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I. INTRODUCTION

The Real-Time Mixed-Trust (RTMT) Framework [2] en-

ables the use of untrusted components in safety-critical CPS

functions (e.g., driving a car) by monitoring their actions

with verified and trusted components (called enforcers) that

correct unsafe actions to guarantee critical safety properties

(e.g., brake to prevent a crash). The enforcers are run within

a verified hypervisor that protects them from security attacks

or bugs and the untrusted components are run in an unverified

virtual machine (VM) on top of the hypervisor. The untrusted

and trusted components are executed as a single coordinated

sporadic real-time task, called a mixed-trust task, where the

untrusted part is known as the guest task (GT, because it runs

in the guest VM) and the trusted part running in the hypervisor

(HV) is known as the hypertask (HT). The GT is run by a

preemptive fixed-priority scheduler in the VM and the HT by

a non-preemptive fixed-priority scheduler in the HV. The non-

preemptive scheduler prevents interleavings and simplifies the

logical verification [4], [5]. From a timing point of view, the

HT monitors that the GT produces a valid output before the

deadline, and if not, the HT itself produces a safe output before

the deadline elapses. A new set of schedulability equations to

evaluate their schedulability were presented in [2] along with

a full discussion of the framework.

This paper builds on the RTMT framework and takes a

step toward the ultimate goal of the development of full

verification support of autonomous systems. Specifically, the

paper develops support for predictive task sets. Our discussions

with autonomous systems researchers have indicated a need for

flexible runtime assurance mechanisms that take into account

predictive computation. This paper offers a flexible mechanism

from a timing point of view and formalizes the associated

timing analysis.

The original RTMT framework had two drawbacks: (1) the

schedulability equations assumed that the HT always runs

enforcement although we expect in reality that the HT only

runs in emergencies, and (2) it was assumed that the reaction

to emergencies must be handled within only one invocation

of the HT. To address these drawbacks, in this paper, we

propose an enhancement that allows HTs to run alternative

computations when they do not need to perform enforcement

computations. The results of the alternative computations can

be used for future enforcement when it needs to obtain a

refined assessment of the situation (e.g., to verify that no
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Fig. 1. Predictive trajectory computation and enforcement

obstacles are nearby and less than full braking is needed) or

build a more refined reaction to create an escape trajectory to

deal with a GT deadline miss. Hence, we identify such ad-

ditional work as predictive computation (or pre-computation)
and the HT jobs executing pre-computation as predictive jobs,

which are executed only when the enforcer jobs of the HT do

not execute. An example of a trajectory predictor is depicted

in Figure 1. This figure captures the notional concept of

some pre-computation that can be stored and used when the

enforcement needs to take place.

In our model, the pre-computation jobs need to produce

some amount of data to be used by the enforcer job. We

encode this as Ii, which defines the minimum number of pre-

computing jobs required in order for the enforcer to produce

a better quality output. It is worth noting that safety does not

depend on the value of Ii. However, if Ii pre-computation

jobs are not completed, then the improved enforcement cannot

be executed and the enforcement is executed as if no pre-

computation jobs occurred (all or nothing semantics). In

addition, we allow the enforcer and the pre-computing jobs to

have different WCETs. In the following, we will discuss how

we extend the original RTMT framework to use this parameter.

II. MIXED-TRUST SCHEDULING BACKGROUND

Let us start by presenting the original RTMT system

scheduling followed by the extensions for predictive enforce-

ment.

In the RTMT framework, a system is composed of a set of

mixed-trust tasks Γ = {μi|μi = (Ti, Di, τi, κi)} running on

a single-core processor. Each mixed-trust task μi is modeled

as two execution segments, τi and κi, with period Ti and
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deadline Di. The segment τi is the untrusted component and

runs in the untrusted OS kernel inside the VM. The segment κi

is the trusted component and runs within the trusted HV in a

higher priority band than all τ ’s. To represent the fact that these

segments are handled by different schedulers, [2] considers

them to be tasks and calls τi the guest task (GT) and κi the

hypertask (HT). These tasks are defined by: τi = (Ti, Ei, Ci),
κi = (Ti, Di, κCi), where Ti and Di are the same as in μi,

Ci is the WCET of τi, κCi is the WCET of κi, and Ei is the

deadline for τi.
We begin by showing the schedulability equations in [2];

this is useful because we will, later in this paper, make

straightforward changes to the equations in [2] so that pre-

computation jobs are included in schedulability analysis. Later

on, we will also present a much better approach that is not

based on straightforward changes.

