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ABSTRACT
Modern data center solid state drives (SSDs) integrate multiple
general-purpose embedded cores to manage �ash translation layer,
garbage collection, wear-leveling, and etc., to improve the perfor-
mance and the reliability of SSDs. As the performance of these cores
steadily improves there are opportunities to repurpose these cores
to perform application driven computations on stored data, with
the aim of reducing the communication between the host processor
and the SSD. Reducing host-SSD bandwidth demand cuts down the
I/O time which is a bottleneck for many applications operating on
large data sets. However, the embedded core performance is still
signi�cantly lower than the host processor, as generally wimpy
embedded cores are used within SSD for cost e�ective reasons. So
there is a trade-o� between the computation overhead associated
with near SSD processing and the reduction in communication
overhead to the host system.

In this work, we design a set of application programming inter-
faces (APIs) that can be used by the host application to o�oad a
data intensive task to the SSD processor. We describe how these
APIs can be implemented by simple modi�cations to the existing
Non-Volatile Memory Express (NVMe) command interface between
the host and the SSD processor. We then quantify the computa-
tion versus communication tradeo�s for near storage computing
using applications from two important domains, namely data ana-
lytics and data integration. Using a fully functional SSD evaluation
platform we perform design space exploration of our proposed
approach by varying the bandwidth and computation capabilities
of the SSD processor. We evaluate static and dynamic approaches
for dividing the work between the host and SSD processor, and
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show that our design may improve the performance by up to 20%
when compared to processing at the host processor only, and 6⇥
when compared to processing at the SSD processor only.
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1 INTRODUCTION
Processing large volumes of data is the backbone of many applica-
tion domains such as data analytics and data integration. In this
context the cost of transferring data from storage to compute nodes
starts to dominate the overall application performance. Applica-
tions can spend more than half of the execution time in bringing
data from storage to CPU [38]. In magnetic disk storage systems
the medium access time, such as seek and rotational latencies, dom-
inates the data access time. However, with the rapid adoption of
solid state non-volatile storage technologies the performance bot-
tleneck shifts from medium access time to the operating system
overheads and interconnection bandwidth. As such the prevalent
computational model which assumes that storage medium access
latency is an unavoidable cost must be rethought in the context of
solid state storage. In particular, the computing model must adapt to
the realities of bandwidth and OS overheads that dominate storage
access.

As modern solid state drives (SSDs) for data centers integrate
large DRAM bu�ers as well as multiple general-purpose embedded
cores that are often under-utilized, moving computation closer to
data storage becomes feasible. Previous work demonstrated the
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potential of using near-data processing models to o�oad data an-
alytics, SQL queries, operating system functions, graph traversal,
image processing, and MapReduce operations [4, 5, 8, 15, 16, 30, 32,
34, 36, 41] to data storage devices. Many of these prior works as-
sume the presence of a commodity general purpose processor near
storage. However, even high-end data center SSDs are equipped
with wimpy embedded cores. Apart from the cost and power con-
sumption constraints, one reason for the inclusion of only wimpy
embedded cores is that they already provide su�cient computing
capability to handle most of the current SSD operations, such as
protocol management, I/O scheduling, �ash translation and wear
leveling. For instance, recent SSD controllers that support NVMe
protocol and high bandwidth PCIe interconnects may partially uti-
lize only three low-end ARM Cortex R5 cores to support �rmware
operations [23, 31]. These cores are utilized up to 30% even in the
worst case. Hence while there is slack in utilizing the embedded
cores, it is not practical to o�oad large computation kernels to
these wimpy cores.

With wimpy embedded cores the choice of computing near
storage must be carefully managed. Sometimes it can be advan-
tageous to move computation to the embedded cores to reduce
host-storage communication latency by alleviating heavy tra�c
and bandwidth demands. On the other hand, with wimpy embedded
cores in-storage computation requires much longer processing time
compared to computing on host processors. Thus there is a trade-
o� between the computation overhead su�ered by wimpy cores
and the reduction in communication latency to transfer data to the
host system. In this paper we propose Summarizer, a near storage
computing paradigm that uses the wimpy near-storage computing
power opportunistically whenever it is bene�cial to o�oad com-
putation. Summarizer automatically balances the communication
delay with the computing limitations of near-storage processors.

This paper makes the following contributions:

(1) This work proposes Summarizer — an architecture and com-
puting model that allows applications to make use of wimpy
SSD processors for �ltering and summarizing data stored
in SSD before transferring the data to the host. Summa-
rizer reduces the amount of data moved to the host pro-
cessor and also allows the host processor to compute on
�ltered/summarized result thereby improving the overall
system performance.

(2) A prototype Summarizer system is implemented on a custom-
built �ash storage system that resembles existing SSD archi-
tectures but also enables �ne grain computational o�oading
between the storage processor and host. We enhanced the
standard NVMe interface commands to implement the func-
tionality of Summarizer, without changing the NVMe com-
patibility. Using this prototype, we demonstrate the bene�ts
of collaborative computing between the host and embedded
storage processor on the board.

(3) We evaluated the trade-o�s involved in communication ver-
sus computation near storage. Considering several ratios of
internal SSD bandwidth and the host to SSD bandwidth, ratio
of host computation power and SSD computation power, we
perform design space exploration to illustrate the trade-o�s.
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Figure 1: The architecture of a modern SSD

(4) Summarizer dynamically monitors the amount of workload
at the SSD processor and selects the appropriate work di-
vision strategy among the host processor and the SSD pro-
cessor. Summarizer’s work division approach quanti�es the
potential of using both the host processor and SSD processor
in tandem to get better performance.

The rest of this paper is organized as follows: Section 2 describes
the architecture of modern data center SSDs, performance of NVMe
for PCIe SSDs and motivates near SSD computing. Section 3 in-
troduces the architecture and the implementation of Summarizer.
Section 4 describes the applications used in this paper. Section 5
describes our methodology and implementation details. Section 6
presents the experimental setup and our results. Section 7 pro-
vides a summary of related work to put this project in context, and
Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION
Summarizer relies on the processing capabilities embedded in mod-
ern SSDs and the NVMe (Non Volatile Memory Express) commands
used by the host to interface with SSDs. This section provides a
brief overview of SSD architectures, the processing potential near
modern SSDs, and the NVMe protocol that the host uses to com-
municate with the SSD.

