
Homework #1: Biopolymers (For Problem 1 and 2, do work on here). 
Problem # 1 - Polymerization Kinetics (15 pts) 

Recall, in a simple example of polymerization kinetics there is an on and off rate for 

the monomers and we can define the polymerization with a differential equation. In 

reality, polymerization is more complex.  

Consider actin & tubulin, 

 subunits are not symmetric 

o they add to the two ends of a filament with preferred orientation 

giving rise to an oriented filament 

 subunits carry ATP (actin) and GTP (tubulin) which hydrolyzed to ADP and 

GDP after polymerization. 

Based on the ideal case and the illustration above, write down the equations for 

microtubule and actin. (5 points for equation and chart) 

𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙,
𝑑𝑛

𝑑𝑡
= 𝑘𝑜𝑛𝐶  𝑎𝑛𝑑 

𝑑𝑛

𝑑𝑡
= −𝑘𝑜𝑓𝑓 𝑠𝑜 𝑘𝑜𝑛𝐶𝑐𝑟𝑖𝑡−𝑘𝑜𝑓𝑓 = 0 

𝐶𝑐𝑟𝑖𝑡
+ =  

𝑘𝑜𝑓𝑓
+

𝑘𝑜𝑛
+  𝑎𝑛𝑑  𝐶𝑐𝑟𝑖𝑡

− =  
𝑘𝑜𝑓𝑓

−

𝑘𝑜𝑛
−  𝑓𝑜𝑟 𝑡ℎ𝑒 𝐷𝑃 𝑎𝑛𝑑 𝑇𝑃 𝑠𝑖𝑑𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  

These ratios differ depending on which side (+ or -) and if it is DP or TP.  

From these equations and the on/off rates, calculate the critical concentrations and 

fill in the table. Note the units for on and off rate are different. 

 

 k+
on k+

off k-
on k-

off C+
crit C-

crit 

ATP-actin 

 
11.6 1.4 1.3 0.8 0.12 0.62 

ADP-actin 

 
3.8 7.2 0.16 0.27 1.9 1.7 

GTP-tubulin 

 
8.9 44 4.3 2.3 4.9 5.3 

GDP-tubulin 

 
0 733 0 915 n/a n/a 

For actin, there is a condition called steady state treadmilling. Treadmilling occurs 

when one end of a filament polymerizes while the other end depolymerizes. This 

means the polymer neither shrinks nor grows. Based on your knowledge of 

polymerization kinetics, and the condition statement, can you derive the steady 

state concentration in terms of on and off rates for actin? (Hint, when you plug in 

numbers, Cstd= 0.17 μM.) 10 points for this part. 
𝑑𝑛+

𝑑𝑡
+

𝑑𝑛−

𝑑𝑡
= 0 

𝑘𝑜𝑛
+ 𝐶𝑠𝑡𝑑 − 𝑘𝑜𝑓𝑓

+ + 𝑘𝑜𝑛
− 𝐶𝑠𝑡𝑑 − 𝑘𝑜𝑓𝑓

− = 0 

𝐶𝑠𝑡𝑑 =  
𝑘𝑜𝑓𝑓

+ + 𝑘𝑜𝑓𝑓
−

𝑘𝑜𝑛
+ + 𝑘𝑜𝑛

−
 

Note, your steady state concentration is always between the positive and negative 

end critical concentration. 

 

  

 



Problem # 2 - Derivation of Persistence Length (25 pts) 

In class, I simply stated the equation for persistence length. Here you will attempt 

to derive the equation. Consider a continuous polymer of contour length L 

undergoing thermal fluctuations. We define a quantity s that runs from 0 to L and 

gives a parametrization by which each point on the polymer can be identified. We 

define the orientation at each point θ(s) as the angle the polymer makes with an 

imaginary horizontal line. At s = 0, the polymer end is fixed such that θ(0) = 0. 

 

Let’s start with the approximation for the derivatives of some function f(s). Hint: It 

stems from the first two terms of the Taylor series approximation. (2 pts) 
𝑑𝑓

𝑑𝑠
≈  

𝑓(𝑠 + ∆𝑠) − 𝑓(𝑠)

∆𝑠
 

The equation above is a good approximation for small Δs as long as f(s) is smooth. 

In our case, f(s) = <cos θ’(s)> where θ’(s) = θ(s) - θ(0) and < > indicates the time 

average.  

A short aside for those wondering why cosine. 