The reasoning underlying the schedulability analysis in [2]

is as follows. The response time of an HT κi (following [1]) is

obtained by first calculating the maximum duration of a level-i
active period (denoted tκi ) as the smallest solution of:

tκi = max
j∈κLi

κCj +

⌈
tκi
Ti

⌉
κCi +

∑
j∈κHi

⌈
tκi
Tj

⌉
κCj , (1)

where κLi is the set of all HTs with lower priority than κi

and κHi is the set of tasks with higher priority than κi.

Then the latest start time of the qth job of κi in the level-i
active period (wκ

i,q) is calculated as the smallest solution of:

wκ
i,q = max

j∈κLi

κCj+(q−1)κCi+
∑

j∈κHi

(

⌊
wκ

i,q

Tj

⌋
+1)κCj , (2)

and the response time of the HT κi by

Rκ
i = max

q∈{1...
⌈

tκ
i

Ti

⌉
}
(wκ

i,q + κCi − (q − 1)Ti), (3)

which basically adds the computation time to the latest start

among all jobs in the active period.

Given this response time of an HT, the Ei timer which

serves as the deadline of the corresponding GT is obtained as

follows:

Ei = Di −Rκ
i ,

To calculate the response time of a GT τi, it is necessary

to evaluate all the potential phasings of the interfering GTs

(with higher priority) and HTs (all HTs except its own). To

simplify this, [2] defines the request bound function (rbf) that

captures the computation time of the mixed-trust task μi and

all of the interfering tasks as in the equation below:

rbf
y
i (t, b) =

⎧⎨
⎩
⌈
t−(Ti−Ei)

Ti

⌉+
Cib+

⌈
t
Ti

⌉
κCi if y = E,⌈

t
Ti

⌉
Cib+

⌈
t−Ei

Ti

⌉+
κCi if y = A,

(4)

where �x�+ = max(0, �x�), y ∈ {E,A} indicates if the

interfering task is aligned with the HT (E) or the GT (A), and

b ∈ {0, 1} indicates if the GT execution should be included

in the rbf.

The rbf is then used to calculate the maximum level-i busy

period that starts with an HT job (x = E) or the GT job

(x = A) of the mixed-trust task μi:

tg,xi =

⎛
⎝∑

j∈Li

rbfEj (t
g,x
i , 0)

⎞
⎠+ rbfxi (t

g,x
i , 1)

+
∑
j∈Hi

max
y∈{E,A}

rbf
y
j (t

g,x
i , 1),

(5)

where Li and Hi contain the tasks with lower and higher

priority than τi, respectively.

Let wg,x
i,q denote the latest finishing time of the qth job of

the GT τi, relative to the start of the maximum level-i busy

period, such that this level-i busy period starts with a job of

the HT or the GT of μi. Then, the analysis in [2] computes

wg,x
i,q as the smallest solution of:

wg,x
i,q =

⎛
⎝∑

j∈Li

rbfEj (w
g,x
i,q , 0)

⎞
⎠+ qCi + (q − 1 + B(x=E))κCi

+
∑
j∈Hi

max
y∈{E,A}

rbf
y
j (w

g,x
i,q , 1).

(6)

where Bφ is an indicator function that returns 1 if φ is true

and 0 otherwise.

The response time of a job for different phasings is com-

puted by:

Rg,x
i,q = wg,x

i,q − ((q − 1)Ti + B(x=E)(Ti − Ei)). (7)

Then the maximum response time among all the jobs in the

busy period is calculated with

Rg,x
i = max

q∈
{
1...

⌈
t
g,x
i

−Ix=E(Ti−Ei)

Ti

⌉}Rg,x
i,q . (8)

Finally, the response time of a GT τi is given by:

Rg
i = max

x∈{E,A}
Rg,x

i . (9)

With these equations, the original RTMT framework first

calculates the response time of all the HTs, then their respec-

tive Ei intervals, and finally the response time of the GTs.

A taskset is schedulable if after all the calculated response

times of the HT are less than or equal to their deadline and

all the response times of the GT are less than or equal to their

respective Ei.

III. PREDICTIVE MIXED-TRUST SCHEDULING

In our predictive mixed-trust model, we need to evaluate

the schedulability of both the worst-case enforcement situation

(that is basically the same as the original mixed-trust task) and

the situation when the HTs do not need to enforce but perform

some pre-computation.
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A. System Model

Our new model for predictive scheduling can be captured as

a modification to the real-time mixed-trust model as follows.