2.1 Architecture of modern data center SSDs
Figure 1 depicts the hardware architecture of a modern SSD sup-
porting NVMe protocol via PCI Express (PCIe) bus. Most SSDs use
NAND �ash memory packages as the primary non-volatile storage
elements. Each SSD may contain dozens of �ash chips which are
organized into multiple channels. Each �ash chip can be accessed in
parallel and all chips that share a single channel may be multiplexed
on that channel. Furthermore, multiple channels can be accessed in
parallel. Both the chip and channel level parallelism provides sig-
ni�cant internal bandwidth in SSDs. Typical high-end data center
SSDs can provide massive internal parallelism with multi-channel
topology of �ash memory packages and die-stacked fabrication
per package [6]. For instance, a commercial NVMe SSD today can
support 32 channels of MLC NAND �ash memory packages [26]
and achieve up to 4.5 GB/s total internal bandwidth [25]. Recent
advances in 3D NAND �ash technology achieve even higher data
bandwidth per package, thus recent SSD systems are capable of pro-
viding much higher internal bandwidth [24]. Rather than increasing

220



Summarizer: Trading Communication with Computing Near Storage MICRO-50, October 14–18, 2017, Cambridge, MA, USA

the internal bandwidth SSD designers use fewer packages of 3D
NAND to maintain the similar internal bandwidth level over many
generations. Increasing the internal bandwidth beyond the current
level is not very advantageous in SSD platforms since the external
bandwidth of even high-end NVMe SSDs currently saturates at less
than 4 GB/s due to bandwidth limitation on PCIe lanes.

To summarize we note that although increasing the internal
bandwidth of an SSD can be achieved by equipping multiple �ash
memory channels and advanced fabrication process, extending the
external bandwidth between host CPUs and SSDs would require
additional PCIe lanes from the processor. In fact the recent move
from SATA SSDs to NVMe SSDs in data centers was triggered by
the fact that SSD’s internal parallelism far exceeds the maximum
bandwidth supported by SATA, even though NVMe interface is
much more expensive than SATA [27].

To e�ectively manage the channel parallelism and internal band-
width, modern SSDs integrate embedded multi-core processors as
SSD controllers. These processors handle I/O request scheduling,
data mapping through �ash translation layer (FTL), wear-leveling,
and garbage collection. The controllers connect to �ash memory
chips through channels and issue �ash memory commands to per-
form I/O operation in each channel in parallel. SSDs also provision
a DRAM controller to interface with DRAM which acts as a tem-
porary storage for �ash data and also to store the controller data
structures. In addition to the embedded cores each SSD may also
contain several hardware accelerators to provide e�cient error
correction code (ECC) processing or data encryption.

The NVMe SSD attaches to the host computer system’s PCIe
interconnect through a standard PCIe slot or an M.2 slot. The
PCIe/NVMe interface fetches I/O commands such as read and write
operations from the host CPU and performs Direct Memory Access
(DMA) operations between the system interconnect and the SSD.
For instance, the host CPU may specify the memory address into
which the data must be placed after reading the data from SSD. The
NVMe interface then enables a DMA transfer from the SSD con-
troller to the host memory. Current generation NVMe SSDs support
dozens of host requests to be queued within the SSD controller’s
command queues. The controller may schedule these requests so as
to maximally utilize the available chip and channel level parallelism.

Thewrite behavior of �ashmemory is signi�cantly di�erent from
that of magnetic memory technologies. Every pa�e in �ash memory
becomes immutable after being written once. The page cannot be
updated again without the block containing it being fully erased.
One block can contain between 64 to 512 pages. Each block can only
be erased for limited number of times during its lifetime and block
erase operations are signi�cantly slower than page reads and writes.
To address these limitations and provide longer lifetime, the SSD
implements Flash Translation Layer (FTL) in the SSD controller.
The SSD uses general-purpose embedded processors to run the
�rmware for FTL operations. Basically, the FTL �rmware maps the
logical block address (LBA) requested from host applications to the
physical page address (PPA) in the �ash memory chips. This LBA-
to-PPAmapping table is cached in the DRAM on the SSD system for
faster access. In order to guarantee longer lifetime for entire �ash
memory cells, the wear-leveling algorithm is also applied for the
mapping table management process. In addition, the FTL �rmware

periodically executes garbage collection (GC) to reclaim space in
blocks with invalid pages.

2.2 Potential of in-SSD computing
While SSDs provision multiple embedded processors to improve
the performance of SSD controller functions, such as FTL manage-
ment and garbage collection, much of the compute power in the
controller remains under utilized. These underutilized embedded
cores provide opportunities for o�oading computation from the
application. In particular, as we look into the future the processing
power of even the embedded cores will continue to grow, even
though there is likely to be a large gap in the computing capabil-
ity of a host processor and the embedded core within each SSD.
This section will analyze the potential of using these embedded
processors to accelerate applications.

Note that even though the embedded cores are underutilized
the primary rationale for provisioning multiple cores is still perfor-
mance. The �rmware can partition the code to enable concurrent
execution of di�erent operations such as parsing commands, look-
ing up addresses, locking addresses that are being accessed, and
interfacing with �ash memory chips. The �rmware code also uses
several cores to perform garbage collection and wear-leveling in
the background. In our lab evaluations concurrently performing
4096 operations in a data center class SSD, the average utilization
of these SSD processors was always lower than 30% and there was
always at least one processor in idle state. The under utilization
remains the same even when performing garbage collection or
wear-leveling. While there is plenty of concurrency in FTL opera-
tions, each of the concurrent operation itself is relatively simple.
Hence, while multiple cores are useful to exploit concurrency, each
core’s utilization during any given operation remains low. Such
under utilization reveals the potential for using existing hardware
in these data center-scale SSDs for computation. For example, we
can add one more stage to the �ash data access pipeline to per-
form low compute intensity operation without impacting the SSD
controller performance. As long as the additional stage is shorter
than the current critical operation, the SSD will not su�er from any
degradation in throughput.

Among the steps in the �ash data access pipeline, we found that
the most time consuming step is accessing the �ash medium. Even
for the fastest �ash operation, read operation, a high-performance
single-level cell �ash memory chip still takes more than 20 micro-
seconds to complete the operation [25]. This delay is even longer for
multi-level �ash cells. Assuming that the �ash interface can access
b �ash channels simultaneously and the accessed data are evenly
distributed among all channels, and if each read operation takes t
seconds to complete, the “slack” that allows the computation stage
to �nish without hurting the throughput is t

b . This slack grows
even more when using multi-core processors. If each �ash page
contains p bytes of data, each embedded processor can process n
instructions each second, we can obtain the per-byte operation on
the �le data without a�ecting the throughput will be t⇥n

b⇥p when
we spare one core for in-storage computing. However, if the SSD is
provisioned with more cores or if the number of parallel operations
do not reach the peak performance, we may expect much larger
slack than this �rst order estimate. For example, if we can spare
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m cores for computation and perfectly parallelize the computa-
tion, the operation we can perform on each byte without a�ecting
throughput can be close to t⇥n⇥m

b⇥p .
For the MEX SSD controller that Samsung SSDs (such as the

EVO range) typically use, each processor core can execute 4 ⇥ 108
instructions per second. If we use this processor in an SSD with
32 banks and 8KB �ash pages, we �nd that the per-byte operation
must be restricted to only 1 instruction execution per-byte, or 4
operations per 4-byte word.

