonal
to our proposal. Hence, we believe that our evaluation can
demonstrate the performance benefits of TTA and TTA+ for a
wide range of applications.

Our baseline implementation of B-Tree performs similarly to
the CUDA-optimized implementation [7], [8], and we evaluate
B-Tree applications by randomly querying 1M keys in trees
with 10k to 4M keys. We use a 9-wide B-Tree configuration
to fully utilize the adapted Ray-Box intersection units in TTA.
For N-Body, we evaluate 2D and 3D implementations of the
Barnes-Hut approximation, reporting the performance of TTA
and TTA+ on the force computation kernel. In our N-Body
benchmark, inner nodes make use of the Point-to-Point distance
calculation supported by both TTA and TTA+, while leaf nodes
require the SQRT operation only accelerated on TTA+. We
also optimize operations on the TTA+ by combining three
multiplications into a single R-XFORM operation.

We evaluate radius search using RTNN [105], which adapts
the problem to RTAs. The baseline RTNN implementation uses
the OptiX ray tracing API and reports between 2.2x to 65X
speedup over other CUDA implementations [105]. We reim-
plement RTNN with Vulkan for Vulkan-Sim, which we expect
to perform similarly to the original OptiX implementation, and
evaluate the performance of TTA and TTA+ on sets of 32k to
128k points from the KITTI dataset [23]. In the baseline RTNN,
ray-sphere intersections are implemented in an intersection
shader that executes on the GPU general-purpose cores as
originally designed. However, such intersection shaders can be
offloaded to the TTA+ by rewriting them as intersection tests,
unlike TTA. To demonstrate the performance benefits of TTA+,



TABLE III: TTA+ Intersection Test Statistics

Total Vec3

MIN/ Vec3 Vec3

Benchmark Intersection Test jops || sus | MUL | SQRT | RCP | s | CROSS | DOT | oy | p~ | R-XFORM
Inner (Query-Key) 12 0 0 0 0 6 0 0 3 3 0
- *
B-Tree, B¥Tree, B+Tree 1 rtouery-Key) 3 0 0 0 0 0 0 0 3 0 0
Inner (Point-to-Point distance) 3 1 0 0 0 0 0 1 1 0 0
N-Body 2D, 3D Teal (Force computation) 5 0 3 T 0 0 0 0 0 0 T
*RTNN Inner (Ray-Box) 19 2 6 0 3 6 0 0 1 1 0
Leaf (Point-to-Point distance) 5 1 1 0 0 0 0 1 1 1 0
Inner (Ray-Box) 19 2 6 0 3 6 0 0 1 1 0
*
WKND_PT Tcal (Ray-Spherc) 8 5 5 T T 0 0 3 2 T 0
A Tnner (Ray-Box) 9 2 6 0 3 6 0 0 1 1 0
LumiBench Teal (Ray-TrD) 7 3 3 0 I 0 2 7 2 2 0
we evaluate the performance of RTNN with the intersection z
. . 20 4]
shaders offloaded to the TTA+. These implementations are ~ 33 *
marked with a ‘“*” symbol. 29821
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for architectural research. Specifically, we use the representative B-Tree B*Tree B+Tree N-Body m TTA
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subset of LumiBench that includes path tracing, ambient
occlusion, shadows, reflections, procedural geometry, and alpha
masking, covering a diverse range of ray-tracing behavior.
One particular workload in LumiBench, WKND_PT, uses
procedurally generated spheres in the scene. Similar to RTNN,
WKND_PT uses the intersection shader pipeline stage to
perform ray-sphere intersection tests, which we can optimize

with TTA+. These results are also marked with a “*” symbol.

Table III lists the TTA+ pops breakdown for inner node and
leaf node intersection tests used by our evaluated applications
for TTA+. Note that *RTNN, *WKND_PT, and LumiBench
use two-level BVH structures which also require an R-XFORM
Lop between the levels.

B. Area, Power, and Latency Evaluation Methodology

To evaluate the area and power of TTA and TTA+, we
synthesize the designs with FreePDK45, specifically the
modified operation units and the additional interconnect. For
the interconnect in the TTA+-, we use a 16x16 crosspoint switch
that is publicly available from Intel FPGA Design Samples [38]
and scaled up the interconnect width.

