
Shared-Page Management for Improving the Temporal Isolation of
Memory Reservations in Resource Kernels

Hyoseung Kim and Ragunathan (Raj) Rajkumar
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, USA

hyoseung@cmu.edu, raj@ece.cmu.edu

Abstract—Memory reservation provides real-time applica-
tions with guaranteed memory access to a specified amount
of physical memory. However, previous work on memory
reservation primarily focused on private pages, and did not
pay attention to shared pages, which are widely used in
current operating systems. With previous schemes, a real-time
application may experience unexpected timing delays from
other applications through shared pages that are shared by
another process, even though the application has enough free
pages in its reservation. In this paper, we describe problems
with shared pages in real-time applications, and propose a
shared-page management mechanism to enhance the temporal
isolation of memory reservations in resource kernels that use
resource reservation. The proposed mechanism consists of two
techniques, Shared-Page Conservation (SPC) and Shared-Page
Eviction Lock (SPEL), each of which prevents timing penalties
caused by the seemingly arbitrary eviction of shared pages.
The mechanism can manage shared data for inter-process
communication and shared libraries, as well as pages shared
by the kernel’s copy-on-write technique and file caches. We
have implemented and evaluated our schemes on the Linux/RK
platform, but it can be applied to other operating systems with
paged virtual memory.

Keywords-Real-Time Memory Management, Shared Page,
Memory Reservation, Temporal Isolation

I. INTRODUCTION

Virtual memory can play an essential role in real-time
and cyber-physical systems. Since the systems interact with
external environmental factors, such as unexpected workload
surges and severe weather changes, they will get increas-
ingly large and complex and will need flexible memory
management to meet their varying memory requirements.
For example, Boss [20], the autonomous vehicle that won
the 2007 DARPA Urban Challenge, executes multi-level
perception and prediction algorithms along with running
software for data fusion from tens of sensors equipped within
the vehicle. In this system, the data calculation time and
memory requirement of each software component can vary
according to external road conditions. We therefore need
to provide not only temporally predictable but also flexible
memory management mechanisms for real-time and cyber-
physical systems.

Much research has been conducted on real-time memory
management. Specifically, memory reservation [5] provides
guaranteed and predictable memory access performance to

Table I
NUMBER OF SHARED PAGES USED BY EACH PROCESS IN LINUX

Application Private Shared Total Shared/Total
(code/data) (code/data) (%)

Rhythmbox 13722 4958 18680 26.5
MP3 Player (3999/9723) (4635/323)
Minitube 11664 10375 22039 47.1
YouTube Client (5128/6536) (5140/5235)
Sound-Rec 3849 2898 6747 42.9
GNOME Voice Recorder (862/2987) (2571/327)

Sound-Rec x 2 (#1) 2990 3758 6748 55.7(2/2988) (3431/327)

Sound-Rec x 2 (#2) 2978 3765 6743 55.8(2/2976) (3426/339)
MPlayer 3866 777 4643 16.7
Video Player (1160/2706) (771/6)

MPlayer x 2 (#1) 2800 1937 4737 40.9(0/2800) (1931/6)

MPlayer x 2 (#2) 2804 1937 4741 40.8(0/2804) (1931/6)

real-time applications. It allows an application to reserve
a portion of the total system memory for its exclusive
use, and these reserved memory pages can never be stolen
by other applications even if the system is under memory
pressure. If the application needs more memory than the
size of its reservation, pages are swapped within its own
reservation area to satisfy subsequent requests. This makes
the primary performance effect of the application’s memory
access be contained within its reservation set, thereby pro-
viding temporal isolation to each application. Moreover, as
memory reservation provides an abstraction for a logically
partitioned physical memory area, other real-time memory
techniques such as page replacement [7], prefetching [2],
and dynamic memory allocation [11] can run on top of
memory reservation, and each memory reservation set could
be allowed to choose the best-suited memory technique and
parameters for its associated applications.

In previous approaches including memory reservation [5]
and other similar schemes [8][1], shared pages are implicitly
assumed to be an insignificant factor in the real-time per-
formance of applications, so the impact of shared pages has
not been appropriately studied. However, recent operating
systems with paged virtual memory widely use shared pages
for inter-process communication (IPC) and shared libraries.
Besides, some operating systems like Linux aggressively
share memory pages for efficiency, e.g., the copy-on-write
technique for data pages and code page sharing for multiple

instances of a single application. Table I presents private
and shared page usage of multimedia applications in an
Ubuntu 10.04 Linux system. The numbers in the table are
the number of pages residing in physical memory, and the
size of each page is 4096 bytes. An interesting aspect to
observe is that the number of shared pages is changed when
we execute the same application twice. For example, in the
fourth row of the table, the number of shared pages of a
single instance of the Sound-Rec is 2898, but the number of
shared pages is increased to 3758 when we launch another
instance. Similarly, in the case of MPlayer, the percentage of
shared pages to total pages is changed from 16.7 to 40.9%,
after we run the second instance of MPlayer. The usage
of shared pages may vary according to system load and
application characteristics, but it is fairly obvious that shared
pages are not negligible in current operating systems.

In this paper, we first show how shared pages can affect
the performance of real-time applications across the bound-
aries of memory reservation sets. Existing techniques cannot
avoid temporal interference across reservation sets, if they
share memory pages and any of them swaps out the shared
pages. Then, we propose a shared-page management scheme
for memory reservation to provide temporally predictable
and isolated memory access to real-time applications using
shared pages. We propose two techniques, Shared-Page
Conservation and Shared-Page Eviction Lock, each of which
avoids any unexpected timing penalties from shared pages,
thus promising improved temporal isolation to memory
reservation. Our techniques reside in the same layer as
memory reservation so that they do not restrict existing page
replacement policies, and can run with other higher-level
real-time memory techniques. We have implemented and
evaluated our techniques by extending the Linux/RK plat-
form [14][18]. The experimental results show the practicality
and the effectiveness of our approach.

II. RELATED WORK AND BACKGROUND

We discuss related work on real-time memory manage-
ment and describe the background on the memory reserva-
tion [5], on which our approach is based.