2.3 NVMe
NVM Express (NVMe) is a protocol for the SSDs attaching to PCIe
bus or M.2 interface [2]. NVMe avoids the disk-centric legacy of
SATA and SCSI interfaces and leverages PCIe to provide scalable
bandwidth. For example, 4-lane Generation 3 PCIe used in datacen-
ter NVMe SSDs supports up to 3.9 GB/sec full-duplex data transfer,
while SATA can typically only achieve 600 MB/sec. NVMe also
supports more concurrent IO requests than SATA or SCSI by main-
taining a software command queue that may hold up to 64K entries
for each processor core, and its command set includes scatter-gather
data transfer operations with out-of-order completion, further im-
proving performance.

NVMe is highly scalable and capable of servicing multiple I/O
requests in parallel. This makes NVMe a good candidate for mod-
ern data processing where the application needs to pull enormous
amounts of data from secondary storage and feed it into highly
parallel computing devices like GPUs.

NVMe supports a streamlined yet powerful set of commands that
can initiate and complete I/O operations. Each command has a �xed
length of 64 bytes containing information including a command
identi�er, the logical block address, and the length of the requesting
data. An NVMe command can also contain a list of Physical Region
Page (PRP) entries which enables scatter-gather data transfers be-
tween the SSD and other devices. The PRP entry can specify a list
of pairs of base address and o�set in host memory corresponding
to multiple sub-transfers that the device can execute out-of-order.

3 SUMMARIZER
As detailed in the previous section, there is su�cient compute ca-
pacity within the SSD controller to enable modest computation near
storage. As SSDs integrate more powerful computing resources then
the complexity of near-storage computing can also scale. In this sec-
tion we describe Summarizer which is our proposed near-storage
computing paradigm that automatically scales the near-store com-
puting capability without the need to rewrite the application soft-
ware with each new generation SSD. We �rst describe the system
architecture and then present our extended NVMe command sup-
port provided for the near-storage computation paradigm.

3.1 SSD Controller architecture
Figure 2 illustrates the overall architecture of NVMe SSD controller
and also highlights the additional components that are introduced
for enabling Summarizer (which are described in detail in the
next subsection). The host applications interact with NVMe de-
vice through the host-side driver and the SSD controller �rmware
running on an embedded processor in SSD. The host driver and the
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Figure 2: The overall architecture of NVMe controller and
Summarizer

controller �rmware on NVMe SSD device communicate via PCIe
bus. NVMe commands issued by the NVMe host driver are regis-
tered in the submission queues (SQs) within the host DRAM space,
and the doorbell signal corresponding to the requested command is
sent to the SSD controller to notify a new command request from
the host.

The major functions of the SSD controller are I/O control and
�ash translation layer (FTL) processing. The SSD controller receives
request commands from the host by reading the registered request
from the head of SQ. The SSD controller can fetch host request com-
mands as long as the registered requests exist in SQs. After fetching
the NVMe command it is decoded into single or multiple page-level
block I/O commands. Each page-level request has a logical block
address (LBA), which is translated to a physical page number (PPN)
by the FTL processing. The �ash memory controller accesses �ash
memory chips by the page-level commands.

For a NVMe read command the requested page data is fetched
from �ash memory chips through a series of physical page reads
and the fetched data is bu�ered in the DRAM on the SSD device.
Then the page data is transferred to the host memory via the di-
rect memory access (DMA) mechanism. After NVMe command
handling completes, the SSD controller noti�es the completion of
the previously submitted command by registering the NVMe com-
mand and its return code in the completion queue (CQ) on the host
memory.

3.2 Summarizer architecture and operations
In this section we describe the necessary hardware and software
modi�cations to the SSD controller architecture described above to
enable Summarizer. Summarizer can be implemented with some
minor modi�cations to the NVMe command interpreter and a soft-
ware module added to the SSD controller. We envision majority
of Summarizer functionality to be implemented in the interface
between the SSD controller and the �ash memory controller.

Summarizer has three core components: (1) a task queue struc-
ture, (2) a task controller module and (3) user function stacks as
shown in Figure 2. The task queue (TQ) is a circular queue which
stores a pointer to the appropriate user function that must be in-
voked when the host requests in-SSD processing on a given I/O
request. The task controller decides whether in-SSD processing is
performed for the fetched page data or not. If the controller decides
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to execute in-storage computation the target function is executed
from the user function stacks. In some cases the task controller
may not perform in-SSD processing even if the host requested for
such a processing. We explored two di�erent options for how the
controller can make such a determination, and these two options
are described later.

Summarizer-enabled SSDs allow the host to associate a speci�c
user-de�ned function to be executed on the SSD controller with
every data access request. To enable such an association we de�ne
the new NVMe commands to specify initialization, computation
and �nalization operations. The extended NVMe commands trig-
gering these three steps are listed in Table 1. In the list n after TSK
represents an identi�er of task TSK.

Command Description
INIT_TSKn Initialize variables or set queries
READ_PROC_TSKn Read page data and execute the computation

kernel for task n with the data
READ_FILT_TSKn Read page data and �lter the data by prede-

�ned queries
FINAL_TSKn Transfer outputs of FNn to the host

Table 1: New NVMe commands to support Summarizer

INIT_TSKn: When the host NVMe driver issues INIT_TSKn
command, the SSD controller calls the initialization function for
TSKn. This command essentially informs the Summarizer’s task
controller that the host intends to execute a user-de�ned task n
near storage. During the initialization step the task’s local variables
or any temporary data that may be used by that task are initialized.