We augment the RTA model in Vulkan-Sim to include the

individual operation units introduced for TTA+, simulating the
execution latency of each operation unit, the crossbar latency

and congestion, and any structural hazards of operational units.

We use this model to evaluate the end-to-end performance
of each application and estimate the energy consumption of
intersection tests based on the active cycles per operation unit
measured in Vulkan-Sim. Warp buffer accesses also contribute
to the energy consumption, which we compute using the energy
per access with CACTI7 [10] and the number of accesses
from Vulkan-Sim. Energy consumption of general-purpose
cores is obtained using AccelWattch [43]. pop latencies were
referenced from Agner Fog’s instruction tables [2], which
document the latency of CPU instructions across multiple
architecture generations.

(over RTA)

Speedup
o Ll N
|

32k

128k
*WKND n/A

Fig. 12: Performance of selected applications on TTA and
TTA+ relative to baseline GPU (CUDA applications — top,
RTA applications — bottom)

V. RESULTS

A. Tree Traversal Performance

Figure 12 illustrates performance improvements of our
selected applications on TTA and TTA+ compared to the non-
accelerated baseline GPU that only uses the general-purpose
cores, with up to 5.4x speedup for queries on B-Trees and its
variants. B-Tree and B*Tree queries suffer significantly from
divergence on conventional GPUs, as highlighted in Figure 1,
which is mitigated by the dedicated traversal function in TTA.
B+Tree shows relatively low speedup as keys are only stored
at the leaf nodes, so all queries traverse the same number of
nodes and reduce control flow divergence. All variations of
B-Tree performance differ with the number of keys stored
in the tree, performing better when queries outnumber keys.
In general, TTA+ performs slightly worse than TTA due to
longer node processing latencies resulting from the additional
interconnect overheads to support programmability.

The performance improvements on B-Tree queries are a
result of the same RTA advantages that benefit ray tracing,
as described in Section II-C. Similar to ray tracing, B-
Tree traversals show low SIMT efficiency and, as a result,
low memory bandwidth utilization. These effects are more
pronounced in B-Tree traversals because of variations in the
number of children per node, allowing B-Tree traversals to
benefit more from RTAs. Figure 13 shows how the TTA helps
improve the utilization of the DRAM bandwidth, which can
be very beneficial to these memory-bound applications.
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Fig. 14: TTA config sensitivity of 1M key B-Trees

For 2D and 3D N-Body simulation, we observe between 1.1-
1.7x speedup by using the TTA to perform the tree traversal
instead of the GPU compute cores. We find that N-Body
simulation is particularly sensitive to TTA+ overheads because
its traversal logic is more complex, while its memory accesses
are more regular in comparison to B-Tree queries. Since the
N-Body simulation features heavy computations after the tree
traversal, we also evaluate the performance of merging the tree
traversal kernel and the post-processing kernels, which allows
the TTA and the general-purpose cores to work in parallel
as explained in Section II-C. We observe that performance
further improves by 1.2x, raising the overall speedup to 1.9x
on TTA+. This result suggests that there is an opportunity to
optimize the TTA+ by exploiting parallel computation between
the TTA and the general-purpose cores.

RTNN and WKND_PT applications already utilize the RTA
in their baseline implementations. However, simply by replacing
costly intersection shaders with TTA, RTNN radius search
performance improves by up to 1.4x, in addition to existing
RTNN speedups over CUDA implementations of radius search.
The same optimizing on WKND_PT is unsupported by TTA
because it does not include a square root unit. For TTA+, the
baseline implementation of RTNN experiences a slowdown
due to the longer Ray-Box intersection latency, but with the
optimization of replacing the intersection shaders (*RTNN),
we observe up to 1.4x speedup.