A. Related Work

Eswaran et al. [5] proposed the memory reservation tech-
nique for real-time applications. It ensures that a specified
number of physical pages is reserved for an application,
enforcing the maximum memory usage of the application
and protecting the reserved pages from other applications.
In [5], the authors also provided compatibility with the
Resource Kernel abstraction [18] and studied energy-aware
memory management by using the reservation approach.
Kato et al. [8], inspired by the memory reservation ab-
straction, enhanced it for interactive real-time applications
by introducing a common buffer page pool for memory
reservations. Hand [6] focused on an application-level self-
paging technique within the Nemesis operating system,
which is similar to the memory reservation approach. All

these previous schemes, however, do not consider how to
deal with shared pages. Only the Linux Memory Cgroup
[1] manages shared pages by using the first-touch approach,
but it is insufficient to provide real-time applications with
guaranteed access to shared pages, because the shared pages
can be arbitrarily evicted by an application that first accessed
the pages.

The memory locking mechanism [9][19] has been used
in some real-time systems in which locked pages cannot
be swapped out by others. However, page locking by itself
does not provide any isolation between applications, because
locking may incur pages of other applications to be swapped
out when the system is under memory pressure. Besides,
locking all pages of real-time applications can easily lead to
wasted memory resources.

Instead of statically locking all pages, the insertion of
paging hints based on compile-time application analysis
[15][3][10] was proposed to efficiently control page lock
and release at run-time. Hardy et al. [7] and Puaut el al.
[16] suggested the explicit specification of page loading and
eviction points in real-time applications. These approaches
assume that their target application is temporally indepen-
dent of other co-running applications, which is not true when
shared pages are used.

Real-time memory management techniques in the con-
text of dynamic memory allocation have also been studied
in [11][17][12][13]. They aim to meet changing memory
demands of user-level applications under real-time tim-
ing constraints. Belogolov et al. [2] suggested scheduling-
assisted prefetching to improve the performance of demand
paging. Our work does not conflict with these approaches,
and we expect that the memory reservation architecture
can embrace them to provide sophisticated and customized
memory management for each application.

B. Memory Reservation

As we mentioned in the previous section, memory reser-
vation aims to provide predictable and enforced access to
memory resources. With memory reservation, a real-time
application can specify its memory demands, and after mem-
ory is reserved, the requested memory pages are exclusively
used by the application. Other applications cannot take the
reserved pages away; thus, the application with the memory
reservation can expect constant performance regardless of
the existence of co-running applications. Memory reserva-
tion also ensures that the potential abuse of memory by
any application does not affect the performance of other
applications. In the case that an application needs more
memory than its reservation, pages are swapped within its
own reservation. Currently, memory reservation is imple-
mented as a part of the Linux/RK platform [14].

The parameters for memory reservation include the size
of memory required by the application in bytes and the
reservation type. The reservation size is translated to the
number of pages depending on the page size supported by
the target system architecture. The memory reservation type

Memory Reservation #n
Memory Reservation #2

Memory Reservation #1
Free List

Active List

Inactive List

Page
Allocation

Page Reclaiming
Scan

Page
Reference

Page Reclaiming
Scan

Figure 1. Page lists and movement in memory reservation

specifies the handling policy when every free page in the
reservation is exhausted. The type can be chosen as hard
or firm. With a hard reservation, an application bound to
it is not allowed to use pages beyond the reserved size of
memory, even though unreserved free pages are available in
the system. This provides a strict sand-boxing mechanism
for enforcing memory usage. With a firm reservation, an
application is allowed to use free pages from an unreserved
area when the reserved pages are exhausted, but these
borrowed pages will be retrieved in the case of a system’s
memory pressure. In this paper, we only consider the hard
reservation type for simplicity.

Memory reservation can adopt any page replacement
policies, but the current implementation approximates the
Least-Recently-Used (LRU) algorithm by using the FIFO
with Second-Chance algorithm. Figure 1 shows the active,
inactive, and free lists in a memory reservation, following
the design of the Mach page replacement implementation
[4]. Each memory reservation has these lists and moves
pages according to page references. The memory reservation
allocates pages from the free list when a page fault has
occurred. A page scan is triggered when a free page is
needed and the free list is empty. Page reference information
is obtained by examining the Page Table Entries (PTE) of
the applications belonging to the reservation.

III. PROBLEMS WITH SHARED PAGES

In this section, we describe three problem scenarios
caused by shared pages. With existing memory partitioning
and reservation approaches, shared pages can be arbitrarily
swapped out to disk even though they are being used by
other real-time applications.

A. Shared Pages under Global Memory Management
The first case occurs when the memory reservation or

partitioning technique ignores shared pages and lets the
global memory management policy manage them. Most
current operating systems adopt the LRU policy for page
replacement, and the shared pages are handled along with
other pages by the LRU policy. Under memory pressure,
the kernel scans pages in use and selects victim pages by
observing whether the page has been recently accessed.
Since the global paging policy is unaware of the importance
of each page, the shared pages being used by a real-time
application are handled in the same way as other (shared
and private) pages; hence, they can be evicted if they are

Physical Memory

0x0100

0x0100 1

0x0101 1

0x1000 0
...

0x1000 1

0x2000 0

0x2200 0

0x0101

0x1000

0x2000

0x2200

Memory Reservation #1

Active List

Inactive List

...

0100 0101

1000

Memory Reservation #2

Active List

Inactive List

1000

2000 2200

Page-Sharing

Page Table of PA

Page Frame # REF.

Page Frame # REF.

Page Table of PB

Figure 2. Page sharing among multiple memory reservations

relatively less recently accessed than other pages. The real-
time application therefore can experience timing penalties
when it tries to access the evicted shared pages, though the
application has enough reserved free pages in its reservation.
The global paging policy may lock every shared page to
avoid this problem. However, it will unnecessarily consume
excessive memory resources, because the size of shared
pages in a system is not trivial as shown in Table I, and many
of them may not be actually used by real-time applications.
Therefore, shared pages for real-time applications should be
managed using other schemes.