READ_PROC_TSKn: READ_PROC_TSKn command resembles
the conventional NVMe READ command, except that this command
carries information regarding the desired task that may be executed
on the SSD controller once a page is read from the �ash memory.
Note that existing NVMe READ command has multiple reserved
bytes that are not used for any processing. We use these unused
bytes to specify the task id in the READ_PROC_TSKn command.
Like the conventional NVMe READ command, the SSD controller
issues the read request to �ash memory controller to fetch page

data. In addition the SSD controller also recognizes that the host is
requesting in-SSD processing for this data request and the process-
ing task is speci�ed in the task identi�er �eld (TSKn) of the NVMe
command itself. This information is tagged with the request. For
this purpose the request queue entry carries two additional �elds,
a 1-bit in-SSD compute �ag, and the task id �eld. These �elds are
set by the SSD controller when executing the READ_PROC_TSKn
command. In addition, the SSD controller adds the request to the
Summarizer’s task queue.

The �ash controller processes the read request by accessing the
appropriate channel and chip ids. The data fetched is �rst bu�ered
in the SSD DRAM and the completion signal is sent to the response
queue as in any regular SSD. In Summarizer the �ash controller
also transfers the two additional in-SSD computing �elds to the
response queue.

The response queue data is usually sent back to the host via DMA
by the SSD controller. However, with Summarizer the SSD controller
checks the in-SSD compute �ag bit. If the bit is set then it is an
indication that the host requested in-SSD computation for this page.
In this case the task controller decides whether in-SSD processing is
performed for the fetched page data or not. If the controller decides
on in-SSD processing then the computation task pointed by the
user function pointer registered in the TQ entry is invoked. The
bu�ered page data is used as an input of the computation kernel.
The intermediate output data produced by the computation kernel
updates the variables or the temporary data set that was initiated
by the initialization step.Then the special status code is returned to
the host to indicate that in-SSD computation is performed for the
corresponding page data instead of transferring entire page data to
the host’s main memory.

Task controller modes: The task controller in Summarizer
can execute either in static or dynamic mode. In the static mode
whenever in-SSD computing �ag is set then that computation is
always completed on the fetched data irrespective of the processing
delay of the embedded processor. In the static mode, when in-SSD
computation request is not possible since TQ is full, the return
process is simply stalled.

We also explored a dynamic task controller approach. When
Summarizer is running in the dynamic mode, if in-SSD computa-
tion is delayed in the SSD controller due to lack of computation
resource, the bu�ered page data is transferred to the host even
though READ_PROC_TASKn is issued by the host. This situation
happens when the service rate (execution time) of embedded proces-
sor is slower compared to the incoming rate of in-SSD computation
requests. Such congestion happens frequently in the presence of
very wimpy SSD cores if near data processing is applied aggres-
sively on fetched page data.

READ_FILT_TSKn: The operation of READ_FILT_TSKn is sim-
ilar to that of READ_PROC_TSKn except �ltering is performed
and �ltered data is transferred to the host. A �ltering request is
also a computation task but in this paper we consider a request
as a �ltering task if the host processor only o�oads part of the
computation task to the SSD processor and it retains some of the
computing for execution on the host. For instance, a �ltering task
may use a simple compare operations on speci�c data �elds within
a page to remove some data that is not needed at the host. The
�ltering conditions are pre-de�ned during the initialization step

223



MICRO-50, October 14–18, 2017, Cambridge, MA, USA G. Koo et al.

by INIT_TSKn command. The �ltered data size is recorded in the
reserved 8 byte region in the NVMe command and registered in
CQ when �ltering execution is complete.

FINAL_TSKn: The host machine can gather the output result
of the computation kernel for task n using FINAL_TSKn command.
When that command is issued the results stored in DRAM on SSD is
transferred to the host memory. The size of transferred data is also
logged in the reserved 8 byte �eld of the NVMe response command.

3.3 Composing Summarizer applications
As stated in Section 3.1 Summarizer piggybacks on page-level �ash
read operations to execute user-de�ned functions before returning
processed data to the host. As such there are some basic restrictions
on data layout and computing that must be followed. For instance,
the input data for Summarizer should be aligned at the page gran-
ularity (4 KB – 16 KB). If data overlaps across page boundaries, a
more complex Summarizer data management strategy is necessary.
In this work we instead provide data layout and computing API to
the programmer to satisfy the page granularity based computing
restrictions. In particular, we provide the following Summarizer
methods which serve as wrappers that allow conventional user
programs to use the proposed Summarizer NVMe commands.

STORE: To exploit the Summarizer it is necessary to align data
sets in a page size memory space. To support page-level alignment
STORE primitive of Summarizer API �rst assigns user data sets in
4 KB or 16 KB data space and then directly issues store block I/O
commands to the host NVMe driver. If the valid data is less than
one page then that page meta data stores the valid data size.

READ: The application programmer can use READ API to spec-
ify the data set to compute and the desired computation (i.e. SSD
functions) to apply on the data set. As data sets are aligned at
the page-granularity, the READ API will be translated into READ
_PROC_TSKn or READ_FILT_TSKn NVMe commands at page gran-
ularity. If the SSD does not support Summarizer functionality the
READ command will map to the default NVMe read command
thereby preserving compatability with all SSDs. Note that we as-
sume that the READ command is mapped to READ_PROC_TSKn
or READ_FILT_TSKn explicitly by the programmer.

COMPUTE: Recall that the SSD controller may optionally ex-
ecute the user function or may return the entire page data back
to the host. Thus the dynamic task controller approach requires
bit more e�ort on the host side code to determine whether a page
needs processing on the host or not, based on the response received
from the SSD controller. As such, the application programmer uses
the COMPUTE function as a wrapper to handle the di�erent re-
turn values from invoking the READ function. The COMPUTE
wrapper simply encapsulated all host function invocations under a
conditional statement that checks for the return code from the SSD
controller before initiating host side execution on a page.

GATHER: Since computation is distributed on both the host
CPUs and SSD devices it is necessary to gather output of kernel com-
putation performed on the SSD devices. So the GATHER wrapper
function in the application program issues the �nalization NVMe
command to collect processing output from the SSD devices. And
then the collected output is merged with the output from the CPU
computations by the programmer.

The programmer can compose in-storage Summarizer programs
using imperative programming languages like C and C++. Using
the Summarizer API, it is easy to extend the programs that execute
only on host system to also execute functions on the processor
near SSD. For the applications that we describe later in section 4, it
took us 3 � 10 person hours for each application on average (and
note that the e�ort level reduced once the �rst application conver-
sion was completed). As Summarizer inherits imperative program-
ming model, Summarizer leverages existing ARM programming
toolchains to generate the machine code running on SSD controller.

4 CASE STUDIES
Summarizer can provide bene�ts to a wide range of applications.
To evaluate the proposed model, we present several case studies
suited for Summarizer execution from database to data integration
areas and demonstrate how Summarizer helps avoid redundant
data transfer and improve application performance.