Let’s say we are monitoring θ(s) over time and draw the probability distribution for it. The 

distributions near the fixed end or small s, then we expect that the chances the polymer to 

have a different orientation from θ = 0 are very small, and so the distribution would be very 

sharp with a peak at  θ = 0. If we were to find the average cosine of the angle, we would 

find that <cos θ> ≈ <cos 0> = 1. For large s, we would expect a much higher chance for the 

polymer to have a different orientation for 0 and the orientation is effectively random 

(uncorrelated from the fixed end) and so <cos θ> ≈ 0. In conclusion, <cos θ> decreases 

from 1 to 0 as s gets larger. In fact, this decrease occurs exponentially.  

Back to the problem at hand! You can plug in our f(s) in the approximation for the 

derivate you stated earlier. (1 pt) 
𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠 + ∆𝑠)) > −< 𝑐𝑜𝑠 (𝜃’(𝑠)) >

∆𝑠
 

 

Now, if we let Δθ’(s) = θ’(s + Δs ) - θ’(Δs). Rearrange this and replace θ’(s + Δs ) in 

your expression from above. (1 pt) 
𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠) + ∆𝜃’(𝑠)) > −< 𝑐𝑜𝑠 (𝜃’(𝑠)) >

∆𝑠
 

 

Note: Δθ’(s) and θ’(s) are independent quantities. Use the cos(a+b) expansion for 

the above expression. (1 pt) 

𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠)) 𝑐𝑜𝑠(∆𝜃’(𝑠)) − 𝑠𝑖𝑛 (𝜃’(𝑠)) 𝑠𝑖𝑛(∆𝜃’(𝑠)) > −< 𝑐𝑜𝑠 𝜃’(𝑠) >

∆𝑠
 

Note: Δθ’(s) and θ’(s) are independent quantities. Use the identity <ab> =<a><b> to 

further expand the expression. I will not go into where this comes from. (1 pt) 

𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠)) >< 𝑐𝑜𝑠(∆𝜃’(𝑠)) > −< 𝑠𝑖𝑛 (𝜃’(𝑠)) >< 𝑠𝑖𝑛(∆𝜃’(𝑠)) > −< 𝑐𝑜𝑠 𝜃’(𝑠) >

∆𝑠
 

 

Note, <> is time average but for our purpose everything is a function of space not time. 

 

 



Phew! That is a pretty long expression. Let’s start simplifying! Δθ’(s) and θ’(s) are 

equally likely to be negative or positive (symmetric about zero, odd functions like 

sine average to zero). Knowing this, write a simplified expression for df/ds. (1 pt) 

𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠)) >< 𝑐𝑜𝑠(∆𝜃’(𝑠)) > −< 𝑐𝑜𝑠 𝜃’(𝑠) >

∆𝑠
 

Finally, recall f(s) = <cos θ’(s)> so factor this out and rewrite df/ds. (1 pt) 

𝑑𝑓

𝑑𝑠
≈  

< 𝑐𝑜𝑠 (𝜃’(𝑠)) > (< 𝑐𝑜𝑠(∆𝜃’(𝑠)) > − 1)

∆𝑠
 

𝑑𝑓

𝑑𝑠
≈  

(< 𝑐𝑜𝑠(∆𝜃’(𝑠)) > − 1)

∆𝑠
𝑓(𝑠) 

 

Notice df/ds = -C f(s) where C = constant. Can you justify why I placed a negative?  

Consider cosine from –π to π. For cos(0) = 1, the constant it 0 and we get a totally 

different solution. For any other cosine in this interval, the cosine is between 0 and 1 so 

the term in the () will always be negative. (2 pts) 

What is the solution for this differential equation df/ds = -C f(s)? (1 pt) 

Use separation of variable to get 

𝑓(𝑠) = 𝑒−𝐶𝑠 

Note C = 1/lp where lp is the normalization factor aka persistence length.  

Note, from now on Δθ(s) = θ’(s). Your final expression: 

 

<cos Δθ(s)> = exp{-s/lp} 

Consider a segment of actin relation to a segment of DNA. Calculate the length of 

each segment such that the change in angle between the two ends of each 

segments is, on average, 25 deg. Assume the persistence lengths for actin and DNA 

are 15 microns and 50 nm, respectively. (5 pts) 

Using < 𝑐𝑜𝑠(∆𝜃(𝑠)) > =  𝑒
−𝑠

𝑙𝑝
⁄

    solve for s.  

𝑠 =  −𝑙𝑝 𝑙𝑛(< 𝑐𝑜𝑠(∆𝜃(𝑠)) >) 
< 𝑐𝑜𝑠(25 𝑑𝑒𝑔) > = 0.9 

s = 0.1p 
for actin, s = 1.5 microns 

for DNA, s = 5 nm. 

What does this mean? Physically for actin, on average, 1.5 micron span of thermally 

fluctuating actin would have a difference in angle of 25 degrees. 