B. Shared Pages in Memory Reservation

The second case happens when shared pages are under the
control of the existing memory reservation approach, which
handles shared pages in the same way as private pages.
Figure 2 shows an example of shared pages with multiple
memory reservations. There are two applications, PA and
PB , having their own reservation set, and they share two
physical pages; hence, each of the two corresponding page
table entries indicates the same physical memory address
to access the shared page. According to the current memory
reservation scheme, the shared pages belong to each memory
reservation set which in turn has the right to control the
shared pages in the same way as private pages. In this
example, the reference bit of PA’s page table entry for the
shared page 0x1000 is zero, because PA did not access the
page recently. From PA’s perspective, it is reasonable to
evict the page 0x1000 under its memory pressure. Con-
versely, PB frequently accesses the page 0x1000, so the
reference bit of the PB’s page table entry is one. Here, if
PA evicts the shared page 0x1000, PB will experience a
timing penalty that does not appear when it runs alone in
the system. If PA does not evict this shared page, PA needs
to evict another page instead and different temporal results
may result. In effect, the shared page weakens the temporal
isolation capability of memory reservation.

The timing penalty caused by the unexpected eviction
of shared pages consists of page fault exception handling
delay and page swapping-in delay. The page fault handler
performs free page allocation and page table mapping for
an application, and it leads to extended kernel time for the
application. Page swapping-in needs I/O operations, which

User Mode

Execution time
= Completion time
= 70msec

Time (msec)

Run

0

1

0 50 100 150

(a) Execution time in normal condition

User Mode
Kernel Mode

handle_mm_fault
swapin_readahead

alloc_pages

Execution time
= 72msec
Completion time
= 87msec

128 pages evicted by
another task's LRU policy

Time (msec)

Run

0

1

0 50 100 150

(b) Execution time with shared-page eviction

Figure 3. Self-suspension caused by arbitrary eviction of shared pages

may produce unwanted jitter. Also, the application needs to
be blocked until the completion of an I/O operation, inducing
self-suspension delay. The important thing here is that this
self-suspension is not inherent in the application itself. Even
if the real-time application has sufficient memory reserva-
tion and runs with high CPU scheduling priority, it may
experience self-suspension due to co-running applications at
any time. Figure 3 shows a simple test result illustrating
the self-suspension due to shared-page eviction. We created
10MB of shared memory area using the shmem system call
and a test application accessing the shared memory area
periodically. We ran the application with 20MB of memory
reservation and a real-time scheduling priority on Linux/RK.
Figure 3(a) shows the per-period execution time of the test
application. The y-axis of the graph represents the execution
state of the task; 1 means that the task is currently running;
0 means another task is being scheduled. During execution,
neither page faults nor context switching occurred, so the
completion time was same as the execution time. While
this application was running, we ran the same application
again with a normal priority. We intentionally gave the
second instance 10MB of memory reservation, which was
not enough to keep all the shared pages and its code pages.
Figure 3(b) shows the execution time of the first instance
of the application, when 128 shared pages were evicted by
the second instance. The LRU policy of the second instance
kept selecting pages in the shared memory area as victims
to page out because its private code and data pages are
more frequently accessed than each of the shared pages.
Unlike the case of running alone, both the execution time
and the completion time were noticeably extended, even
though the number of evicted pages was much less than
the number of shared pages. This simple test implies that the
impact of self-suspension by shared pages can become more
severe in complex real-time systems. Moreover, a real-time
application may not meet its deadlines due to unpredictable
self-suspension delay.

C. Shared Pages in Linux Memory Cgroup
The Linux kernel provides the memory cgroup function

to isolate and limit the memory usage of applications. It is
conceptually similar to memory reservation, but it handles
shared pages using the “first-touch” approach. In a memory

cgroup, every shared page is accounted for and managed by
a single owner group which first accessed the page. This
means that other applications also can use the pre-owned
page, but the single owner has a right to control the page.
This approach has two drawbacks. First, when the owner is
under memory pressure, shared pages can be evicted if they
have not been recently used by the owner. This will cause
timing penalties to other groups accessing the shared pages.
Second, this approach makes it hard to accurately account
for the memory usage of applications. If an application uses
some pages owned by other applications, its memory usage
may seem smaller than when it runs alone.

IV. SHARED-PAGE MANAGEMENT FOR
TEMPORAL ISOLATION

Our proposed shared-page management schemes include
Shared-Page Conservation (SPC) and Shared-Page Eviction
Lock (SPEL). Both techniques prevent the self-suspension
and the page fault handling delays caused by the shared-
page eviction of co-running applications. We also describe
a combined use of SPC and SPEL, which reduces the total
memory usage of the system.

A. Shared-Page Conservation (SPC)

A real-time application using shared pages should ideally
have guaranteed memory access timing delays, regardless
of the existence of co-running applications. The key idea
behind SPC to solve this problem is that it does not really
swap out pages when an application selects a shared page
as a swap-out victim. This technique merely unmaps the
shared page from the application’s page table and maintains
the page in physical memory. From the application’s point
of view, one page is removed from its reservation; hence, it
can get a new free page. The other applications sharing the
page are not affected, because the page remains in physical
memory and no changes are made to their page tables. Under
the control of this technique, only private pages are evicted
to secondary storage.

A new data structure called the Conserved-Page List
(CPL) is used to manage these unmapped shared pages.
When an application running with its memory reservation
accesses a page for the first time, a page fault exception
occurs, and the kernel inserts a virtual/physical address
mapping into the application’s page table. If a free physical
page allocation is required, the memory reservation uses
one free page from its free page list. Otherwise, if the
target page already resides in physical memory, the memory
reservation includes the page in its local LRU list. In
the case of the existing memory reservation approach, it
returns one free page from the reservation’s free list to the
global memory manager, to maintain the constant maximum
effective size of the reservation. SPC, however, does not
return the free page when the newly added page is being used
by another reservation. Instead, the technique conserves the
free page in the Conserved-Page List (CPL). The conserved
page is not allowed to be used for page allocation, so the

Mem Rsv R1

Owner
(R1)

Acrive/Inactive List

Conserved-Page List (CPL)

Mem Rsv R2

Acrive/Inactive List

(a) Page sharing among R1 and R2

Mem Rsv R1

Active/Inactive List

Mem Rsv R2

Active/Inactive List

(b) Page unmapped from R1

Mem Rsv R1

Active/Inactive List

Mem Rsv R2

Active/
Inactive List

(c) Page unmapped from R2

Figure 4. Page sharing and unmapping with Shared-Page Conservation (SPC)

effective memory size of the reservation does not change.
The minimum number of pages in a CPL can be zero,
when the reservation owns every shared page it uses, or the
reservation does not use any shared pages. The maximum
possible number of pages in a CPL is equal to the size of the
memory reservation; this is the case when the reservation
uses only the shared pages which are owned by others.
Figure 4(a) shows an example of page sharing of two
memory reservations under SPC. Each reservation has six
pages, and they share one page. Since the shared page was
initially allocated from R1, the reservation R2 stores one
free page in its CPL.