4.1 Data analytics
Decision Support Systems (DSS) are a class of data analytics where a
user performs complex queries on a database to understand the state
of their business. DSS queries are usually exploratory and prefer
early feedback to help identify interesting regions. Many of the DSS
queries perform signi�cant amount of database �ltering and only
use a subset of database records to perform complex computations.
The amount of computation per byte of data transferred is quite
low in these applications. Using Summarizer to enable data �ltering
or even executing the entire query near SSD helps reduce the data
bandwidth demands to the host.

Algorithm 1 TPC-H query 1
select l_return�ag, l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice⇤(1�l_discount)) as sum_disc_price,
sum(l_extendedprice⇤(1�l_discount) ⇤ (1+l_tax)) as sum_chrg,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(⇤) as count_order

from lineitem
where l_shipdate <= date ’1998�12�01’ � interval ’[DELTA]’
group by l_return�ag, l_linestatus
order by l_return�ag, l_linestatus;

Algorithm 2 TPC-H query 6
select sum(l_extendedprice ⇤ l_discount) as revenue
from lineitem
where l_shipdate >= date ’[DATE]’
and l_shipdate < date ’[DATE]’ + interval ’1’ year
and l_discount between [DISCNT]�0.01 and [DISCNT]+0.01
and l_quantity < [QUANTITY];

We run the TPC-H benchmark to test the performance of data
analytics. TPC-H is a well-known data warehouse benchmark. It
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consists of a suite of business oriented ad-hoc queries. We select
TPC-H queries 1, 6, and 14 that require several operations such as
where condition, join, group by and order by. These operations are
also performed in many other TPC-H queries. TPC-H queries 1,6,
and 14 are shown in Algorithm 1, 2 and 3 respectively. In our ex-
periments, we evaluate these queries on the TPC-H databases with
scale factors 0.1 (⇠100MB). Note that this scale factor is simply a
limitation of our prototype board (described in the next section) due
to the limited amount of capacity, not a limitation of Summarizer.

Algorithm 3 TPC-H query 14
select 100.00 ⇤ sum(case when p_type like ’PROMO%’
then l_extendedprice⇤(1�l_discount) else 0 end)
/ sum(l_extendedprice ⇤ (1 � l_discount)) as promo_revenue

from lineitem, part
where l_partkey = p_partkey
and l_shipdate >= date ’[DATE]’
and l_shipdate < date ’[DATE]’ + interval ’1’ month;

4.2 Data integration
Data integration is the problem of combining data from di�erent
sources and/or in di�erent formats. This problem is crucial for large
enterprises that maintain di�erent kind of databases, for better
cooperation among government agencies, each with their own data
sources, and for search engines that manage all kinds of web pages
on the Internet.

Similarity join is an important step in the data integration pro-
cess. While SQL provides support (such as join) to combine comple-
mentary data from di�erent sources, it fails if the attribute values of
a potential match are not exactly equal due to misspelling or other
structuring issues. Similarity join is an e�ective way to overcome
this limitation by comparing the similarities of attribute values, as
opposed to exactly matching corresponding values.

The similarity join problem can be de�ned as given a collection
of records, a similarity function sim() , a similarity threshold t and
a query record q �nding all the pairs of records, < q,x > such
that their similarity values are at least above the given threshold
t , i.e, sim(q,x) � t . We adopt the Overlap similarity which can be
de�ned as: O(q,x) = |q\x |

min( |q |, |x |) . We use the DBLP dataset which
is a snapshot of the bibliography records from the DBLP website. It
consists of nearly 0.9M records. Each record consists of the list of
authors and the title of the publication. The dataset is preprocessed
to tokenize each record using white spaces and punctuation. The
tokens in each record are sorted based on this frequency in the
entire dataset. The records are then sorted based on their lengths
(number of tokens). The pre�x �ltering based similarity join algo-
rithm that we implemented is shown in Algorithms 4, 5. First we
�lter each record x which is similar to q from the dataset using
the pre�x �ltering principle [42]. The pre�x �ltering principle is
as follows: Let the p-pre�x of a record x be the �rst p tokens of
x. If O(q,x) � t , then the (|q | � dt .|q |e + 1)-pre�x of q and the
(|x | � dt .|x |e + 1) of x share at least one token. Only the records
that pass the pre�x �ltering stage are veri�ed to check if they meet
the overlap similarity threshold.

Algorithm 4 Pre�x �ltering similarity join
Input: query Record q, tokenized dataset D, threshold t
Output: set of Records similar to q in D
S  �
for each x�R do

a = |q | � dt .|q |e + 1
b = |x | � dt .|x |e + 1
for i = 1 to a do

for j = 1 to b do
if q[i] == x[j] then

match  true
if match is true then

similar  Veri f �(q,x , t)
if similar is true then

S  S [ {x}
return S

Algorithm 5 Verify(q, x , t )
Input: Query Record q, matched record x , threshold t
minLen�th  min(|q |, |x |)
o�erlap  0
for i = 1 tominLen�th do

for j = 1 tominLen�th do
if q[i] == x[j] then

o�erlap  o�erlap + 1
similarit�  o�erlap/minLen�th
if similarit� > t then

return true

5 METHODOLOGY AND IMPLEMENTATION
DETAILS

Summarizer essentially trades computation near-storage with re-
duced bandwidth to the host. We evaluated four di�erent strategies
to study this trade-o�.

(1) The �rst strategy is our baseline where the entire compu-
tation is done on the host processor as is the case today. In this
baseline the host processor will receive all the data required for
computation from the SSD. (2) At the other extreme one may con-
sider doing all the computation at the wimpy processor near SSD,
which involves only communicating the output values and input
values related to the query with the host processor. All the data
required for computation is fetched and processed within the SSD.
(3) As the cores near SSD have relatively lower processing power, it
may be better to use host and wimpy SSD processors collaboratively.
To evaluate this strategy, we used two di�erent approaches. One ap-
proach is custom hand-coding of the workload. For the hand-coding
approach we analyze the applications and map computations to
processors according to the strengths of the processors. Intuitively,
computations which help in �ltering lots of data communication to
host processor shall be mapped at the processors near SSD. Part of
the program with high computational intensity shall be mapped to
the host processor. While computational intensity of any function
may be automatically quanti�ed based on simple metrics such as
total instruction count, in this paper we hand-classi�ed the DSS
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queries and data integration code into functions that are either
data intensive or computation intensive. (4) And the last approach
we evaluated is an automatic approach that dynamically selects
which pages to compute on the embedded core and which pages
to be processed on the host. The automatic approach is agnostic to
the entire workload when distributing the computation tasks. For
this mode, the host CPU sets all pages as in-SSD computation when
block requests are issued to the SSD device. Once the page data
is fetched from NAND �ash, the SSD controller checks the empty
slots in TQ. Recall TQ is a queue in Summarizer architecture where
a page is registered to be considered for processing near SSD. If
there are empty slots, the page is registered in TQ and the page
data is computed in SSD. Otherwise, all page data is transferred to
the host CPU without processing.