1) Sensitivity to TTA and TTA+ configurations: We evaluate
the sensitivity of B-Tree query performance on TTA to different
warp buffer and intersection latency configurations, as shown
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Fig. 15: TTA Intersection unit utilization for sample applica-
tions. (*WKND_PT is not supported by TTA)

in Figure 14. The warp buffer size has a higher impact on
performance because it determines the number of queries that
can be processed in parallel. Performance improves with more
warps until it saturates at eight warps for all B-Tree variants,
after which memory requests from additional queries begin to
interfere with one another. Intersection latency configurations
have a smaller impact on performance because these variations
are mostly overshadowed by the memory access latency. For
example, there is almost no difference between a configuration
of TTA that isolates the min-max unit for a 3-cycle intersection
versus a configuration that uses the full Ray-Triangle unit with
a 13-cycle latency. Even if we increase the intersection latency
significantly to 10x, TTA still achieves a 2.25x and 2.45x
speedup for B-Tree and B*Tree, respectively.

2) Intersection unit utilization: Figure 15 shows TTA
intersection unit utilization for the applications we evaluate,
with both the average and peak number of concurrent threads
queued and executing in each unit. We observe that node
processing occurs in bursts, with high peak utilization of the
intersection units, followed by periods of low utilization as
TTA waits for memory accesses to return. However, even
the peak number of active threads in the intersection units
is much lower than the maximum pipeline register stages
available. This observation highlights the potential to reduce
some overheads in TTA+ by strategically reducing the number
of parallel operation units to reduce the silicon area and power
consumption, which we leave for future work. Figure 15 also
demonstrates how RTNN can benefit from TTA by repurposing
the previously idle Ray-Triangle units for distance calculations.
We evaluate the utilization of the intersection operation units
for TTA+ in Section V-C2.

B. Ray-Tracing Performance

We evaluate the representative subset from LumiBench [54]
to evaluate the impact of programmability overheads of TTA+-.
Figure 16 (left) shows the performance of each workload
from LumiBench, showing a 8% slowdown on average as
a result of the additional overheads of TTA+. Importantly,
this performance is observed on unmodified workloads, which
cannot employ many known ray-tracing optimizations due
to the fixed functionality of the baseline RTA. For example,
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Fig. 17: Limit study of TTA+ with architectural improvements
on WKND_PT and *WKND_PT

the SHIP scene includes many long and thin primitives,
which are known to be inefficient with BVHs, and several
optimization techniques have been proposed to address the
problem [65], [91], [94], [99]. TTA+ enables the SATO
optimization [65], which recovers the performance loss on
SHIP_SH (*SHIP_SH in Figure 16). We expect that many
other ray-tracing optimizations are enabled by the flexibility
of TTA+, which will offset the performance drop and produce
speedups for these workloads.

As an example, we evaluate how the square root unit
in TTA+ can accelerate the WKND_PT workload, which
uses a custom intersection shader by default to support ray-
sphere intersections for procedural geometry in the scene.
Intersection shaders are inefficient in the ray tracing pipeline
but are also the only option available on an unmodified RTA.
With TTA+, we can apply an optimization by replacing the
intersection shader with TTA+ operations to execute a ray-
sphere intersection. While naively running WKND_PT on
TTA+ causes a slowdown, optimizing the workload improves
performance by 22% (Figure 16, *WKND_PT).

Architectural improvements to TTA+ such as adding a ded-
icated prefetcher [16] or employing a prediction unit [53] can
further improve performance. In Figure 17, we show that TTA+
optimizations are orthogonal to architectural improvements
through a limited study on WKND_PT. We simulate a system
with zero-latency node fetches (Perf. RT) and zero-latency
memory accesses (Perf. Mem), both of which compound the
existing performance gains of TTA+ with *WKND_PT.

C. Hardware Overheads

1) TTA Overheads: For TTA, the additional hardware
overhead is minimal as it only requires modifying the Ray-Box
intersection units to support Query-Key value comparisons. The
Ray-Triangle unit is unmodified. We add comparators after the
min/max and max/min units and pipeline bypassing logic
in the Ray-Box intersection unit, which increases the area from
0.2708 to 0.2756 mm? at 45nm. This is a 0.0048 mm?> or 1.8%
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Fig. 18: OP unit utilization (top) and average intersection
latency (bottom) for applications on TTA+

increase in additional area over the baseline Ray-Box unit.
Power consumption of the Ray-Box intersection unit increases
from 259.4 to 261.1 mW, which is a 0.7% increase.