As mentioned before, when an application selects a shared
page for a swap-out victim, the proposed technique unmaps
the shared page from the application’s page table and main-
tains the page in physical memory. Here, it needs to provide
a free page to the application. If the application requests a
free page from the global memory manager, it may take a
long time because of competition with normal non-realtime
applications. To avoid this delay, the technique therefore
makes the application obtain a free page from a CPL.
When the shared page was allocated from the application’s
reservation, one of the other reservations using the shared
page is selected. Any policy can be used for selecting a
reservation, but it may depend on the implementation of
how the reservations sharing the page are managed, e.g. a
FCFS list for each page. The selected reservation takes a free
page out of its CPL and gives the page to the application.
The selected reservation then becomes a new owner for the
shared page. Figure 4(b) is an example of this case. R1

selects the shared page for a victim and unmaps it from its
active/inactive list. The shared page becomes a private page
of R2, and R2 gives one free page from its CPL. On the
other hand, when the victim shared page is owned by another
reservation, the application takes and uses a free page from
its CPL. Because the application is not the owner of the
shared page, the application has conserved a free page since
it accessed the shared page for the first time, so there is at
least one free page in its CPL. After this procedure, if the
shared page is no longer used by more than one reservation,
it becomes a private page. In Figure 4(c), now R2 selects
the shared page for a victim. The shared page is unmapped

from R2 and becomes a private page of R1. Then, R2 takes
a free page out of its CPL and includes the page in its
active/inactive list.

The advantage of this technique is that it runs automat-
ically without any user intervention. Since the technique
uses the page-table modification points, it supports not
only user-visible shared pages, such as IPC and shared
libraries, but also user-invisible shared pages, copy-on-write
and file caches. The disadvantage of this technique is that it
cannot get the benefit of reduced memory usage of page-
sharing, because it conserves free pages for each shared
page. However, since it does not permanently lock the entire
shared page area, it can provide better memory availability
to private pages with a given amount of physical memory,
when the working set size of shared pages changes at run-
time. We will further discuss this issue in the Section IV-C.

B. Shared-Page Eviction Lock (SPEL)

The SPEL scheme prevents the arbitrary eviction of shared
pages by locking specified shared pages. Since locking
all private/shared pages is infeasible due to the limited
size of physical memory, we suggest locking only shared
pages which may cause inter-task interference. The locked
shared pages are never evicted during the execution of
applications. Using this lock information, we can reduce the
size of physical pages occupied by memory reservations.
For example, suppose that there are n memory reservations,
each of which reserves MR pages and shares MS pages. If a
user specifies an eviction lock for the shared pages, we can
safely deallocate (n−1)MS pages from the reservations, so
the total size of physical pages for the reservations becomes
nMR − (n − 1)MS = n(MR − MS) + MS . Run-time
cancellation of SPEL is undesirable, because it needs to
request free pages from the global memory manager, which
may introduce an unexpected delay when the system is under
memory pressure, thereby nullifying the benefit of memory
reservation scheme.

SPEL can be specified with the virtual memory infor-
mation of a process, which can be easily obtained from
memory-map reporting tools, such as the pmap command.
Figure 5 is an example snapshot of the memory map. It
shows a starting address, size, and a symbol of each virtual

0000000000400000 8K r-x-- /opt/testapp_shm

00007f5880761000 10240K rw-s- [shmid=0x1a0014]

...

00007f5881161000 96K r-x-- /lib/libpthread-2.11.1.so

...

00007f588137e000 1512K r-x-- /lib/libc-2.11.1.so

...

00007f5881701000 520K r-x-- /lib/libm-2.11.1.so

...

00007f5881984000 28K r-x-- /lib/librt-2.11.1.so

...

Shared data
(shmem)

Pthread Lib.

POSIX RT Lib.

C Lib.

Math Lib.

Figure 5. Memory map example captured by using pmap command

Execution time

Reservation size (MR)

Memory usage of
shared mem region (Si)

Execution time

Reservation size (MR')

Memory usage of
shared mem region (Si)

(a) w/ SPC (b) w/ SPEL

Mem
size

Available private pages
(MR - Avg(Si)

Available private pages
(MR' - Max(Si))

SPEL Lock = Max(Si)

Figure 6. Memory usage compasiron of SPC and SPEL

memory area, including shared data and shared libraries.
The advantage of SPEL is that it yields a system-level

memory benefit by reducing the size of physical memory
usage of memory reservations. However, since we are not
able to reclaim the locked pages at run-time, the inappropri-
ate use of eviction locks, such as locking infrequently-used
pages, could introduce poor memory efficiency. Moreover, a
memory reservation is required to exceed the size of locked
shared pages, so it may increase the minimum memory
requirement for executing an application. We therefore next
consider using SPC and SPEL together.

C. Combined Use of SPC and SPEL

As shown in Figure 5, multiple shared memory regions
exist in a process’s virtual memory space, and the SPC
and SPEL schemes can be applied to each of these shared
memory regions. Both techniques are able to avoid timing
penalties from the shared page eviction, but they have
different memory usage characteristics. Here, we explain
how to apply either SPC or SPEL for each shared memory
region. The purpose of the combined use of SPC and SPEL
is to reduce the total physical memory usage of memory
reservations, while providing the same amount of memory
availability to private pages.