Clearly executing the entire workload on the host or SSD con-
troller is trivial. The only challenge here is to compile the workload
to run on two di�erent ISAs: the host processor in our implementa-
tion is based on x86 while the SSD controller core is based on ARM
core. However, collaborative execution on two processors requires
workload distribution. For the hand-coded version we used the fol-
lowing division of work for each workload as shown in the list be-
low. Note that there are several variants of this hand-coded version
that can be implemented (and we in fact evaluated some of these
variants), but as we show later in the results section hand-coded
optimization, while better than baseline, is generally outperformed
by the dynamic workload distribution approach. Dynamic approach
is much easier to adopt in practice. The programmer does not have
to worry about workload distribution and the system automatically
determines where to execute the code based on dynamic system
status.

• TPC-H query 1,6: For static workload distribution, we im-
plement the where condition at processor near SSD and then
transfer just the items of the record needed to do group by
and aggregation operations.

• TPC-H query 14:We implement hash join algorithm to per-
form equi-join operation between the lineitem and part table.
In this algorithm �rst is the build phase, in this phase using
the part table a hash table is built with the table key being
used for hashing and the item required in further processing
as the values in the hash table. In the next iteration, i.e. probe
phase, we traverse over the lineitem table and check if the
key item is present in the hash table. For processing at both
the processors strategy we check where condition at the
processor near the SSD and transfer only item of the record
that are needed for hashing and then aggregation.

6 EVALUATION
6.1 Evaluation platform
We evaluated the performance of Summarizer using an industrial-
strength �ash-based SSD reference platform. The architecture of
the SSD development board is illustrated in Figure 4. The board
is equipped with a multi-core ARM processor executing the SSD
controller �rmware programs (including FTL management, wear-
leveling, garbage collection, NVMe command parsing and communi-
cation with the host), and an FPGA where the �ash error correction
logic and NAND �ash memory controller logic are implemented.
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Figure 4: The SSD development platform

The ARM processor communicates with the host processor via PCIe
Gen.3 ⇥4 bus. Also, the ARM processor and the NAND �ash con-
troller logic on the FPGA transfers NAND �ash access commands
and data through PCIe buses on the SSD development board.

The NAND �ash controller on the FPGA accesses two NAND
�ash DIMMs that are equipped with 4 NAND �ash chips per DIMM.
The prototype board design faithfully performs all the functions of
commercial SSDs. Unlike commercial SSD devices our prototype
NAND �ash interface on the development board has lower internal
data bandwidth since the NAND �ash DIMMs have fewer NAND
�ash stacks and fewer channels. In addition, the NAND �ash con-
troller on FPGA runs with lower clock frequency due to the error
correction logic implementation limitations. These limitations are
purely due to cost considerations in designing our boards. Hence,
the internal SSD bandwidth observed in our board is signi�cantly
lower than commercial SSDs. To accommodate the lower internal
bandwidth limitation, the host-SSD bandwidth is also set to be
proportionally lower. In commercial Samsung SSDs the external
bandwidth is typically 2–4⇥ lower than the peak internal band-
width. Hence, the host-SSD bandwidth is set as 2⇥ lower in our
board compared to the internal FPGA-ARM core bandwidth.

Another implementation di�erence between our board and com-
mercial SSDs is that our board is equipped with more powerful
embedded cores than what is seen typically on commercial SSDs.
Compare to the reported clock frequency (400 or 500 MHz) of
commercial NVMe SSD controllers, the ARM processor on our de-
velopment platform runs at a faster peak clock frequency (1.6 GHz).
Hence, the host-embedded performance ratios favor more embed-
ded core computing. To mimic commercial SSDs we throttled the
ARM core frequency. In the next subsection we describe how we
select the throttling frequency.
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Figure 5: Execution time by the ratio of in-SSD computation

6.2 Calibration based on workload
measurements

We tested several database applications introduced in Section 4
on an Intel NVMe SSD platform for this study. First we measured
the ratio of I/O time to compute time of the applications in order
to throttle down the host CPU as well as the embedded core per-
formance of the SSD to meet the measured I/O and compute time
ratio on the SSD development platform. Table 2 shows the compute
time by I/O time ratio measured on the real NVMe SSD platform,
which is equipped with an Intel i5-6500 (4 cores running at 3.2 GHz)
with 8 GB DRAM and Intel NVMe SSD. The Intel NVMe SSD is
a 750 Series SSD with PCI-Express 3.0 and 20 nm multi-level cell
technology. We then ran the same workload on our platform to
create an equivalent processing to I/O ratio. Based on this ratio we
set the frequency of the ARM core to be 200 MHz. Note that some
of the reduction in frequency is also due to the smaller internal
bandwidth we have on our platform.

Data set Processing by I/O ratio
TPC-H query 6 0.42
TPC-H query 1 1.08
TPC-H query 14 0.39
Similarity Join 0.93

Table 2: Processing by I/O ratio on data center SSDs

6.3 Summarizer Performance
As described in methodology section, we consider workload divi-
sion at page-level granularity between the host processor and the
embedded processor near SSD. Figure 5 shows the performance
change by the degree of in-SSD processing. The X-axis indicates
the ratio of number of pages processed in-SSD with Summarizer
and number of pages processed at the host processor. Y-axis is the
execution time normalized to the baseline, namely all data is pro-
cessed in the host CPU. For this study we adjust the ratio of the
pages marked as in-SSD computation in the host application and
compare the performance change. Thus, zero on the X-axis means
all data is processed by the host CPU, namely that is a baseline. If
the ratio is one, it means all data is computed in SSD and the host
CPU receives only the �nal result.

The results where the X-axis shows speci�c numbers between
0 and 1 correspond to the static mode operation of Summarizer

as described in Section 3. The bar labeled DYN represents results
obtained using the dynamic mode of Summarizer. In the dynamic
mode, all page fetch requests from the host CPU are issued using
READ_PROC_TSKn commands. Summarizer dynamically decides
the in-SSD computation for the requested pages. HD means hand-
coded task o�oading for in-SSD computation. Simple tasks (e.g.
a database �eld �ltering function) are performed on the SSD to
reduce data tra�c. The READ_FILT_TSKn NVMe command is ex-
ploited to perform �ltering operations in the HD mode. We tested
the performance of the hand-coded version under Summarizer’s
static mode. Namely the �ltering tasks are performed in the SSD
regardless of available resources in the embedded processors.