2) TTA+ Overheads: Since TTA+ is a modular design
where the number of components is flexible, we report the area
of individual components for one complete set of operation
units and compare them to the baseline Ray-Box and Ray-
Triangle intersection units in Table IV. We find a 120B
interconnect is sufficient to accommodate ray tracing, the most
data-intensive workload in our evaluation, which contains a
64B node, 32B ray, and 24B intermediate values. For one set of
operation units to provide support for ray-tracing applications,
TTA+ uses 10.8% less area than the baseline because TTA+
reuses more operation units, sacrificing parallelism for a
reduced area. However, an additional SQRT unit is necessary
to support our new optimized workloads, which increases the
area by 36.4% over the baseline. The overhead of the SQRT
unit is the main source of the increased area in TTA+ and
can potentially be avoided by connecting the TTA+ to the
existing Special Function Units (SFU) [70] in the GPU instead.
Deciding on operation units to include in the TTA+ is a design
tradeoff between intersection latency and area.

Figure 18 (top) shows the utilization of the operation units
in TTA+ for the applications we evaluate. We observe that
different applications have different utilization patterns, which
suggests that the optimal number of operation units for TTA+
is workload-dependent. However, we implement our TTA+
with one of each operation unit, which is the most general
configuration, and we find there are no significant bottlenecks
in the application we evaluate.

The majority of the latency overheads in TTA+ are due to
the serialized operations and the interconnect (ICNT), which
are a result of the modular design of TTA+. Figure 18 (bottom)
shows the average intersection latencies on the TTA+ with
these overheads, with Ray-Box intersection latency in ray-
tracing applications increasing by nearly 10x. However, even
with this large increase in latency, ray-tracing performance only
drops by 8%, as shown in Figure 16. We leave the exploration
of more optimized configurations of TTA+ and support for
parallel operations to future work.



TABLE IV: Comparison of Baseline RTA Area vs. TTA+ Area

Baseline Components Area (um?) % Baseline Area TTA+ Components Area (um?) % TTA+ Area Baseline Comparison
Baseline Ray-Box Unit 270779.1 45.0% Interconnect 16x16 (120B wide) 177902.2 21.7%
Baseline Ray-Triangle Unit 331299.0 55.0% Vec3 Add/Sub Unit 17424.2 2.1%
Multiplier 9551.7 1.2%
MINMAX 2176.6 0.3%
MAXMIN 1895.0 0.2%
Cross Product Unit 74734.1 9.1%
Dot Product Unit 40271.1 4.9%
RCP* Units x 3 212991.3 25.9%
Baseline Total 602078.1 100.0% TTA+ without SQRT 536949.1 65.4% -10.8%
SQRT Unit 284367.2 34.6%
TTA+ Total 821316.3 100.0% +36.4%
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Fig. 19: Energy results for baseline, TTA and TTA+

3) Energy Results: We compare the end-to-end energy con-
sumption of TTA and TTA+ normalized to the baseline GPU
with unmodified RTAs (BASE) in Figure 19, with an energy
breakdown of general-purpose compute cores, warp buffer
access, and intersection tests using Ray-Box, Ray-Triangle, or
OP units. The Compute Core energy consumption includes the
execution units in the general-purpose cores and the memory
system from memory requests issued from both the general-
purpose cores and RTAs. Notably, this reduction in energy
consumption matches the reduced number of dynamically
executed instructions in Figure 20, highlighting the benefits of
offloading computations to TTA and TTA+. In particular, a
single TTA instruction replaces the dynamic instructions from
an entire traversal loop, reducing the number of dynamically
executed instructions by 91% on average. TTA instructions only
account for 2% of the total dynamic instructions on average.