Figure 6 compares the memory usage of the SPC and
SPEL schemes. X-axis presents the execution time of an
application, and Y-axis corresponds to the size of memory.
The working set size of a shared memory region Si changes
during the application’s execution. Figure 6(a) shows the
available memory size for private pages under the given
reservation size MR with the SPC scheme. Since SPC does
not permanently allocate the entire shared memory region,
the application can use MR − Avg(Si) of memory for
private pages on average. In Figure 6(b), SPEL locks the
shared memory region Si, and the locked memory size
is equal to the maximum usage of Si. With the given

MemReserve

...

...

struct page

memrsv

memrsv

struct
mem_reserve_page

...MemReserve

...
NULL

page

localLRU
owner

(shared)

rsvset

MemReserve

...

...

struct page

memrsv

Page
Frame

struct page

memrsv

size

active list
inactive list
conserve list

size

active list
inactive list
conserve list

page

localLRU
owner

(private)

rsvset

page

localLRU
owner

(shared)

rsvset
page

localLRU
owner

(shared)

rsvset

size

active list
inactive list
conserve list

struct
mem_reserve_page

struct
mem_reserve_page

Figure 7. Data structure used by our implementation

reservation size MR
′, the available pages for private memory

is MR
′ −Max(Si). In order to provide the same memory

availability for private pages as the SPC scheme, MR
′ should

be larger than MR
′ and can be represented as MR

′ =MR+
Max(Si)−Avg(Si). Even though SPEL may increase indi-
vidual memory reservation’s size MR

′, it can reduce the total
memory usage of memory reservations. When n memory
reservations share Si, SPC requires nMR regardless of the
size of the shared region. On the other hand, SPEL requires
nMR

′− (n−1)Max(Si) = nMR+Max(Si)−nAvg(Si).
If Max(Si) is less than nAvg(Si), SPEL consumes fewer
physical pages than SPC. The opposite case can also happen
when n is small or the maximum usage is much larger
than the average usage. Based on this observation, we can
selectively apply SPC and SPEL to each shared memory
region to reduce the total physical memory usage of memory
reservations.

V. IMPLEMENTATION

In this section, we describe our implementation on
Linux/RK [14] which is based on the Linux 2.6.32.42 kernel.
We have targeted the 64-bit x86 architecture and use the
typically used configuration of 4KB page frames.

Our proposed shared memory management scheme needs
to maintain a link to individual physical pages and to support
multiple ownership control for each page. To make this
possible, we have designed its data structure as shown in Fig-
ure 7. We declare and use struct mem_reserve_page
for our own purpose, which contains a local LRU-list entry,
an ownership list entry, and a pointer variable to reference
a corresponding physical page. The Linux kernel maintains
a page descriptor, struct page, for each physical page
to keep track of the current status of the page. The pointer
in mem_reserve_page indicates its corresponding page
descriptor to access the page’s status. Since a page can be
allocated by any application and be dynamically mapped
to another application, we need to be able to access
mem_reserve_page from a page descriptor. Hence, we

have inserted a pointer variable into the page descriptor to
enable cross-referencing. When a page is shared by two or
more memory reservations, mem_reserve_page is con-
nected to another mem_reserve_page via its ownership
list entry. All shared references in the ownership list point
to the same page descriptor, and they are reachable from the
page descriptor via a two-step reference, which finds one of
them using a pointer in the page descriptor and traverses its
ownership list. The pointer to mem_reserve_page in the
page descriptor is also used to identify its owner, which is
necessary for the SPC scheme. Except the owner, each of the
other memory reservations in the ownership list conserves
one free page in its conserved-page list.

Like previous implementations of memory reservation
[5][8], we have inserted hooks into the page allocation
function and the deallocation function of the kernel for
implementing memory reservation. In addition, we have
put hooks into the PTE mapping/unmapping functions to
monitor dynamic page sharing.

For implementing the SPEL scheme, we need to identify
whether a page has an eviction lock. The Linux kernel uses
a flag variable in a page descriptor to describe the status
of a physical page. Each bit of the flag represents a certain
condition, and many bits of the flag remain unused. Hence,
we have used one of the unused bits to specify an eviction
lock. We inserted a system call for users to set and cancel
an eviction lock. The system call parameters include a task
ID, a start address of a virtual memory area, and a size of
the area. It first tests whether the task’s memory reservation
is greater than the requested area. Then, it makes all pages
of the area present in physical memory, and deallocates free
pages gained by using SPEL.

The system call and the hook functions are implemented
as a loadable kernel module. Though our implementation
is based on 64-bit x86 architecture, we expect that they
also can be used in other architectures, because we have not
modified any architecture-dependent code except the system
call table.

VI. PERFORMANCE EVALUATION

This section presents our experiments on the proposed
schemes and analyzes their effects on real-time applications
using shared pages. The target machine for the experiment
is equipped with the Intel Core-i5 2540M processor running
at 2.6GHz, 4GBytes of RAM, and a 2.5inch, 500GBytes
7200rpm hard-disk drive.

A. Microbenchmark

Our shared-page management mechanism may introduce
spatial and computational overheads, due to managing an
additional data structure for each page and hooking the
kernel’s memory functions. Firstly, we present the increased
memory usage from our schemes. Since we have inserted
one pointer variable to the page descriptor in the Linux ker-
nel, the size of the page descriptor is increased from 56 bytes
to 64 bytes. This means 0.195% of memory overhead in the

Table II
COMPUTATIONAL OVERHEAD OF SHARED-PAGE MANAGEMENT

Items Linux kernel Mem Reserve Mem Reserve
(Global Mgmt) w/o SP-Mgmt w/ SP-Mgmt

Page allocation 400.4 192.4 202.3(alloc_page)
Page deallocation 208.6 187.2 188.6(__free_page)
Mapping a shared page
to a page table 1197.0 1220.4 1417.3

Unmapping a shared
page from a page table 816.2 834.3 1059.7

* All values are in CPU cycles

system using 4KB pages. For instance, in the target system
equipped with 4GB RAM, 8MB of physical memory is
additionally consumed regardless of the creation of memory
reservations. This overhead can be considerably reduced if
we configure to use bigger pages, such as a 4MB page mode
in x86. When we create a memory reservation, we allocate
a mem_reserve_page for each page frame. The size
of mem_reserve_page in the current implementation is
56 bytes. Hence, it needs an additional 1.37% of memory
for the requested reservation size. This overhead comes
from both our shared-page management mechanism and
memory reservation. The pure spatial overhead caused by
our mechanism is 24 bytes per each page, meaning 0.59%
of the reservation size.