Earlier we considered a thermally fluctuating polymer. Now let’s related flexural 

rigidity for an elastic beam. Recall, we derived the bending of an elastic beam 

earlier and derived its floral rigidity EI. We now want to model a thermally 

fluctuating polymer as a curvy elastic beam; its persistence length is proportional to 

the flexural rigidity of the beam.  

Consider an elastic 3-D beam with flexural rigidity EI bent 180 deg with constant 

curvature R. The elastic energy for this beam is 

Q = EIπ/2R 

This can be rewritten for a general bend angle as  

Q = EIθ/2R 

 



Recall the definition of arc length and express the bend angle in terms of arc length 

and curvature. Rewrite the above equation. (1 pt) 

𝜃 =
𝑠

𝑅
 

𝑄(𝜃) =  𝐸𝐼𝜃2

2𝑠⁄  

This equation describes the internal energy of a beam of arc length s subject to 

constant curves such that the bend angle is θ radians. 

 

Now here is where things will get a bit complicated but I do not expect you to know 

this so I will simply state it. If we were to submerge this polymer within a constant 

temperature heat bath, we could use Boltzmann’s distribution to find the 

probability of finding a polymer with bend angle θ as 

𝑝(𝛉) =  
𝟏

𝒁
𝒆

−
𝑸(𝛉)

𝒌𝒃𝑻⁄
 

Z is known as the partition function.  

𝒁 =  ∫ ∫ 𝒆𝒙𝒑 (−
𝑸(𝛉)

𝒌𝒃𝑻⁄ ) 𝒅𝝋
𝝅

𝟎

𝟐𝝅

𝟎

𝒔𝒊𝒏𝜽𝒅𝜽 

We are taking the intergral with respect to a differential element of solid angle. We 

now seek to quantify the average amount of polymer curvature. We can do this by 

computing 

< 𝜽𝟐 >=
𝟏

𝒁
 ∫ ∫ 𝒆𝒙𝒑 (−

𝑸(𝛉)
𝒌𝒃𝑻⁄ ) 𝜽𝟐𝒅𝝋

𝝅

𝟎

𝟐𝝅

𝟎

𝒔𝒊𝒏𝜽𝒅𝜽 

Now do not worry, there is no way I am going to make you solve that. We are 

engineers and we love our small angle approximations! For small angles, 

< 𝜽𝟐 >=
𝟐𝒌𝒃𝑻𝒔

𝑬𝑰
 

Now let’s go back to what we derived before with cosine. What is the Maclaurin 

series for cos x (or Taylor series about 0)? Expand <cos Δθ(s)> to the 2nd order term. 

Note <1-x> = 1 - <x>. (1 pt) 

𝑐𝑜𝑠 𝑥 ≈ 1 −
𝑥2

2
+

𝑥4

24
… 

< 𝑐𝑜𝑠 𝛥𝜃(𝑠) = 1−<
(𝛥𝜃)2

2
> 

If the polymer is assumed to be a constant curvature beam of arc length s, then we 

can substitute in our expression for < 𝜽𝟐 > found right before your expansion and 

substitute.  (1 pt) 

< 𝑐𝑜𝑠 𝛥𝜃(𝑠) >= 1 −
𝑘𝑏𝑇𝑠

𝐸𝐼
 

Now note our earlier expression 

<cos Δθ(s)> = exp{-s/lp} 

We can use another Taylor series expansion for exp{-x} for small x. Use this 

expansion to 1st order to rewrite the expression. (1 pt) 
𝑒−𝑥 ≈ 1 − 𝑥 … 

<cos Δθ(s)> = exp{-s/lp} = 1- s/lp 

 



See what just happened! You have two expressions for <cos Δθ(s)> that you 

simplified and you can set them equal to each other to get persistence length 

equation! Do this here: (5 pt) 
<cos Δθ(s)> = exp{-s/lp} = 1- s/lp 

< 𝑐𝑜𝑠 𝛥𝜃(𝑠) >= 1 −
𝑘𝑏𝑇𝑠

𝐸𝐼
 

1 −
𝑘𝑏𝑇𝑠

𝐸𝐼
=  1 −  𝑠/𝑙𝑝 

𝑙𝑝 =
𝐸𝐼

𝑘𝑏𝑇
 

 

Problem # 3 - The primary cilium (30 pts ) 

The primary cilium is a microtubule-based structure on the surface on most cells, 

responsible for receiving signals [mechanical and chemical] from other cells and 

transmitting these signals to the nucleus, which in turn decides upon a cellular 

response. 

Compute the buckling length of a primary cilium. As shown by the figure below, the 

primary cilium is made up of nine microtubules arranged in a ring as shown. 