First the Ii parameter is added to the mixed-trust task to

capture the number of predictive jobs: μi = (Ti, Di, Ii, τi, κi).
Secondly, we extend the definition of the HT to include the

WCETs of the enforcement (κCe
i ) and the predictive (κCp

i )

jobs, redefining the HT as: κi = (Ti, Di, κC
e
i , κC

p
i ). Finally,

we define κCm
i = max(κCe

i , κC
p
i ). It is worth noting that

our model is based on concepts of the multiframe model [3]

accommodating the mixed-preemption, priority bands, and

intermediate deadlines required by the mixed-trust framework.

In this work in progress, we limit our focus to analyze the

case where, after Ii prediction/pre-computation jobs of the

HT, there will be at least one enforcer job of the HT. This

assumption will be lifted in our future work.

With this new system model, we need to calculate the

response times of an HT in two different cases:

1) Rκ,e
i — the response time of the HT κi for the case that

it performs enforcement.

2) Rκ,p
i — response time of the HT κi for the case that it

performs prediction.

We need to compute these two versions of the response times

considering that HTs are scheduled non-preemptively in the

HV. Once we have computed these, we will use them to assign

Ei for each GT τi, for example: Ei = Di−max(Rκ,e
i , Rκ,p

i ).

B. Enforcement

To calculate the response time of the HT κi performing

enforcement, Rκ,e
i , we focus on the existing analysis [2] where

the HTs are always assumed to run enforcer jobs. This is

basically the same as equation (3) but replacing κCi with

κCm
i :

Rκ,e
i = max

q∈{1...
⌈

tκ
i

Ti

⌉
}
(wκ

i,q + κCm
i − (q − 1)Ti), (10)

C. Prediction

For the case that the HT performs prediction, we need to

develop new equations. In this case, the deadline encodes the

time by which we need to complete the pre-computation in

order to obtain the benefit of the improved enforcement.

Let us now discuss computation of the response time for

the case that the HT κi of a mixed-trust task μi performs

prediction. Let tκ,pi denote the maximum duration of a level-i
active period. Following [1], we calculate tκ,pi as the smallest

solution of:

tκ,pi = max
j∈κLi

κCm
j +

⌈
tκ,pi

Ti

⌉
κCp

i + CP (i, tκ,pi )

+
∑

j∈κHi

(

⌈
tκi
Tj

⌉
κCp

j + CP (j, tκ,pi )),
(11)

where κLi is the set of HTs with lower priority than κi,

κHi is the set of HTs with higher priority than κi, κC
m
j =

max(κCp
j , κC

e
j ), and

CP (j, tκ,pi ) =

⎧⎨
⎩
⌈

tκ,p
i

Tj · Ij

⌉
(κCe

j − κCp
j ) if κCe

j > κCp
j

−
⌊

tκ,p
i

Tj · Ij

⌋
(κCp

j − κCe
j ) otherwise.

(12)

Given that a lower-priority HT may be running when a higher-

priority HT arrives, (11) takes into account the maximum

interference from one job of a lower-priority task. Note that

we do not make any assumption about whether the WCET of

a prediction job (κCp
j ) is larger than that of an enforcer job

(κCe
j ). Instead, (11) first accounts for the cumulative execution

time considering κCp
j (the second term) and then makes a

compensation by using the function CP , which returns a

positive value if κCe
j > κCp

j , and negative otherwise.

Let wκ,p
i,q denote the latest starting time of the qth prediction

job κp
i,q in the level-i active period. Then, from [1], we

calculate wκ,p
i,q as the smallest solution of:

wκ,p
i,q = max

j∈κLi

κCm
j + (q − 1)κCp

i +Q(i, q − 1)

+
∑

j∈κHi

((

⌊
wκ

i,q

Tj

⌋
+ 1)κCp

j + CPw(j, w
κ,p
i,q )),

(13)

with

Q(i, q) =

⎧⎨
⎩
⌈

q
Ii

⌉
(κCe

i − κCp
i ) if Ce

i > κCp
i

−
⌊

q
Ii

⌋
(κCp

i − κCe
i ) otherwise,

(14)

and

CPw(j, w
κ,p
i,q ) =⎧⎨

⎩
(
⌊

wκ,p
i,q

Tj · Ij

⌋
+ 1)(κCe

j − κCp
j ) if κCe

j > κCp
j

−
⌊

wκ,p
i,q

Tj · Ij

⌋
(κCp

j − κCe
j ) otherwise.

(15)

The response time can then be calculated as follows. For the

jobs in the level-i active period, we can move the arrival times

of the κi jobs to be as early as possible; this may change the

schedule but neither the duration of the level-i active period

nor the starting time of each κi job decreases. Hence, it holds

that each κi,q in the active period arrives (q− 1)Ti time units

after the level-i active period starts.