Next, we determine the computational overhead of our
mechanism. SPEL does not incur run-time overhead after
it is set. SPC, however, performs page ownership control
and monitors shared-page mapping at run-time. Therefore,
we compared the page allocation and deallocation times
in our mechanism with not only the times in the global
memory management of the original Linux kernel but also
the times in the memory reservation scheme lacking our
mechanism. We also measured the times for mapping and
unmapping a shared page in our scheme. We used the
rdtsc instruction for time measurement, which returns the
number of elapsed CPU-clock cycles. The measurement was
conducted under no memory pressure and no page-swapping
happened. Table II presents the results. Every number in the
table is an average observed value. The memory reservation
scheme without and with shared-page management (SP-
Mgmt) took less time than the global memory management
of the original Linux kernel for allocating and deallocating a
page, because the memory reservation manages a relatively
small number of isolated pages. The last column of the table
shows the execution time of the memory reservation with our
mechanism. For page allocation and deallocation, it spent
almost the same clock cycles as the cycles in the memory
reservation without our mechanism. For mapping and un-
mapping a shared page, it spent approximately 200 cycles
more than the results in the original Linux kernel. However,
page mapping happens when the page is accessed for the first
time, and page unmapping happens when page replacement
occurs. We therefore conclude that the overheads induced
are either negligible or acceptably small.

0 0.2 0.4 0.6 0.8 1

Time (sec)

Task1 with 11MB Mem Reserve

0 0.2 0.4 0.6 0.8 1

Time (sec)

Task1 with 10MB Mem Reserve

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9

t1,1

Run

0

1

Run

0

1

(a) Task τ1 with different memory reservation sizes

0 0.5 1 1.5 2 2.5 3

Time (sec)

Task2(D=500ms) with 11MB Mem Reserve

0 0.5 1 1.5 2 2.5 3

Time (sec)

Task2(D=500ms) with 2MB Mem Reserve

t2,1 t2,2 t2,3 t2,4 t2,5

t2,1 t2,2 t2,3 t2,4 t2,5

Run

0

1

Run

0

1

(b) Task τ2 with different memory reservation sizes

Figure 8. Identifying minimum schedulable memory sizes for τ1 and τ2

B. The Effect of Our Proposed Mechanisms

To show the effectiveness of our schemes, we used
two periodic tasks running at different periods and
memory access patterns. The tasks’ real-time periodic
task parameters (Ci, Ti, Di), a maximum computation
time Ci per each period, period Ti, and deadline
Di, are specified with the Linux/RK APIs; Task τ1’s
(C, T,D) is (40ms, 100ms, 100ms); Task τ2’s (C, T,D)
is (100ms, 500ms, 500ms). Both tasks are given real-time
scheduling priorities by Linux/RK; τ1 has higher priority
than τ2 because T1 < T2. The system has 10MB of
shared memory region created by the shmem system call.
τ1 sequentially accesses 10MB of shared memory in every
period. τ2 accesses 1MB per period, so it takes 10 periods to
access the entire shared memory. The tasks are compiled by
gcc with -static option, so they do not use shared libraries.

To begin, we determined the minimum schedulable mem-
ory reservation size for each task. Figure 8(a) illustrates
the execution history of τ1 with different sizes of memory
reservations. τ1 with 11MB memory met its deadlines, but
τ1 with 10MB memory could not even finish its first period
until 3sec; thus, we could understand that at least 11MB of
memory is required for τ1. Figure 8(b) shows the execution
history of τ2. The upper graph is the result of τ2 with
11MB memory, and the lower graph is the result with 2MB
memory. When τ2 ran with 2MB memory, its completion
time was retarded, but it could still meet its deadlines.
Hence, we determined that 2MB of memory reservation is
enough for running τ2.

Next, we examined the physical memory usage when

Table III
PHYSICAL MEMORY USAGE COMPARISON

Task-set Technique Per-task Memory Total Physical Memory
Reserve (MBytes) Usage (MBytes)

{τ1, τ1}
No-SP-Mgmt

Each τ1 = 11
(11+11)-10 = 12

SPC 11+11 = 22
SPEL (11+11)-10 = 12

{τ2, τ2}
No-SP-Mgmt Each τ2 = 2 (2+2)-1 = 3

SPC 2+2 = 4
SPEL Each τ2 = 11 (11+11)-10 = 12

{τ1, τ2}
No-SP-Mgmt

τ1 = 11, τ2 = 2 (11+2)-1 = 12
SPC 11+2 = 13

SPEL τ1 = τ2 = 11 (11+11)-10 = 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)

Task1 w/ No-SP-Mgmt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)

Task1 w/ SPC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)

Task1 w/ SPEL

t1,1 t1,2 t1,3 t1,4 t1,5Period missing Period missing

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7

Run

0

1

Run

0

1

Run

0

1

Figure 9. Execution history of τ1 running with τ2, under No-SP-
Mgmt(top), SPC(middle), and SPEL(bottom)

multiple tasks access the shared memory region. We erected
and used three task-sets consisting of τ1 and τ2: {τ1, τ1},
{τ2, τ2}, and {τ1, τ2}. Running a same task twice was
accomplished by executing a copy of the task’s program
image, so the kernel’s code page sharing did not happen
here. Table III shows the per-task memory reservation size
and the total physical memory usage with the three task-
sets, under the control of no shared-page management (No-
SP-Mgmt), SPC, and SPEL. In case of {τ1, τ1}, the per-
task memory reservation was 11MB with all techniques,
but SPC spent 10MB more physical memory than No-SP-
Mgmt and SPEL, due to its Conserved-Page List. In case
of {τ2, τ2}, the per-task memory reservation was 2MB with
both No-SP-Mgmt and SPC, but it was 11MB with SPEL.
Though the average per-period shared memory usage of τ2
was 1MB, SPEL needed to lock the entire shared memory
region, which resulted in 9MB and 8MB more total memory
usage than No-SP-Mgmt and SPC, respectively. In case of
{τ1, τ2}, No-SP-Mgmt and SPC used a different reservation
size for each task, but SPEL used the same size for both
tasks. The total physical memory usage of SPEL was equal
to that of No-SP-Mgmt and was 1MB less than that of SPC.
This result implies that, to reduce the total memory usage,
applying SPC and SPEL to a shared memory region should
consider the tasks’ access patterns to the shared region.