Assume that each microtubule is not linked to its neighbor. Thus, each microtubule 

buckles independently. State which values you use for any constants (Young’s 

modulus, membrane, tension, radius, and moment of inertia of the microtubule).  

(5 points) 

Assume EI = 364 x 10-25 N/m2 where E = 1.9 GPa. 

r = 12.5 nm 

Fmem  = 50 pN. This is distributed over all 9 microtubules.  

𝐿𝐵 =  √
𝜋2𝐸𝐼

4𝐹𝑏
=  √

𝜋2(364 × 10−25)

4(50 𝑝𝑁)
9

= 4.03 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 

Note, I know the wording of this is funny so if you found the buckling length of the full 

cilium like this, you should around 1.34 microns and that is acceptable as well. 

Now use parallel axis theorem to show that the bending moment of inertia of a 

collection of n microtubules is 

𝐼 =
𝜋𝑟4

4
(𝑛 +

2𝑛3

𝜋2
) 

Assuming each microtubule is a solid rod of radius r and they are all tightly cross-

linked to one another. Assume that there are enough microtubules that the 

circumference of the primary cilia can be approximated by the sum of the 

individual microtubule diameters. (20 pts) 

The primary cilium is virtually circularly symmetric. Thus, let’s find the polar 

moment of inertia to simplify things.  

Recall, 
𝐽 = 𝐽𝑐 + 𝐴𝑑2 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑎𝑥𝑒𝑠. 

For generic n microtubules, you can estimate the circumference of the cilium as the 

sum of the diameters for each microtubule (imagine an n-sided polygon). 

𝐶 = 2𝜋𝑅 = 𝑛(2𝑟)    𝑠𝑜 𝑅 =  
𝑛𝑟

𝜋
 



𝐹𝑜𝑟 𝑜𝑛𝑒 𝑚𝑖𝑐𝑟𝑜𝑡𝑢𝑏𝑢𝑙𝑒, 𝐽𝑀𝑇 =
𝜋𝑟4

2
+ 𝜋𝑟2𝑅2 =  

𝜋𝑟4

2
+ 𝜋𝑟2 (

𝑛𝑟

𝜋
)

2

 

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑖𝑙𝑖𝑢𝑚, 𝐽 = 𝑛𝐽𝑀𝑇 

𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑𝑠 𝐽 =
𝜋𝑟4

2
(𝑛 +

2𝑛3

𝜋2
) 

𝑁𝑜𝑡𝑒, 𝐼 =
𝐽

2
𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑜𝑓 𝑝𝑜𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎. 

𝑇ℎ𝑢𝑠, 𝐼 =
𝜋𝑟4

4
(𝑛 +

2𝑛3

𝜋2
) 

Afterwards, use the formula to calculate the buckling length of primary cilium.  

Use the formula for inertia and the E for a microtubule.  (5 pts) 

Assume, n = 9 and F = 50 pN. 

Plug into 

𝐿𝐵 =  √
𝜋2𝐸𝐼

4𝐹𝑏
= 16.8 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 

Problem #4 – Freely Joined Chain and Worm Like Chain Model (30 pts – 10 pts/question) 

1. Summarize the manuscript in 150 words or less. 

a. Include: Motivation, Methodology, Main Findings 

2. From lecture and from this paper, what are the differences between FJC and 

WLC model? What does this paper use? 

3. How was tension in the DNA molecule determined? Draw a FBD if it helps! 

1. I wanted you to treat this like it was your own project pitch and simply state 

the motivation, methodology, and main findings of the paper. An example of 

150 words is and less, is the abstract but please do not copy and paste.  

2. FJC treats polymers as discrete segments that are independent of each other. 

Thus it is an uncorrelated chain and the behavior of each segment can be 

modeled like a random walk distribution. It only accounts for the entropic 

contribution. In the limit of low force, FJC actually behaves like a Gaussian 

entropic spring. WLC treats polymers as an isotropic flexible continuous rod. 

Thus it considers both entropic and energetic contributions. After trying to 

apply the FJC model, this paper discovers that it is not sufficient to model 

DNA and recognize that they need to consider the energetic contributions. 

3. The DNA is attached to a magnetic bead in flow and the glass slide. Thus, 

there are two forces at play: magnetic and hydrodynamic forces. These 

forces extended the DNA by some angle and depending on the position of 

the particle, the angle would be different. All of these positions formed an 

ellipse to give a complete idea of the total force. In order to truly measure 

the force, they unleashed the DNA from its tether and measured the velocity. 

This velocity is used to determine the maximum force via Stokes relation but 

it needed a correction since beads near the glass would exhibit more viscous 

drag. 