Each execution time bar is split into two components: time spent
on the host side (labeled as host time in the bar), and time spent
on the SSD side (labeled as SSD time). When using the baseline
(X-axis label 0) the time spent on the SSD side is purely used to
read the NAND �ash pages and transfer them to the host. But for
other bars the time spent on the SSD side includes the time to read
and process a fraction of the pages on SSD. Clearly processing
only at the SSD (X-axis labeled 1) leads to signi�cant performance
degradation since the data computation takes longer on the wimpy
SSD controller core. The hand-coded version (labeled HD) provides
better performance than the static page-level SSD computation for
all or large percentage of pages but in general hand-coding is a
static approach that does not adopt to changing system state. As
the wimpy cores on the SSD get overloaded, even though �ltration
tasks do not require lots of computation resources, our result shows
static in-SSD o�oading approach is ine�ective as the I/O request
rates exceed service rate of wimpy cores.

The result in Figure 5 also demonstrates that placing all com-
putation on host processor or SSD processor does not deliver the
best performance. As such each application has a sweet spot where
collaborative computation between SSD and host gives the best
performance. But this sweet spot varies from workload to workload
and may even vary based on the input data. In the dynamic mode
Summarizer dynamically decides where the user application func-
tions are performed by observing the availability of the embedded
processor in the SSD. This dynamic approach can reduces the bur-
den of programmers in deciding the division of in-SSD computing
to achieve better performance while exploiting the computation
resources in the SSD.
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Figure 6: Performance improvement by internal/external bandwidth ratio

The performance of TPC-H query processing with DYN is im-
proved by 16.4%, 10.3% and 20.3% for queries 6, 1 and 14 respectively.
On average our current Summarizer prototype can improve the
TPC-H performance by 15.7%. For similarity join the performance is
improved by 6.9%. The percentage improvements that we observed
are directly related to the amount of computation that we need to
perform on each page of data. For TPC-H query 6 and 14 as most of
the records are �ltered by the where condition the amount of work
that we do at each page is less and the improvements are higher. For
TPC-H query 1 most of the records pass the where condition and
the amount of work done at each page is higher when compared
to TPC-H queries 6 and 14. Further, we observe that the amount
of work involved at each page in similarity join is even higher and
concomitantly the improvements are lower.

It is important to note that almost all the bars in the �gure
use collaborative computation between the host and SSD proces-
sor (except for 0 and 1). However, the performance improvements
achieved by DYN are not simply due to the availability of additional
wimpy CPU resource. As shown in the bars much of the gains come
from reduced I/O processing time, rather than having an additional
wimpy core on the SSD.

We must also emphasize that the performance improvements
seen in this �gure are somewhat constrained by the evaluation plat-
form that has severely limited internal bandwidth than commercial
SSDs. As such we believe that these results are only a demonstration
of the Summarizer potential rather than an absolute performance
gain.

6.4 Design space exploration: Internal/external
bandwidth ratio

Figure 6 shows the performance change as a function of the ra-
tio of internal data bandwidth between the SSD controller and
NAND �ash chips and external bandwidth of PCIe between the
host processor and SSD. As stated earlier, even though the internal
bandwidth of SSD is easier to increase, current SSD designers have
no incentive to increase the internal bandwidth since the external
bandwidth determines the system performance. Summarizer pro-
vides a compelling reason for decoupling the internal and external
bandwidth growth. As shown in the results in-SSD computation
is more bene�cial if internal bandwidth is higher than external
bandwidth.

6.5 Design space exploration: In-SSD
computing power

As Summarizer exploits the underutilized computation power of
SSD controller processors, it is expected that the performance ben-
e�ts from in-SSD computation will improve with more powerful
embedded processors in SSDs. In order to explore the performance
impacts of powerful embedded processors for in-SSD computation,
we measured the performance changes of the overall system by
changing the computation power of the embedded processor. As
mentioned in the previous section we throttled down the clock fre-
quency of the embedded core to mimic the operation of commercial
SSDs. We use the throttling capability to increase the frequency
of the embedded core up to 1.6 GHz for 8⇥ computation power,
or increase the number of cores for in-SSD computation (2 cores
running at 1.6 GHz for 16⇥ computation power). While frequency
is not a sole measure of performance we use it as a �rst order metric
in this study.

Figure 7 shows the performance change as a function of improved
computation power of the SSD controller when Summarizer runs in
the dynamic mode. Our experimental results show that the overall
performance can be improved up to 120% for TPC-H query 1 and
94.5% on average with in-SSD computation when the performance
of the embedded controller core is increased by 16⇥. As Summarizer
uses wimpy core to achieve the above result, Summarizer provides
one compelling argument for including a more powerful embedded
core in future SSD platforms.

6.6 Cost e�ectiveness
In addition to the model that Summarizer proposes, there are also
system design options that can improve application performance.
This section will compare the cost of Summarizer with other op-
tions.

Embedded processor vs Host processor: The result of Sum-
marizer may encourage system designers to equip SSDs with more
powerful processors. Even though using more powerful embed-
ded processor may increase overall cost of the SSD platforms, it
can still be more cost-e�ective considering the total cost of owner-
ship (TCO) of the entire system. As shown in Figure 7 the overall
performance is improved up to 94.5% on average with the more
powerful embedded processor assigned to the in-SSD computation.
This performance improvement is equivalent to doubling the host
processor cores, assuming that the entire application performance
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Figure 7: Performance improvement by SSD controller’s computation power
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is dependent on compute power, and the I/O time is negligible. But
in practice to achieve 95% performance improvement on data inten-
sive applications with signi�cant I/O component the host compute
power and the rest of system components such as the amount of
memory, number of PCIe lanes may need to be scaled up.

Figure 8 plots the performance improvement as a function of
price for an x86 host CPU and ARM embedded cores. Unlike x86
CPUs most of ARM SoCs are directly delivered to product manu-
facturers, thus it is hard to get exact price information. Hence, we
show the price changes of three versions of Raspberry Pi (RPi) that
are available on the market today in Figure 8a. RPi is a popular
single board computer that equips an ARM-based SoC including
video processing engines and various peripheral control IPs [40].
X-axis of the �gure is the CPU rating measured by CoreMark bench-
marks [10] and Y-axis is the price of the RPi boards. While the three
generation of RPis have di�erent system capabilities the CoreMark
is mostly a CPU benchmark. As such a 4⇥ improvement in Core-
Mark rating is achieved with less than $20 increase in price. While
we acknowledge that the price is determined by many factors in
the market, this is a �rst order approximation to demonstrate how
cost e�ective it is to improve wimpy core performance.