Warp Buffer energy is from reading ray and node data from
the warp buffer, and Intersection Energy tracks the energy usage
of the intersection units. Both TTA and TTA+ have similar
energy results for B-Tree applications, with 15-62% less energy
consumption than the baseline GPU. TTA+ OP units consume
more energy in N-Body applications due to the complex
computations, but intersection energy is generally insignificant
compared to the energy savings due to the reduced execution
time. For applications that already utilize the RTA (RTNN and
WKND_PT), the additional OP unit energy consumption of
TTA+ can be offset by applying optimizations (*RTNN and
*WKND_PT), still achieving 19-29% energy savings.
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Fig. 20: Breakdown of total dynamically executed instructions
for baseline, TTA, and TTA+

VI. RELATED WORK
A. Ray-Tracing Acceleration

Compared to rasterization [75] and neural rendering tech-
niques [47], [59], [62], [93], ray tracing is highly divergent and
memory latency-bound, making it challenging to accelerate on
SIMT architectures. Despite this, many studies still focus on
ray tracing for its ability to produce high-quality images. Pharr
et al. [74] proposed to dynamically reorder rays based on the
contents of the cache, but ray sorting is considered prohibitively
expensive for real-time rendering [58]. Barringer et al. [11]
introduced a traversal algorithm that leverages ray coherence
for high SIMD efficiency, but packet tracing is ineffective for
incoherent rays. Shkurko et al. [85] proposed a dual streaming
approach that organizes ray-tracing memory accesses into
two predictable data streams, and Vasiou et al. [90] analyzed
the energy and time cost of data movement for ray tracing.
These optimizations can be applied orthogonally to our work.
While these studies aim to improve ray-tracing performance,
they do not fully address the fundamental limitations of the
SIMT pipeline. In contrast, RTAs are introduced to address
these limitations by providing a dedicated hardware accelerator
specifically for ray tracing. Our work focuses on generalizing
RTAs for diverse tree traversal algorithms, enabling more
applications to be accelerated.

B. Tree Traversal Acceleration

Prior works have explored accelerating tree-based appli-
cations on FPGAs and ASICs, such as k-nearest neighbor
search [56], [86], dynamic search tree [98], and ray tracing [48],
[66]. However, these works are limited to specific applications



and require significant hardware modifications to support new
applications. TTA’s and TTA+’s programming model shine in
their simplicity compared to FPGAs and CGRAs, requiring only
writing simple programs and specifying data and node layouts,
while FPGAs and CGRAs require register-transfer-level (RTL)
design knowledge and orchestrating explicit dataflow programs
via interconnections [52]. Furthermore, RTAs are already
integrated into modern GPUs [1], [13], [78], making them
more accessible than other reconfigurable accelerators. For
example, programmers can leverage the rich ecosystem of
CUDA or Vulkan APIs to program RTAs [44], [72], which is
not possible with FPGAs and CGRAs.

C. Repurposing RTAs without Hardware Modification

RTAs can be repurposed for other applications without
hardware modifications. RTNN [105] and RT-KNNS Un-
bound [64] explore accelerating k-nearest neighbor search
by mapping the distance calculation between two points to
the ray-tracing pipeline. RTIndeX [34] leverages RTAs for
efficient database indexing, while RT-DBSCAN [63] focuses
on enhancing DBSCAN clustering algorithms. Additionally,
in the prior work [61], [92], authors extend RTAs to compute
mesh point location. However, as mentioned in Section I,
mapping applications onto the existing ray-tracing pipeline
without hardware modifications presents challenges due to the
added complexity of the graphics pipeline. Although the Vulkan
API provides a rayQuery extension to support isolated ray
traversals without the ray-tracing pipeline, it is still limited to
BVH traversal with only ray-box and ray-triangle intersection
tests. Thus, the adapted algorithms frequently incur substantial
overhead from a suboptimal fit between the graphics pipeline
and algorithms. In contrast, our proposal demonstrates the
feasibility of using RTAs in diverse tree search applications
with huge programmability, showing large performance gains
in various applications.

D. Graph Analysis Acceleration

Algorithms for determining shortest paths, like Dijkstra’s
and Bellman-Ford’s, can be accelerated through matrix multi-
plication accelerations [103]. In this respect, model dynamics
in social networks and opinion dynamics can be accelerated
by matrix multiplication [31], [32], [73], [87], [89]. However,
these works are limited to graph analysis applications, and they
introduce inherent limitations in time and space complexity.
Unlike these approaches, our proposal optimizes tree traversal
applications, which inherently require less computational
resources, providing a more efficient solution from a hardware
perspective.