To verify the temporal isolation of our schemes from
shared-page eviction, we executed the task-set {τ1, τ2} with

10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180 200

T
im

e
 p

e
r

fr
a
m

e
 (

m
se

c
)

H.264 720p 30fps Movie with 30MB Memory
Frame time baseline: 33.3msec

10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180 200

T
im

e
 p

e
r

fr
a
m

e
 (

m
se

c
)

MPEG2 1080p 30fps Movie with 20MB Memory
Frame time baseline: 33.3msec

50
100
150
200
250
300
350
400

20 40 60 80 100 120 140 160 180 200

T
im

e
 p

e
r

fr
a
m

e
 (

m
se

c)

H.264 720p 5fps Movie with 9MB Memory
Frame time baseline: 200msec

Frames

Figure 10. Time-per-frame of three different video files

No-SP-Mgmt, SPC, and SPEL. Figure 9 shows the execu-
tion history of τ1. Without our mechanisms, τ1 missed its
periodic deadlines every 500msec, which is equal to τ2’s
period T2, because τ2 swapped out the 1MB of shared
pages during each of its invocations. τ1 experienced self-
suspension due to the eviction of shared pages, thereby
affecting its schedulability. τ1 had higher priority than τ2,
but τ1 missed its deadlines, not τ2, demonstrating that shared
pages, if not managed correctly, can be a significant source
of priority inversion. However, τ1 with SPC and SPEL
showed the same result as when it executed alone. τ2 tried to
evict the shared pages, but both SPC and SPEL prevented the
eviction of shared pages being used by τ1. Unlike τ1, τ2 was
schedulable in all the three cases, but there was a difference
between the cases. τ2 without using our mechanisms showed
similar execution history to when it ran alone with 2MB
memory. With SPC and SPEL, however, τ2’s execution
seemed like when it ran alone with 11MB memory.

C. Case Study: MPlayer
We now use the MPlayer open-source movie player to

demonstrate the effectiveness of our schemes in a real-
world application. We prepared three different video files:
(i) a H.264 video with 1280x720 (720p) frame size and
30fps frame rate (33.3msec period), (ii) a MPEG2 video
with 1920x1080 (1080p) frame size and 30fps frame rate
(33.3msec period), and (iii) a H.264 video with 720p frame
size and 5fps frame rate (200msec period). We checked the
minimum schedulable memory reservation size for playing
each video file. Figure 10 presents the time-per-frame his-
tories of playing each video file with the minimum memory
reservation size. The first movie file needed at least 30MB
reservation to run properly. The number of major page faults,
which need disk swapping and may suspend the task, was
zero, and the number of minor page faults, which only sets a
page table mapping to existing pages, was 8677. The second
video with 20MB reservation caused 272 major page faults
and 9258 minor page faults; it started with some fluctuations
on frame time, but stabilized after playing 24 frames of

Table IV
SHARED MEMORY USAGE OF MPlayer TASK

Shared area Si
Max(Si) Avg(Si) Max(Si) < nAvg(Si)
(KBytes) (KBytes) (n=3)

MPlayer code 13088 900 No
libc-2.11.1.so 1512 288 No
libSDL-1.2.so.0.11.3 420 4 No
libstdc++.so.6.0.13 984 8 No
libpthread-2.11.1.so 96 24 No
libm-2.11.1.so 520 92 No
libdl-2.11.1.so 8 4 Yes

the video. The third video with 9MB caused 741 major
page faults and 8551 minor page faults; it showed more
fluctuations, but it also stabilized after playing 130 frames of
the video. Therefore, we picked these values as the sufficient
reservation sizes for playing the associated video files.

By using the obtained memory reservation sizes, we
played the three video files together, under the memory
reservation approach without and with our shared-page
management schemes. Table IV presents the total size
(Max(Si)) and the average usage (Avg(Si)) of each shared
memory area Si, measured while running the three videos.
MPlayer has more shared memory areas, but the table only
shows the shared areas with Avg(Si) > 1page(= 4KB).
In most shared areas, Avg(Si) is much less than Max(Si)
because MPlayer uses only some portion of shared areas
after its initialization. For these areas, SPC is better than
SPEL to minimize the total physical memory usage. Only
the shared library libdl in the last row shows that Max(Si)
is less than nAvg(Si), meaning o SPEL is better than SPC
for this area. Therefore, we applied SPEL only to this area
and let other shared memory areas be managed by SPC.

The experiment scenario was as follows. At first, we
started the H.264 30 fps movie with 30MB of memory
reservation. After playing 300 frames of the movie, we
started the MPEG2 30 fps movie with 20MB of memory
reservation. Lastly, after playing 600 frames of the first
movie, we started the H.264 5 fps movie with 9MB of
memory reservation. Figure 11 shows the time-per-frame
history of playing the first movie file. We can easily observe
the performance difference with and without our scheme.
With our scheme, the graph shows constant frame time,
regardless of playing other movie files. However, without
our scheme, the MPlayer instance playing the first movie
experienced 143 major page faults due to the eviction of
shared pages, which did not occur with our scheme. This
result also implies that a real-world application can be easily
affected by other applications sharing the same physical
pages, and our schemes can provide enhanced temporal
isolation to their memory access.

