Elastography

Lecture 13



Elastography

* Mechanical property imaging of tissue
e Imaging modality — Ultrasound, MRI, OCT, etc

* Non-invasive, convenient, precise, (low-cost)

Disease pathophysiology
Diagnosis
Treatment




Elastic property of Tissue
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Elastic modulus:

* stress/strain
e resistance to axial deformation
e stiffness
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Diagnosis with Elasticity

* In old Egypt, 5 000 years ago, physicians examine ifferent .
of the body to evaluate elasticity, they knew hat a hard ma%
organ is pathologic. g »-

* In Greek ancient age, for Hippocratic medicine, palpating was an
essential time of physical examination.

e
| ry, imaging take preeminent place in medicine and

y could be considered as an « imaging paIpatiQn »
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Diagnosis with Elasticity

* Disease changes tissue elasticity

* Palpation: Used for centuries — low resolution, not depth resolved,
highly subjective
e Elasticity can vary by up to four orders of magnitude
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Ex) Compression test on 142 breast tissue samples

38 fat

31 glandular tissue

18 fibrous tissue

23 intraductal carcinoma

32 infiltrating ductal carcinoma



US elastography - breast cancer diagnosis
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Results of study

296 solid lesions from 232 patients
e Sonography — 72.6% accuracy
e Elastography — 88.2% accuracy

Features of US elastography

e Deep penetration
e Poor resolution

e Commercially available



MR elastography — diseased liver diagnosis

Drop a pebble in a pool of water Drop a pebble in a pool of gel
g % Results of study
T
: ———
Wave Length 141 solid lesions from 232 patients

e Ultrasound elastography — 84% accuracy

* MR elastography — 94% accuracy

Features of MR elastography

Healthy liver Cirrothic liver

e Deeper penetration
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OCT elastography — emerging applications

Cornea - RK Wang group
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Features of OCT elastography

e Higher resolution (1~ 50 um)
e Higher sensitive (sub nm disp.)
e Higher acquisition speed ( >1kHz)

¢ Very low penetration (0.5 ~ 3 mm)

e Clinical applications NOT available



Histology Enface OCT Elastogram (strain)
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(a) H&E histology. (b) En face OCT image. (c) Fused en face OCT and quantitative micro-elastogram. Elasticity is plotted on a
logarithmic scale. Dashed boxes indicate regions over which mean elasticity values were calculated. A = adipose, S = stroma,

T = tumour.



Medical Imaging Techniques

Atomic Force Microscopy

Confocal Microscopy

OCT
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Penetration Depth

Axial resolution: ~ 8um
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Scale of measurement

Elasticity depends on tissue material and structure at the scale being probed

Example: cancer cells versus cancerous tissue

On the microscopicscale — On _the macroscopic scale—
Cancer cells are 10 times softer than healthy cells Cancerous tissue >10 times stiffer than healthy tissue

Force sensor with piconewton resolution

Tip on cantilever senses sample surface SOI hOW dO we measure
mechanical properties in

Lateral resolution: 1 nm

Axial resolution: 1 A elastography?




Imaging tissue deformation

» We need to make some assumptions:

Assumption 1: _
Mechanically homogeneous over a resolution element

« Take a complex block of tissue and break it up into
homogeneous, small volumes
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How is a load realized in each small volume?

Describe behaviour using continuum mechanics
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Stress and Strain

* When any load (force) is applied, a stress
results on each surface of eachvolume

: normal force
: shear force

: normal strain
: shear strain
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Relating stress and strain

3D stress tensor =3 stress 3D strain tensor —9 strain
Z
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* Relate stress and strain through an elastic constant
* 9 stress x 9 strain = 81 elastic constants to describe

behaviour!
. Reduces to two elastic
Assumption 2: constants
Isotropic (direction independent) >
i * shear modulus, G
properties  bulk modulus, K




Elastic moduli

Shear Modulus, G —shear stress and
strain Describes tendency to change in

shape ZA G=21
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Young’s Modulus, E — special case:
longitudinal stress and strain, most

commonly used to quantify
stiffness
A Z
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Relate Eand K throughgeometry:

Ko B
3(1-2v)
Relate Eand G throughgeometry:
E=2G(1+v)
E~3G

Bulk Modulus, K —compressibility
Describes tendency to change in

i

Poisson’s ratio, v - relates change
in shape to change involume

W o=

Assumption 3:
Tissue is incompressible
(Volume is conserved)

=0.5
for tissue




So, which moduli for Tissue?

Liquids

2
All Soft
Tissues
r
A
10 100 10¢ 108 100 100 108 10° 100 Bulk
1 ] 1 1 1 1 1 |} | | »M o du1 i (P a)
77 oo o vz S
Glandular Tissue Dermis Epidermis Bone
of Breast Connective Tissue Cartilage
Liver Contracted Muscle
Relaxed Muscle  Palpable Nodules

Fat

Shear modulus (G) or Young’s modulus (E=3G) has largest dynamic range in tissue

Howdo we get to a modulus in elastography?

Tissuemotion> maging syster

Disp|acement> - Algorithm Modulus > . Elastogram

Assumption 4: Displacement can be related to modulus




Compression

Direct strain

Excitation

measurement

Indirect strain
measurement

Stress =+
sensor
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Deformation types (inducing strain)

Mechanical

Shear Wave

Pressure

excitation

Stack piezo
actuator

Power
amplifier

tip

Actuator

Phased array

Remote
excitation

Wave

TOF

Single
transducer

For homogeneous isotropic

linear elastic materials
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G = pvg?

K = pv.?