Figure 8b shows the price as a function x86 host CPU perfor-
mance as measured by the PassMark CPU benchmark [28]. The
prices and performance ratings are selected from Intel’s 6th and 7th
generation CPUs. The additional cost for doubling the performance
of x86 desktop CPUs is around $150 as reported in Figure 8b. Again,
we acknowledge that it should not come as a surprise to design-
ers that doubling x86 desktop CPU performance requires much
higher e�ort than doubling a wimpy core performance. And the
wimpy cores in the context of Summarizer are performing simpler

operations such as �ltering than a complex x86 CPU. However,
the purpose of this section is to demonstrate the cost e�ective-
ness of achieving higher system performance with cheaper in-SSD
processors.

External bandwidth: Another way to improve the perfor-
mance of the storage system is increasing the bandwidth between
the host machine and the SSD since higher external bandwidth
may alleviate data transfer congestion in the SSD. One approach for
higher external bandwidth is increasing the serial link speed of the
PCIe interconnect using higher clock frequency. However, this ap-
proach demands signi�cant advances of serial data communication
technology, and PCIe’s data transfer rate has not changed since the
PCIe version 3.0 which was released in 2010. Another approach is
to assign more PCIe lanes to the SSD. It requires more I/O pins on
the SSD controller SoC (64 pins for PCIe ⇥4 and 98 pins for PCIe ⇥8
connections) and more complex wiring on the SSD board, which
will cause signi�cant cost increase [13]. In addition, the SSD should
occupy more PCIe lanes on the host machine, which are limited
resources of the system. System cost also increases if the host CPU
and the motherboard support more PCIe lanes.

On the other hand Summarizer can reduce the data congestion
by consuming page data with in-SSD computation. Hence, Sum-
marizer not only releases the computation burden of the host CPU
but reduces the data tra�c from the SSD. Note that the data I/O
time is also reduced when Summarizer is applied as shown in Fig-
ure 5. Consequently with Summarizer the external bandwidth is
e�ectively improved since more pages are responded to the host
within the same period. This improvement is achieved without the
cost of increasing the PCIe bus bandwidth.

7 RELATEDWORK
Decades ago, projects including ActiveDisks, IDISKS, SearchProces-
sor and RAP [1, 3, 17, 19, 20, 33] have explored the idea of pushing
computation to magnetic storage devices. However, due to long
magnetic disk latency and relatively small input/output size, the
cost-e�ectiveness was limited.

With the growth of dataset sizes, data movement becomes an
increasingly signi�cant overhead when executing applications [11,
21, 43]. With improvements of non-volatile memory technologies
enabling rich bandwidth inside data storage devices, recent research
projects, including Summarizer, started to revisit the idea of pushing
computation near storage.
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Similar to Summarizer, Active Flash[4, 35, 36], SmartSSD[8, 16],
Active Disks Meets Flash [7] and Biscuit[12] also try to utilize the
embedded cores in a modern SSD to reduce the redundant data
movement to free-up the host CPUs and main memory. Active
Flash[35] for instance presents an analytic model for evaluating
the potential for in-SSD computation. But the implementation and
operational details were not presented. Summarizer presents a de-
tailed description of the application development to SSD o�oading
frameworks. SmartSSD[8] focuses on how to improve speci�c data-
base operations, such as aggregation, using in-SSD computation.
Biscuit[12] states that the approach is based on �ow-based program-
ming model. Hence, the applications running on Biscuit are similar
to task graphs with data pipes to enable inter-task communication.
Summarizer presents a set of general purpose NVMe commands
and a programming model that can be used across di�erent ap-
plication domains to show the full potential of in-SSD computing.
Summarizer presents an automated approach to determine when
to o�oad computations for applications written in imperative lan-
guages without any restrictions on the code structure.

Summarizer employees general-purpose ARM-based cores that
are popular in SSD controllers. Therefore, the system design can
implement most architectural supports that Summarizer needs
through updating the �rmware. On the other hand, Active Disks
Meets Flash[7], Ibex[41] or BlueDBM[15] leverages re-con�gurable
hardware or specialized processor architectures to achieve the same
goal, limiting the �exibility of applications but increasing the cost
of devices.

To expose hidden processing power in SSDs to applications, Sum-
marizer, Biscuit[12], Morpheus[39], SmartSSD[8], and KAML[14]
all extended standard NVMe or SATA protocols for applications
to describe the desired computation. Unlike KAML or SmartSSD
which extended the protocols speci�cally for database related work-
loads, Summarizer’s NVMe command set provides more �exibility
in using the SSD processors.

In terms of programming models, Summarizer leverages the ma-
tured development tools in ARMplatforms to compose and generate
code running on storage devices, without needing application de-
signers to deal with very low-level hardware details or signi�cantly
changing existing code. Biscuit’s data-�ow inspired programming
model [12] or the limited API support in Morpheus [39] are more
appropriate for speci�c application scenarios.

Summarizer utilizes existing processors inside �ash-based SSDs
that originally are used for FTL processing but are also idle most of
the time, thus minimizing the additional hardware costs. Processors-
in-memory [11], Computational RAMs [9, 18, 22, 29, 37], Moneta [5]
and Willow [34] require additional processors in the correspond-
ing data storage units, decreasing the cost-e�ciency of proposed
designs.

8 CONCLUSION
Big data analytics are hobbled by the limited bandwidth and long
latency of accessing data on storage devices. With the advent of
SSDs there are new opportunities to use the embedded processors
in SSDs to enable processing near storage. However, these proces-
sors have limited compute capability and hence there is trade-o�
between the bandwidth saved from near storage processing and

the computing latency. In this paper we present Summarizer a near-
storage processing architecture that provides a set of APIs for the
application programmer to o�oad data intensive computations to
the SSD processor. The SSD processor interprets these API calls
and dynamically determines whether a particular computation can
be executed near storage. We implemented Summarizer on a fully
functional SSD evaluation platform and evaluated the performance
of several data analytics applications. Even with a severely restric-
tive SSD platform we show that when compared to the baseline
that performs all the computations at the host processor, Summa-
rizer improves the performance by up to 20% for TPC-H queries.
When using more powerful cores within the SSD, we show that
this performance can be boosted signi�cantly thereby providing a
compelling argument for higher near-SSD compute capability.
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