During the experiments, we learnt two lessons. The first
one is that it is not easy to decide the optimal memory size
of memory reservation, which minimizes the memory usage
of a task and does not deteriorate the task’s schedulability.
The memory reservation size depends on the task’s data
locality and the execution period, so it needs some testing
to get the optimal size before deploying it. On the plus

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 p

e
r

fr
a
m

e
 (

m
s
e
c
)

w/o Shared Memory Management
(H.264 720p 30fps Movie with 30MB Memory)

Frame time baseline: 33.3msec

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 p

e
r

fr
a
m

e
 (

m
s
e
c)

w/ Shared Memory Management
(H.264 720p 30fps Movie with 30MB Memory)

Frame time baseline: 33.3msec

Start MPEG 1080p movie
 w/ 20MB Mem Reserve

Start H.264 5fps movie
 w/ 9MB Mem Reserve

Start MPEG 1080p movie
 w/ 20MB Mem Reserve

Start H.264 5fps movie
 w/ 9MB Mem Reserve

Frames

Figure 11. Time-per-frame w/ and w/o Shared-Page Management

side, our schemes enable the use of the memory configu-
ration established during the testing phase, regardless of co-
running applications. The second lesson learnt is regarding
the impact of non-CPU resources on the CPU scheduling of
multi-core systems. When shared pages are evicted, a task is
suspended during page swapping. We tried to run each task
on a different CPU core and observed the result, but it did
not help at all. The impact of unexpected self-suspension to
the schedulability and utilization of scheduling algorithms
is likely more severe on multi-core systems. Therefore, the
OS components managing non-CPU resources also need to
respect the CPU scheduling algorithms and to consider the
multi-core environment.

VII. CONCLUSIONS

We demonstrated potential problems of existing memory
reservations with shared pages, and proposed two shared-
page management schemes; Shared-Page Conservation and
Shared-Page Eviction Lock, which address the shared-page
problems. The proposed mechanism has been implemented
in Linux/RK, a resource kernel. The experimental results
show the effect of the proposed schemes not only with
simple task models, but also with a real-world application.
Our implementation is based on the Linux kernel, but we
expect that our approach can be easily applied to other
operating systems with paged virtual memory. Our shared-
page management schemes improve the desirable property
of temporal isolation in memory reservations. However, it
cannot completely remove interference among applications.
For example, if an application accesses several files on a disk
drive, other applications accessing the disk, such as reading
in files and swapping in/out, can be easily affected by the
application due to the contention at the shared resource. The
cache interference on multi-core systems is also a critical
issue to be solved for providing temporal isolation. We plan
to study these issues in the future.

REFERENCES
[1] Linux cgroups. http://www.kernel.org/doc/Documentation/cgroups/

cgroups.txt.
[2] S. A. Belogolov, J. Park, J. Park, and S. Hong. Scheduler-Assisted

Prefetching: Efficient Demand Paging for Embedded Systems. In
IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), 2008.

[3] A. D. Brown and T. C. Mowry. Taming the memory hogs: using
compiler-inserted releases to manage physical memory intelligently.
In USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2000.

[4] R. P. Draves. Page replacement and reference bit emulation in mach.
In USENIX Mach Symposium, 1991.

[5] A. Eswaran and R. Rajkumar. Energy-aware memory firewalling for
QoS-sensitive applications. In Euromicro Conference on Real-Time
Systems (ECRTS), 2005.

[6] S. M. Hand. Self-paging in the nemesis operating system. In
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 1999.

[7] D. Hardy and I. Puaut. Predictable code and data paging for real time
systems. In Euromicro Conference on Real-Time Systems (ECRTS),
2008.

[8] S. Kato and Y. Ishikawa. CPU scheduling and memory management
for interactive real-time applications. Real-Time Systems, pages 1–35,
2011.

[9] P. A. Laplante. Real-time systems design and analysis - an engineer’s
handbook. IEEE, 1993.

[10] M. Malkawi and J. Patel. Compiler directed memory management
policy for numerical programs. In ACM Symposium on Operating
Systems Principles (SOSP), 1985.

[11] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo.
Memory resource management for real-time systems. In Euromicro
Conference on Real-Time Systems (ECRTS), 2007.

[12] M. Masmano, I. Ripoll, and A. Crespo. A comparison of memory
allocators for real-time applications. In International Workshop on
Java Technologies for Real-time and Embedded Systems, 2006.

[13] M. Masmano, I. Ripoll, A. Crespo, and J. Real. Tlsf: A new dynamic
memory allocator for real-time systems. In Euromicro Conference on
Real-Time Systems (ECRTS), 2004.

[14] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource kernel
in linux. In IEEE Real-Time Systems Sumposium (RTSS) Work-In-
Progress, 1998.

[15] A. Patil and N. Audsley. An efficient page lock/release os mecha-
nism for out-of-core embedded applications. In IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2007.

[16] I. Puaut and D. Hardy. Predictable paging in real-time systems: A
compiler approach. In Euromicro Conference on Real-Time Systems
(ECRTS), 2007.

[17] I. Puaut and P. Solidor. Real-time performance of dynamic memory
allocation algorithms. In Euromicro Conference on Real-Time Systems
(ECRTS), 2002.

[18] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels:
A resource-centric approach to real-time and multimedia systems. In
SPIE/ACM Conference on Multimedia Computing and Networking,
1998.

[19] H. Tokuda, T. Nakajima, and P. Rao. Real-time mach: Towards a
predictable real-time system. In USENIX Mach Symposium, pages
73–82, 1990.

[20] C. Urmson et al. Autonomous driving in urban environments: Boss
and the urban challenge. Field and Robotics, 2008.

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

	Introduction
	Related Work and Background
	Related Work
	Memory Reservation

	Problems with Shared Pages
	Shared Pages under Global Memory Management
	Shared Pages in Memory Reservation
	Shared Pages in Linux Memory Cgroup

	Shared-Page Management for Temporal Isolation
	Shared-Page Conservation (SPC)
	Shared-Page Eviction Lock (SPEL)
	Combined Use of SPC and SPEL

	Implementation
	Performance Evaluation
	Microbenchmark
	The Effect of Our Proposed Mechanisms
	Case Study: MPlayer

	Conclusions