Newton-Laplace equation
E=2G6(1+v)=3K(1-2v)

(Poisson’s ratio ~ 0.499)




How it works? - compression

Mechanical Load

Pre-compression Post-compression
* Press at low frequency (<10 Hz)
* Displacement -> strain ~ modulus

Mechanical prop.er‘ﬂ/ estimatig’ﬁ
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How it works -transient (SW)

* Acoustic radiation force impulse

Excitation and

imaging ransducers il * Generates shear waves
Tesve * Displacement -> shear wave speed ~ modulus
7
Shear wave speed to modulus:
E

. ~— Cs= |7

Propagating Fotus " 3,0
Wave '

¢ (m.s?)

Ultrasound image and shear wavespeed image of
invasive ductal carcinoma in human breast
(M. Tanter et al., Ultrasound Med. Biol., 2008)

Z-44 mm




How it works - supersonic SW

Time Stepl: | Step 2: Source activation + Step 3: Propagation
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Plane shear wave propagation imaging

10 ms 14ms * Higher SNR
» Wider spatial extent of shear wave
* Lower frame rates
* Displacement -> shear wave speed ~modulus

Mach 3 supersonic regime in an elastic phantom



Liguids
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s tissue purely elastic?

*Young’s modulus defines elastic (linear, instantaneous) material behaviour
*But more commonly tissue is viscoelastic
*Viscosity is resistance to flow

*Viscoelastic behaviour is non-linear and time-dependent

Creep —time-dependent strain  Relaxation — time-dependent stress
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Viscoelasticity in elastography

Assumption 5: Tissue is linear elastic

* Assumed in most elastography techniques to simply quantify stiffness

* But disease alters tissue viscoelasticity as well as stiffness

* Possibility for viscoelastic contrast in elastography — changes in time-
dependent properties

* Study of viscous or viscoelastic properties is called rheology
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Viscoelastic measurement
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Mechanical properties of tissue —Summary

* Tissue mechanical properties determined by content, structure,
and scale

* To form an image of these properties, make some assumptions:

1. Mechanical homogeneity within a resolution element

— Enables use of continuum mechanics to describe behaviour Wu’
2. lIsotropic (direction-independent) properties

— Reduces 3D elasticity tensor to shear and bulk moduli
3. Incompressible (volume is conserved)

— Allows simple relation of shear and Young’s modulus (E = 3G)
4. Local displacement is related to elastic modulus

— Modulus is estimated from displacement in
compression, vibration, and transient techniques

5. Linear elastic

— Simple model facilitates estimation of Young’s modulus
(stiffness)

* More complex models of tissue behaviour (e.g., viscoelasticity) can

provide further diagnostic information 0 50100 150 200

Time (min)



Feasibility of a hybrid elastographic-microfluidic device to rapidly
process and assess pancreatic cancer biopsies for pathologists

* Ronnie Das, Thu-Mai Nguyen, Saniel D. Lim, Matt O'Donnell, Ruikang K. Wang and Eric J. Seibel

* |EEE EMBS Special Topic Conference on Healthcare Innovations & Point-of-Care Technologies, Oct 8-10,
2014, Seattle WA

* Objectives:

1) To measure the elasticity of pancreatic tissue specimens
using optical coherence tomography shear wave
elastography (OCT-SWE)

2) To determine feasibility of OCT-SWE to identify distinct
structures in the specimens



Optical Coherence Tomography
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Methods
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depth (mm)

Results

0 05 1 15
lateral position (mm)

2

shear wave
speed (m/s)

20

10

Remarks

* No significant difference by channels

* Glass substrate/ enclosed glass / PDMS
channels

* Measured shear wave speed distribution
* Flesh vs Fixed: 3.5 m/s vs 14.5 m/s

e Estimated shear modulus
* Flesh vs Fixed: 18 kPa vs 227 kPa



Results

shearwave
speed (m/s)
15

depth (mm)

10

0.5 1 1.D 2 2.5 3
lateral position (mm)

free space (upper), microchannel (lower)

Remarks

* Differenciated 4% agarose from 1% agarose
hydrogel phantom

* Shear wave : 11.18+1.48 m/s vs 6.62+2.65
m/s



Fixed pancreatic tissue, placed on a glass plate




Comparisons of Loading Schemes

Loading Measured Axial Lateral Assumptions ** Quantitative? [Non-contact?
Method Parameter Resolution* |Resolution* P ' '
Strain Contrast| Elasticity
Compresson Uniform | Reauired | No No
i
P Local Strain | 50~200 um | 10~ 30 um | Local Stress
) Distribution No No
Compression
Dynamic
Compression Local Strain n/a 10 um Yes No
/W stress Local Stress
sensor
Shear Wave . .
Variation Elasticity
Shea;iewzzve i Uniform Yes No
Phase Velocity, C ~ 10 ~ 10
Shear Wave by ase Velocity, Cs um 1m N/A Density
ARF Yes Yes

** Incompressible, linear, elastic and isotropic medium




From displacement to modulus

Mechanical Load Imaging

Pre-compression Post-compression Ultrasound MRI  OCT

Mechanical property estimation
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Focused transducer

Ultrasonic
probe
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Figure 11. Schematic representation of the early work by Sugimoto to measure the displacement

of a specimen’s surface under radiation force.

Excitation and
imaging transducers
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Excitation Methods

e Mechanical excitation
 Compression loading (quasi-static / dynamic)
e Vibration by piezoelectric actuator (dynamic)

* Acoustic radiation force (ultrasound)
* Internal
* Internal shear wave

* Internal endogenous force
* Respiratory, heart