VII. CONCLUSION

RTAs have enhanced the efficiency and performance of ray
tracing, addressing key challenges of tree traversal on GPUs.
This paper underscores that other tree-based applications face
issues similar to ray tracing and potentially benefit from RTAs.
However, mapping non-graphics applications to the ray-tracing
pipelines can be difficult due to limited programmability, which
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leads to resource underutilization. To address these challenges,
we propose two innovative solutions: (1) TTA, which adapts
existing units within the ray-tracing pipeline for more diverse
applications, and (2) TTA+, which focuses on increasing the
flexibility of the computing units. In our evaluation, we achieve
up to 5.4x speedup for tree-traversal applications and up to
62% energy reduction with less than 1% area overhead.
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APPENDIX
A. Abstract

This artifact includes our modified implementation of Vulkan-
Sim that models our proposed TTA and TTA+ architectures
as well as binaries for the benchmark workloads used in our
evaluation. We provide this artifact in a Docker container, which
includes all necessary dependencies and scripts to reproduce
our main results.

B. Artifact check-list (meta-information)

Program: modified Vulkan-Sim; B-Tree, N-body, RTNN, and
LumiBench with WKND_PT benchmarks

Compilation: gcc/g++, ninja, meson, cmake, nvcc

Run-time environment: Ubuntu 20.04

Hardware: >12 GB RAM

Metrics: execution time, energy consumption, other detailed
simulation statistics

Output: simulation statistics and result figures

How much disk space required (approximately)?:
(Docker image)

How much time is needed to prepare workflow (approxi-
mately)?: < 1 hour

How much time is needed to complete experiments (approx-
imately)?: 3-5 days if executed serially

Publicly available?: Yes

Code licenses (if publicly available)?: BSD-3

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
13294690

30GB

C. Description

1) How to access: We package our artifact in a Docker
container, which can be downloaded from Zenodo at the
archived link (https://doi.org/10.5281/zenodo.13294690). Please
select the latest version of the artifact.

2) Hardware dependencies: There are no specific hardware
requirements. We recommend at least 12 GB of RAM to run
the experiments.

3) Software dependencies: Docker is required to run the
provided container. All other dependencies are included in the
container.


https://doi.org/10.5281/zenodo.13294690
https://doi.org/10.5281/zenodo.13294690
https://doi.org/10.5281/zenodo.13294690

D. Installation

Download our Docker container from the archived link. To
run the container, execute the following command:

docker load < tta-artifact.tar.gz
docker run —-it tta:artifact /bin/bash

E. Experiment workflow

The general workflow is to run a set of benchmarks using
Vulkan-Sim, process the results, and generate figures based
on the results. Once inside the container, experiments can be
started by sourcing the setup script for Vulkan-Sim and running
the provided Python automation scripts. The parameter to the
Python script controls how many benchmarks are executed in

parallel, which can be adjusted based on the available resources.

cd /home/vulkansim/gpgpu-sim_emerald
source setup_environment

cd /home

python3 run_sweep_full.py 8

After the experiments are complete, the results can be
generated by running the following script, which summarizes
all the results in a single CSV file.

python3 process_results.py

Using the processed results, the following figures in the
paper can be generated using the provided Python scripts.

o Figure 12: plot_speedup.py
Figure 13: plot_dram.py
Figure 19: plot_energy.py

Figure 20: plot_insn_breakdown.py

To produce additional figures, such as our LumiBench results,
detailed utilization breakdowns, and sensitivity analysis, please
refer to the README file in the container for instructions.

FE. Evaluation and expected results

After running the experiments and the processing script,
results will be organized in the all_stats.csv file, which
contains all the simulation statistics. Separate PNG files will
be generated using the Python scripts for each figure. Note
that results may vary slightly between different systems, but
the general trends should match the figures in the paper.

G. Experiment customization

Other benchmark configurations can be executed manually by
using the provided binaries and command line arguments. For
example, the B-Tree benchmark can be run with the following
format:

\

./rtbtree [tree_size]
[random_seed]

[n_qgueries]
[tree_typel

The Vulkan-Sim configuration files can be modified in the
respective benchmark directories to reflect other architectural
configurations.
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