For each job of κi, we can add κCi to its starting time

and then subtract the arrival time of this job, which yields the

response time of the job. Then we upper-bound the response

time of κi as:

Rκ,p
i = max

q∈{1...
⌈

t
κ,p
i
Ti

⌉
}
(wκ,p

i,q + κCp
i − (q − 1)Ti). (16)

IV. GUEST-TASK SCHEDULING

It is worth remembering that safety does not depend on

the GT. Hence, the GT scheduling guarantee is aimed at

ensuring that the system is able to make progress (e.g., the car

navigates the road and does not brake constantly) with the GT

computation even if we cannot trust it with safety. Following
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the same spirit, there are two ways to think about guest

task scheduling: (i) considering the worst-case enforcement

Ii interarrival, i.e., we will always use κCm
i , and (ii) assume

that the steady state is to have one enforcement job every Ii
pre-computing jobs. Since we expect that for many tasksets

κCp
i > κCe

i using a fixed Ii can give us better schedulability.

In the next two subsections we present these two sets of

schedulability equations.

A. Worst HT Execution

In this case the only difference will be the replacement

of κCi by κCm
i in all the GT schedulability equations of

Section II.

B. Fixed Ii parameter

This case involves modifying the interference equations as

follows.

The re-definition of the request-bound function for our

model is given by:

rbf
y
i (t, b) =⎧⎨

⎩
⌈
t−(Ti−Ei)

Ti

⌉+
Cib+

⌈
t
Ti

⌉
κCp

i + CP (i, t) if y = E,⌈
t
Ti

⌉
Cib+

⌈
t−Ei

Ti

⌉+
κCp

i + CP (i, (t− Ei)
+) if y = A,

(17)

where �x�+ = max(0, �x�) and (x)+ = max(0, x).
Then, similar to (5), we compute tg,xi as the smallest

solution of:

tg,xi =

⎛
⎝∑

j∈Li

rbfEj (t
g,x
i , 0)

⎞
⎠+ rbfxi (t

g,x
i , 1)

+
∑
j∈Hi

max
y∈{E,A}

rbf
y
j (t

g,x
i , 1),

(18)

where Li and Hi contain the tasks with lower and higher

priority (respectively) than τi. Given τi and level-i busy period,

we refer to job q as the qth job with a GT arrival in the level-

i busy period. For each τi, and x ∈ {E,A}, let wg,x
i,q denote

the maximum finishing time of job q of task τi, relative to

the start of the maximum level-i busy period, such that this

level-i busy period starts with a job of the HT or the GT of τi
arriving (x indicates which). Then, similar to (6), we compute

wg,x
i,q as the smallest solution of:

wg,x
i,q =

⎛
⎝∑

j∈Li

rbfEj (w
g,x
i,q , 0)

⎞
⎠+ qCi + (q − 1 + B(x=E))κC

p
i

+Q(i, q − 1 + B(x=E))

+
∑
j∈Hi

max
y∈{E,A}

rbf
y
j (w

g,x
i,q , 1),

(19)

where Bφ is an indicator function that returns 1 if φ is true

and 0 otherwise.

For each τi and for each x ∈ {E,A}, let Rg,x
i,q denote the

maximum response time of job q of τi such that this level-i

busy period starts with the arrival of a job of the HT or the GT

of τi (x indicates which). Then, similar to (3), we compute

Rg,x
i,q as:

Rg,x
i,q = wg,x

i,q − ((q − 1)Ti + B(x=E)(Ti − Ei)). (20)

For each τi and for each x ∈ {E,A}, let Rx
i,q denote

the maximum response time of τi, such that this level-i busy

period starts with the arrival of a job of HT or GT of τi (x
indicates which). Then, similar to (8), we compute Rg,x

i as:

Rg,x
i = max

q∈
{
1...

⌈
t
g,x
i

−Ix=E(Ti−Ei)

Ti

⌉}Rg,x
i,q . (21)

Finally, the response time of a GT is:

Rg
i = max

x∈{E,A}
Rg,x

i . (22)

V. CONCLUDING REMARKS

This paper presents our work in progress on the extension

of the real-time mixed-trust scheduling model to support

predictive tasksets. Our discussions with autonomous systems

researchers have indicated a need for flexible runtime assur-

ance mechanisms that take into account predictive computa-

tion. This paper offers a flexible mechanism from a timing

point of view and formalizes the associated timing analysis.

Consequently, the paper represents an important step toward

the development of full verification of autonomous systems.
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